第一篇:概率统计的论文教学法探讨t
概率统计的论文教学法探讨
摘要:对概率统计的论文教学法进行了研究,其目的是督促学生把所学的概率统计知识应用起来,从而调动学生的学习积极性和成就感。
关键词:
概率统计;学以致用;论文
1引言
概率论与数理统计和高等数学、线性代数是工科大学生必修的三门数学课。由于数学本身的趣味性低,导致了学生的学习积极性不高,大部分学生是在被动状态下学习数学;在这种教学现状下,为调动学生的学习积极性,我想到了“学以致用”,让学生用所学概率统计知识来解决身边的事情,并把它写成论文形式。
2论文的书写
2.1布置作业
在概率统计的第一堂课上,除了交代一些必要的事项外,就是告诉大家写一篇概率统计应用论文,可以把所学概率统计知识与自己的专业知识相联系,写一篇应用论文;也可以用所学的概率统计知识解释生活中的某个问题;当然也可以自选题材;并且提醒学生,该论文成绩占最后结业成绩的百分之十;该论文必须在结业考试前上交,当然也可以随时上交。
2.2论文的完成
绝大部分的学生能在结业考试前上交论文,但是情况不容乐观,主要表现在:很多学生受到“论文”的限制,没能放开手脚地去写;一部分学生不知道怎么去写,就从网上下载,稍加修改就算完成作业;还有一部分学生的论文与别人的雷同,估计是抄袭过程中微调部分内容后,得到自己的论文;还有一部分学生虽然能够写出自己的论文,但是存在问题,主要是因为对知识的理解不够透切,在运用时出了偏差;仅有少部分学习不错的学生能够独立的完成论文,并写出了自己的真知灼见;总之,没有达到预期的效果。
2.3要求的调整
鉴于上一级学生的表现,在下一级的学生中,就对论文的书写要求做了适当的调整;一是提醒大家不要拘泥于论文的形式,尽量把重心放在应用上;二是告诉大家,论文可长可短,没有字数限制;三是告诫大家,不要抄袭,实在写不出来,可以写一个学习感悟或是学习总结;要是还感到有难度的话,也可以把教材中每章的知识点罗列出来,权当是考前复习了。经过上述调整后,论文的完成情况有了明显的好转,达到了预期的目标,在学生层面上,也有了良好的效果。
3论文的反馈
3.1典故的解释
3.2小概率事件的应用
小概率事件是指在一次试验中发生概率非常小的事件;因此也被认为在一次试验中几乎是不可能发生的事件。这就是概率统计中的“实际推断原理”。
有些学生利用概率统计的知识计算出了彩票业中大奖发生的概率(当然结果有偏差),非常的小,几乎是不可能事件,也就是说中大奖是一个小概率事件。明白了这些以后,学生在对待彩票购买上就理智了很多,不再幻想着靠它发财,而是抱着做贡献或撞大运玩的心态,可谓是运用所学知识武装了自己的头脑。
还有学生利用小概率事件诠释了“有志者事竟成”。原文如下:某人进行独立射击400次(每次击中与否不影响后面的射击),每次射击的命中率为0.02,求至少击中两次的概率。求解如下,用X表示击中目标的次数,则X~b(400,0.02),所以P{X≥2}=1-P{X<2}=1-P{X=0}-P{X=1}≈0.997
。由此看出:虽然每次击中目标的概率很低,但是只要坚持下去(增加次数),击中目标是肯定的;也就是说,对于一个小概率事件,不管其发生概率多么小,随着试验次数的增加,其迟早发生的概率趋近为1。这也正是“有志者事竟成”蕴含的道理,只要不气馁,敢于尝试,最后一定能成功;有些人还把这个道理应用到毕业生找工作上去,从而坚定了自己多次尝试的信心。
上述两个实例都是应用了小概率事件,但是角度不同。可谓“仁者见仁智者见智”。任何事件都有其好的一面,就看你如何看待和应用了,当然这与当事人的心境有关。
3.3活学活用
有些学生对古典概型中的“抽签问题”进行了论证。从理论上讲,抽签是公平的,每人抽到的概率均等;但是在实际操作中会有变化,因为在实际的抽签中,大多是即抽即开的,这就导致了先后抽签的不同结果。例如,某个班级必须从五名品学兼优的学生中选出一位作为本年度的校级三好学生,在难以抉择时,只好通过抽签来决定。在抽签之前,每个人都有五分之一的机会;一旦开始,情况就会变化,如果第一个人抽到了,那后面的四个人就没有机会了;如果第一个人没有抽到,剩下四个人的机会就升级到了四分之一,等等。总之,在运用知识时,要根据实际情况作出明智的决策。
还有个别学生用概率知识研究了彩票的中奖规律。从理论上讲,彩票的中奖号码是不会有规律可循的,一切都是随机产生的;但是在现实中又确实有一定的规律,这又怎么解释呢?这是因为中奖号码的产生是借助一些物质来实现的,物质是有其自身的规律的,从而导致了中奖号码的规律;譬如两个中奖号码产生的时间间隔;乒乓球的弹性、均匀程度;容器壁的弹性等等。
参考文献
[1]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2003:1218.[2]卓相来,岳嵘.概率统计简明教程[M].东营:中国石油大学出版社,2012:1217.
第二篇:概率统计复习资料
广东海洋大学寸金学院 2012—2013 学年第 二 学期
概率统计复习资料:
第一章:事件的关系与运算,概率的性质,古典概型,条件概率的概念与性质,乘法公式,事件的独立性。
例题:1.1、1.3、1.4;习题一:4、6、13、23、30、33等。
第二章:离散型随机变量的分布律,两点分布,二项分布,泊松分布,分布函数的定义与性质,密度函数,均匀分布,指数分布,正态分布。
例题:2.10、2.13;习题二:4、15、21、22等。
第三章:离散型随机变量的联合分布律、边缘分布律、条件分布与独立性,连续
型随机变量的联合分布函数。
例题:3.1、3.6、3.9;习题三:13等。
第四章:期望、方差的性质与计算,协方差与相关系数的性质。
例题:4.12、2.13;习题四:1、5、7等。
相互独立的随机变量X与Y具有的性质,例如:DXYDXDY
EXYEXEY,EXYEXEY
第五章:切比雪夫不等式。
设随机变量X的均值EX、方差DX2,由切比雪夫不等式知P(X3)
第六章:总体、样本、简单随机抽样的概念,常用的统计量,单正态总体的抽样分布。
第七章:矩估计、极大使然估计的计算,无偏性、区间估计的定义。例题:7.1、7.2;习题七:
2、3等。
第八章:单正态总体期望的假设检验
例题:8.2、8.3;习题八:2等。
试题类型:
一、单项选择题: 每小题2分,共20分;
二、填空题:每小题3分,共15分;
三、计算题:5个小题,共57分 ;
四、证明题共8分。
第三篇:概率论文~
概率论与数理统计发展史
1014101班 1101410112 化工学院 张晨阳
一、历史背景17、18世纪,数学获得了巨大的进步。数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。除了分析学这一大系统之外,概率论就是这一时期“使欧几里得几何相形见绌”的若干重大成就之一。
二、概率论的起源:
概率论是一门研究随机现象的数量规律学科。
概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布•伯努利(Jacob Bernoulli,1654-1705)。他在遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理,在概率论发展史上占有重要地位。
伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788)提出了著名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松(S.D.Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了著名的泊松分布。
19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,推广了棣莫弗—拉普拉斯的极限定理。切比雪夫的成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展的进程。
19世纪末,一方面概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要,另一方面,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论
中基本概念存在的矛盾与含糊之处。这些问题却强烈要求对概率论的逻辑基础做出更加严格的考察。
三、概率论在实践中曲折发展:
在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、普阿松、切贝谢夫、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。在这段时间里,概率论的发展简直到了使人着迷的程度。但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。
四、概率论理论基础的建立:
概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的“大数定律”。所谓“大数定律”,简单地说就是,当实验次数很大时,事件出现的频率与概率有较大偏差的可能性很小。这一定理第一次在单一的概率值与众多现象的统计度量之间建立了演绎关系,构成了从概率论通向更广泛应用领域的桥梁。因此,贝努利被称为概率论的奠基人。
为概率论确定严密的理论基础的是数学家柯尔莫哥洛夫。1933年,他发表了著名的《概率论的基本概念》,用公理化结构,这个结构明确定义了概率论发展史上的一个里程碑,为以后的概率论的迅速发展奠定了基础。
五、概率论的应用:
20世纪以来,由于物理学、生物学、工程技术、农业技术和军事技术发展的推动,概率论飞速发展,理论课题不断扩大与深入,应用范围大大拓宽。在最近几十年中,概率论的方法被引入各个工程技术学科和社会学科。目前,概率论在近代物理、自动控制、地震预报和气象预报、工厂产品质量控制、农业试验和公用事业等方面都得到了重要应
用。有越来越多的概率论方法被引入导经济、金融和管理科学,概率论成为它们的有力工具。
六、概率论的公理化
俄国数学家伯恩斯坦和奥地利数学家冯•米西斯(R.von Mises,1883-1953)对概率论的严格化做了最早的尝试。但它们提出的公理理论并不完善。事实上,真正严格的公理化概率论只有在测度论和实变函数理论的基础才可能建立。测度论的奠基人,法国数学家博雷尔(E.Borel,1781-1956)首先将测度论方法引入概率论重要问题的研究,并且他的工作激起了数学家们沿这一崭新方向的一系列搜索。特别是原苏联数学家科尔莫戈罗夫的工作最为卓著。他在1926年推倒了弱大数定律成立的充分必要条件。后又对博雷尔提出的强大数定律问题给出了最一般的结果,从而解决了概率论的中心课题之一——大数定律,成为以测度论为基础的概率论公理化的前奏。
1933年,科尔莫戈罗夫出版了他的著作《概率论基础》,这是概率论的一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论的一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公理出发建筑起来。科尔莫戈罗夫的公理体系逐渐得到数学家们的普遍认可。由于公理化,概率论成为一门严格的演绎科学,并通过集合论与其它数学分支密切地联系者。科尔莫戈罗夫是20世纪最杰出的数学家之一,他不仅仅是公理化概率论的建立者,在数学和力学的众多领域他都做出了开创或奠基性的贡献,同时,他还是出色的教育家。由于概率论等其它许多领域的杰出贡献,科尔莫戈罗夫荣获80年的沃尔夫奖。
七、进一步的发展
在公理化基础上,现代概率论取得了一系列理论突破。公理化概率论首先使随机过程的研究获得了新的起点。1931年,科尔莫戈罗夫用分析的方法奠定了一类普通的随机过程——马尔可夫过程的理论基础。
科尔莫戈罗夫之后,对随机过程的研究做出重大贡献而影响着整个现代概率论的重要代表人物有莱维(P.Levy,1886-1971)、辛钦、杜布(J.L.Dob)和伊藤清等。1948年莱维出版的著作《随机过程与布朗运动》提出了独立增量过程的一般理论,并以此为基础极大地推进了作为一类特殊马尔可夫过程的布朗运动的研究。1934年,辛钦提出平稳过程的相关理论。1939年,维尔(J.Ville)引进“鞅”的概念,1950年起,杜布对鞅概念进行了系统的研究而使鞅论成为一门独立的分支。从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,不仅开辟了随机过程研究的新道路,而且为随机分析这门数学新分支的创立和发展奠定了基础。
像任何一门公理化的数学分支一样,公理化的概率论的应用范围被大大拓广。
概率的性质推导
(一)对任一事件A,有0P(A)1。
证:由于任何事件A包含的基本事件数不超过基本事件的总数,故
(一)成立。
(二)P(S)1
证:由于必然事件S包含一切基本事件,故
(二)成立。
(三)若A,B互不相容,则P(AB)P(A)P(B)
证:设S{e1,e2,,en},A{ei1,ei2,,eir},B{ek1,ek2,,ekt}
由于A,B互不相容,它们不包含相同的基本事件,故AB{ei1,,eir,ek1,,ekt} 由公式得,P(AB)rtrtP(A)P(B)nnn
(四)P(A)1P(A)
证:∵A,A互不相容,∴由性质三P(AA)P(A)P(A)又因AAS,故P(AA)1.代入上式,得性质
(四)(五)P()0
证:在性质
(四)中,令AS,则A于是
P()1P(S)0
(六)A包含于B,则P(A)P(B)且P(BA)P(B)P(A)
证:因A包含于B,故BA(BA),其中A与BA互不相容,由性质
(三)P(B)P(A)P(BA)。故得P(BA)P(B)P(A)。因为P(BA)0,所以由上式又可得P(A)P(B)。
(七)一般概率加法公式 对任意两个事件A,B有
P(AB)P(A)P(B)P(AB)
证:因ABA(BA), A与(BA)不相容,所以
P(AB)P(A)P(BA)P(A)P(B)P(AB)
推广:P(ABC)P(A)P(B)P(C)P(AB)P(BC)P(AC)P(ABC).P(ABCD)P(A)P(B)P(C)P(D)P(AB)P(AC)P(AD)P(BC)P(BD)P(CD)P(ABC)P(ABD)P(BCD)P(ACD)P(ABCD).nn1nPAi PAiPAiAjPAiAjAk1PA1A2An i1i11i,jn1i,j,kn
证:n2时,A1AAA)A1与A2互不相容,2A(12,P(A1A2)P(A1)P(A2A1)P(A1)P(A2)P(A1A2)n2时成立,即P(A1A2)P(A1)P(A2)P(A1A2)
设当nk的时候成立即:
P(A1A2Ak)
P(A1A2Ak1)P(Ak)P(A1A2Ak1Ak)
P(A1A2Ak)P[(A1Ak1)(A2Ak1)AkAk1)]
则当nk1时,P(A1A2AkAk1)
P(A1A2Ak)P(Ak1)P(A1A2AkAk1)P(A1A2Ak)P(Ak1)P[(A1Ak1(A2Ak1)(AkAk1)] PAi
i1n1i,jnPAiAj1i,j,knPAiAjAk1n1PA1A2An
综上,推广成立
第四篇:统计与概率总结
“统计与概率”课题实施总结
一年多来,我校课题组全体成员解放思想,勇于创新,以推进素质教育为出发点,认真学习相关理论,围绕《统计与概率》课堂教学改革和课题的实验工作,认真分析课堂案例,调查研究,收集材料,努力探究《统计与概率》课堂教学的有效模式,对照课题实验方案,顺利地完成了各项教育教学任务和课题研究的阶段工作。下面就这近一年来的课题研究工作总结如下。
一、做好课题研究的准备工作。
1、在课题实施之前,我们积极主动的收集和学习相关知识和理论,我们深入课堂,了解、分析我校《统计与概率的教学现状,找出教学中存在的各种问题,确定本课题的研究内容。
(1)关于小学数学统计与概率部分教学现状、存在问题的调查研究;
(2)对于人教版小学数学教材关于统计与概率部分内容的分布、与原有教材对比变化、教学难点及其编写特点的分析研究;
(3)在统计知识教学中,强化学生数据的收集、记录和整理能力的培养,促进学生关于数据的分析、处理并由此作出解释、推断与决策的能力,对数据和统计信息有良好的判断能力的教学策略改进,加强目标设定与目标达成的实验研究;
(4)培养小学生用数据表示可能性的大小并对事件作出合理推断和预测的能力的教法研究;(5)在统计和概率部分教学中,创设教学情境,促进教学有效性的研究;
(6)进行统计与概率部分的课堂教学有效模式的研究。
2、落实好课题组人员,成员如下:
组 长:陈 丽
副 组 长:陈万江 吴学峰
核 心 成 员:马玉凤 王立波 李天凤 陈维 李玉静 孙晓慧 薛丽华
二、加强对课题组的管理,进一步发挥课题的作用。
1、严格按计划实施研究,积极开展课题研究活动。
课题立项之后,我们集中大家认真学习了《统计与概率》课题研究方案,制定了课题的研究计划,对组内教师合理分工,在管理上做到定计划、定时间、定地点、定内容,让实验老师们深刻理解了《人教版小学数学教材“统计与概率”课堂教学有效性研究》课题中研究项目的主要内容和意义,进一步增强科研能力,树立科研信心每次的校本教研既有骨干教师的教学论坛,也有年青教师的课堂展示,有理论学习,也有实际的课堂点评。
2、优化听课制度,促进课题实验
学校教导处规定,每周的周三各备课组进行集体备课,下一周的周一课题组成员走进课堂听课,一方面是为课题组成员搭建相互交流的平台,另一方面也是验证前一周集体备课设计方案的可行性,这样有利于及时、灵活地掌握课题实施情况和课堂教学情况,有效地促进教师上课改课、上优质课,从而真正地把课题理念落实到每一节课堂教学之中;同时,课题组还要求听课者带着一定的目的从多个角度进行听课,并对收集到的事实材料进行多角度诠释、解读和分析,有针对性地提出讨论的问题和改进的建议。听课制度的优化,有效地避免形式主义的听课、评课活动,对促进课题研究和实验起到了很大的作用。
三、课题研究的实施过程
课题申报后,课题组成员就着手调查我校《统计与概率》的教学现状以及存在的问题。
1、人教版小学数学各册教材使用中,关于统计与可能性部分教学问题及其改进策略的调查研究。
教学现状:课堂教学多数“照本宣科”,教学目标定位不准,教师和学生都不很重视这一领域的教和学。原因有如下几点:一是教师专业知识不能适应新课程的教学需要;二是《统计与概率》这一领域里的可学习和参考的案例较少,教师看得不多,所以课堂改革的水平提高不快;三是在小学阶段,关于《统计与概率》的考试内容相对较少,且难度不大,所以教师和学生重视不够。
存在问题:统计教学中,教师只按教材帮助学生收集、整理数据,而忽视了对数据的分析和运用;概率教学中比较突出的问题是重结果、轻过程,没有把学生随机意识的培养放在重要的位置。比如,有一个老师在执教二年级《可能性》一课时,没有充分地让学生感受确定现象和不确定现象,而是把训练的重点放在让学生用“一定”“可能”和“不可能”的说话训练上,把数学课当作了语文课来上。再如,有一个老师在执教《用分数表示可能性的大小》时,始终把重点放在学生的计算训练上,而忽视了学生对事件发生的可能性从感性描述到定量刻画的过程训练上。
改进策略:(1)加强教师的专业知识的学习和培训。要求课题组的成员认真学习新课标并深刻领会其主要精神,同时督促教师学习《统计与概率》的相关理论,聘请教学骨干做专题讲座,提高教师的理论素养;(2)定期召开研讨会,选择有典型的课例进行会课或教学比赛,有的是采取同课异构的形式进行多层次的研究;(3)围绕某一难点进行针对性讨论,反复研究,取得了较为显著的成效。如,在教学《等可能性》时,多数教师都遇到了一个较为棘手的问题:当袋子里放有相同数量的黄球和白球,启发学生猜想:从中任意摸40次,摸到黄球和白球的可能性怎样?学生很容易猜想并认可结果:摸到黄球和白球的可能性相等。可是,学生实验后,立刻质疑并迅速推翻自己的猜想。此时教师无所适从,只好自圆其说:同学们,当实验的次数越多,摸到黄球的次数和摸到白球的次数就越接近。针对上述存在的问题,我们开展了一次又一次的研究,最终按照“现实情境—猜想—实验—验证猜想—分析原因”的步骤,紧紧抓住“任意”关键词,培养学生的随机意识,让学生真切地感到:袋子里放有相同数量的黄球和白球,任意去摸若干次,摸到黄球的可能性和白球的可能性相等,但结果是随机的,即摸到黄球的次数和白球的次数不一定相等。
2、创设教学情境对于小学统计与概率教学效果的作用与影响的研究。
良好的教学情境,能使学生积极主动地、充满自信的参与到学习之中,使学生的认知活动与情感活动有机地结合,从而促进学生非智力因素的发展和健康人格的形成。比如我们在研究一年级下册第98页的《统计》这一内容时,就历经了“没有教学情境—一创设有教学情境——创设有效的教学情境”的过程,研究中我们发现教学效果差异较大。
„„反复的实践和研究使我们深深地体会到:教学情境对教学效果的影响较大。只有创设有效的教学情境,创设贴近学生生活实际的教学情境,才能把学生真正地带入到具体的情境中去,使学生对数学产生一种亲近感,使学生感到数学是活生生的,感受到数学源于生活,生活中处处有数学。
3、“统计与概率”有效教学模式研究
课题研究之前,多数教师反映《统计与概率》的教学有着一定的困难,教学时也只是“照本宣科”,根本谈不上有效和优化。为此,我们通过典型引路,反复研究,不断实践,在数次的实践中摸索了“统计与概率”的教学模式:创设情境――猜想探究――验证概括――实践运用。
“创设情境”旨在把学生带入到具体的生活情境中,一方面是为了帮助学生借助已有的生活经验自主探究新知,另一方面也可以让学生初步感悟统计与概率在生活中的作用,从而调动学生学习数学的兴趣;“猜想探究” 就是先鼓励学生大胆猜想结果,然后引领学生探究新知,这样可以充分发挥学生的主体作用,把学习的主动权交个学生,让学生真正成为学习的主人,在具体的学习过程中锻炼学生的学习能力,同时也能让学生体验自主探究新知的快乐;“验证概括”就是运用多种手段帮助学生验证自己的猜想,从而使学生获得成就感,增强学生学习的自信心,同时把刚刚获得的新知高度、凝练地概括出一般的规律,培养学生分析问题的能力和严谨的思维品质“实践运用”就是将所学的知识运用于实际,体现了数学源于生活、服务生活的思想。
通过改革实验,我们高兴地发现课堂成效发生了较为显著的变化。课堂的教学结构完整了,教学板块清晰了教学目标定位准确而又全面,教师经过了迷茫无奈-有条有理-精心设计教学环节的过程。学生从被动学习-主动探究,学习方式的转变,使课堂气氛活跃了许多,也大大提高了课堂教学效率。
四、课题研究的成效
1、对课题研究的意义的理解和认识。
21世纪的数学课程改革,把《统计与概率》作为一个单独的领域,进入小学数学课程,这是一个重大的举措具有里程碑的意义。因为在信息社会,收集、整理、描述、展示和解释数据,根据情报作出决定和预测,已成为公民日益重要的技能。加强《统计与概率》课题的研究,可以强化学生数据的收集、记录和整理能力的培养,提高学生分析、处理数据并由此作出解释、推断与决策的能力。
2、重视学生学习过程的研究,把学习的主动权还给了学生
新课标明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。所以我们在数学课题的研究中,非常关注学生学习过程的研究,注重在具体的情境中对随机现象的体验,而不是单纯地只获取结论结合学生生活的实际,精心创设教学情境,使学生主动地投入到学习的状态,提出关键的问题;搜集、整理数据分析数据,作出推测,并用一种别人信服的方式交流信息。不仅让学生亲身经历统计与实验的过程,而且还让学生在实践中自我感悟信息的价值。根据获取的信息作出合理的推断,培养学生分析问题和解决问题的能力。
3、营造教研氛围,提高研究实效
我们以课题研究为契机,开展形式多样的教研活动,旨在增强教师的教科研意识,营造良好的教研氛围,丰富教师的科研素养,提高课堂教学效率。一年来,我们召开了《统计与概率》的专题研讨会,举行了课题研讨会课比赛,开展了教师百花奖比赛、课堂教学擂台赛等全校性教学教研活动,收到了较好的效果,得到了老师们的认可,兄弟学校的积极参与,社会的肯定。每次活动,我们坚持“实践、思考、再实践、再思考”的基本方法,确立一个研究主题,本着“学有所获,研有所果”的原则,发动每个教师全程参与,45周岁以下的教师必须参与课堂展示或设计,年老的教师参与课堂点评,实实在在的教研活动,不仅调动了校内教师的教研热情,也吸引了区内兄弟学校老师的加盟,他们积极参与了我们的课题研究。
五、今后的思考
虽然在课题的前期研究过程中,我们取得了初步的成效,但我们深知我们的课题研究工作还有许多不尽如人意的地方。为了进一步做好下一阶段课题的研究工作,我们想从以下几个方面力求突破:
1、细化分工,明确职责。根据课题的研究内容和前期的研究进展,我们决定对后期的研究工作作一些适当的调整,更加细化分工,各负其责,确保课题的研究工作顺利进行。通过课堂教学研究,提高学生收集、整理数据的能力,重点培养学生推断与决策的能力,体会数学的价值。以课堂教学为主阵地,重点研究概率教学,培养学生的随机意识,提高学生分析问题和预测未来的能力。
2、加强理论学习,提高研究水平。前期的研究工作我们主要把精力放在课堂教学研究上,了解《统计与概率》的教学现状、教学困惑,寻找课堂教学的有效模式,应该说在实际层面探讨的比较多。接下来的课题研究工作我们 将在关注课堂教学的同时,重视理论学习,把目光聚焦在理论层面的研究上,遵循理论结合实际的原则,用理论丰富研究成果。
3、全面总结经验,推广研究成果。2010年下半年我们打算召开一次“课题经验总结暨成果展示会”,旨在进一步加强和深入课题的研究工作,提升我们课题的研究水平,同时通过总结、展示,来推广我们的研究成果,改进和优化今后的课堂教学。
第五篇:概率统计教学评估汇报
凝聚实干,齐创辉煌
——2008-2009学概率统计教学评估汇报材料
这一年,是奋斗的一年,也是收获颇丰的一年。因为我们始终相信:付出与收获是成正比的。在庄老师的悉心指导下,我们耕耘了,所以我们收获了。静下心,细梳理。我们本学期的概率论与数理统计课程确实收获颇丰。
一、课程注重理论学习,灌输概率思维。
观念是行动的指南。老师讲课思路清晰,引领到位,不流于形式,注重实效。深入了解学生思想,与学生们一同交流、研讨,了解学生需要,教学工作目标明确,针对性强,效果好。特别是突出“实”、“新”、“活”的特点。“实”是说讲课实实在在,不走过场;“新”是说努力为学生们提供先进的课程信息,引领教学;“活”是说不拘泥形式,学生们缺什么,关心什么,讲什么。老师授课无论从内容的选择上,还是方法的运用上,都具体实用。
二、学习注重过程,讲求实效。
教学,主要是过程性管理。任何一次讲课,都要考虑它的实效性,对不同层次的学生采取不同的授课方式及要求。不管是哪种类型的学生,老师都能坚持听完学生想法,接纳改进意见和建议,给学生自行改正的时间,随后再次上课时重点检查、指导。这样的教学方式特别有利于学生成长。庄老师上完课后,都会进行课程延伸和答疑。答疑问题包括针对学生作业暴露出的问题,以及学生自己的想法见解。这种集讲课、互动、答疑为一体的讲课方式,使得概率课程的学习不是浮于表面,而是深度的教学研究。因此,特别有利于学生的专业发展,也特别有利于学生个人成长。
课程进度,从章节难点要点的确定,到具体问题解决,一步一个脚印,踏踏实实;时间分配恰到好处,让学生即积极学习知识,又不至于压力力过大,在轻松和快乐中学习知识。课程顺利完结,而且获得的评价也特别高。因此,我们是在过程中耕耘,在过程中问鼎收获。
三、老师搭建平台,尽展学生风采。
可以说,每个人都具有强烈的自我发展与提高的欲望和自我超越的能力。每一位学生都希望自己在学习过程中成为一个优秀者、成功者。庄老师紧紧抓住这一心理,为满足学生自我超越的需要,为他们展示才华搭建平台,争取给每一个学生展示的机会。从课堂到课外,从讲课到作业,庄老师都很认真的对待同学们的成果,鼓励大家各抒己见,一旦有好的想法构思,都会予以鼓励、正确引导,所以课堂气氛很是活跃。
总之,在教学活动中,庄老师抓住教学本质,突出一个“研”字;抓住计划措施落实,突出一个“实”字;抓培养全班同学,不落一个,突出一个“优”字,在三“字”上下功夫,实现了我班概率统计课程教学的成功。
在概率统计课程的学习过程中我们也有深刻的认识。“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”,这是新世纪数学课程的基本理念。贯彻课改的新理念,结合庄老师带来的学习实践,我深深感到:善于培养大家的内在动机,使学生喜爱学习,师生互动,才是教学成功的法宝。尤其是概率统计的学习,学生对跟教学相关的生活实例表现出浓厚的兴趣,真正体验到了学习数学的乐趣和价值。概率统计教学中,应着重注意以下三点:
一、教师应通过日常生活中的大量实例,使学生更好地理解随机事件发生的不确定性及频率的相对稳定性,帮助学生澄清在日常生活中对身边所发生的一些问题存在的错误认识。比如我们经常会遇到以下问题:
天气预报这样表达:“明日有雨的概率为60%”,这个60%意味什么?应鼓励学生发表自己的看法。对这句话有很多错误的理解,比如“明天有 的时间下雨”“明天有 的地区下雨”等等。最后教师归纳概括:考察历史上的天气记录,如果和明天在气压、云层、温度等天气条件方面大致相同的天数是100天,其中有60天降雨了;不能从概率的统计定义解释即用频率近似作为概率,因这一事件不能进行大量重复实验。
如何理解“虽然预报今天济南的降水概率是70%,北京的降水概率是90%,但是济南今天降雨了,北京没降雨”这一现象?从概率的角度解释,“今天降雨”是一个随机事件,今天济南的降水概率是70%,北京的降水概率是90%,只是说明今天北京降雨的可能性比济南大,并不表示今天北京一定下雨。如果济南今天降雨了而北京没降雨,即可能性较小的事件发生了而可能性较大的事件却没有发生,正是随机事件发生的不确定性的体现。
二、教师应让学生通过实例理解古典概型的特征:每一个实验结果出现的等可能性,让学生初步学会把一些实际问题转化古典概型,从而通过正确合理的推断来认识日常生活中遇到的事情。譬如抽签的公平性问题。
人们常用抽签的方法决定一件事情,先抽还是后抽(后抽人不知道先抽人抽出的结果),对各人来说是公平的吗?例如在10张彩票中,有2张奖票,先有甲后有乙各抽一张,看谁能中奖。教师事先准备好口袋和球,让学生分组进行摸球来模拟试验,汇总全班的数据后,得出直观上的认识。
三、教师在统计教学中应通过对一些典型案例的处理,使学生经历较系统的数据处理全过程,在此过程中学习一些数据处理的方法幷运用所学知识和方法去解决实际问题。本章中有几处学生感到疑惑的地方,可通过鼓励学生查阅相关内容的现实例子,课上交流讨论,寓解疑于趣味之中。
在学习概率统计课程中,庄老师是这样教我们的,我们确实从中受益匪浅。在感激庄老师的精心教导之余更愿意更多的人找到学习概率统计的方法,并享受到其中的乐趣。所以谨以此文献给我们敬爱的庄老师,及襄院的广大师生。