第一篇:中考数学总结论文
优化复习教学 提高复习效率
------2011中考数学总结
湖北口中学
鄢吉明
一、成绩情况
本次中考,在全体师生的共同努力下,数学整体还不错,但班级间有差异,我校数学学科成绩上有效分46人,吻合39人,综合名次居全县第九位,我所任的两个班有效分21人,吻合18人。二、一些不成熟的复习方法
1、在章节复习中注重知识的转化
在复习过程中,不仅应该要求学生对所学的知识、典型的例题进行反思,而且还应该重视对学生巩固所学的知识由“量”到“质”的飞跃这一转化过程。按常规的方式进行复习,通常是按照课本的顺序把学生学过的知识,如数学概念、法则、公式和性质等原本地复述梳理一遍。这样做学生感到乏味又不易记忆。针对这一情况,我在复习概念时,采用章节知识归类法,即先列出所要复习的知识要点,然后归类排队,这样做可增加学生复习的兴趣,增强学生的记忆和理解,最主要的是起点了把章节知识由量到质的飞跃,实现知识间的转化。
2、在例题讲解中注重知识的变化
复习课例题的选择,应是最有代表性和最能说明问题的典型习题。应能突出重点,反映大纲最主要、最基本的内容和要求。对例题进行分析和解答,发挥例题以点带面的作用,有意识、有目的地在例题的基础上作一系列的变化,达到能挖掘问题的内涵和外延、在变化中巩固知识、在运动中寻找规律的目的,实现复习的知识从量到质的转变。
例如,在复习二次函数的内容时,我选了这样一个例题:二次函数的图象经过点(0,0)与(-1,-1),开口向上,且在x轴上截得的线段长为2。求它的解析式。因为二次函数的图象抛物线是轴对称图形,由题意画图后,不难看出(-1,-1)是顶点,所以可用二次函数的顶点式y=-a(x+m)2+k,再求得它的解析式。在数学中我对例题作了变化,把题目中的“开口向上”这一条件去掉,求解析式。再次变化后,此题可有两种情况(1)开口向上;(2)开口向下;所以有两个结论
由于条件的不断变化,使学生不能再套用原题的解题思路,从而改变了学生机械的模仿性,学会分析问题,寻找解决问题的途径,达到了在变化中巩固知识,在运动中寻找规律的目的。从而在知识的纵横联系中,提高了学生灵活解题的能力。
3、注重优化解题思路 一题多解有利于引导学生沿着不同的途径去思考问题,可以优化学生思维,因此要将一题多解作为一种解题的方法去训练学生。一题多解可以产生多种解题思路,要对多解进行比较,找出新颖、独特的最佳解才能成为名副其实的优解思路。在数学复习时,我不仅注意解题的多样性,还重视引导学生分析比较各种解题思路和方法,提炼出最佳解法,从而达到优化复习过程,优化解题思路的目的。如计算(6x+y/2)(3x-y/4),这是一题多项式的乘法运算,本题从表面上看无规律可找,其实从多项式系数看,发现第一个因式提出公因数2后,恰能构成平方差公式的模型,显然后一种解题思路优于前一种解题的思路。计算此题若把各因式计算后再相乘,很繁琐,若能把各因式逆用平方差公式,再计算、约分,可以迅速地求出结果。
在复习的过程中加强对解题思路优化的分析和比较,有利于培养学生良好的数学品质和思维品质,能为学生培养严谨、创新的学风打下良好的基础。
4、善于将知识习题归类
考查同一知识点,可以从不同的角度,采用不同的数学模型,提出多种不同的命题,我在复习引导学生将习题归类,集中精力解决同类问题中的本质问题,总结出解这一类问题的方法和规律。
通过归类训练,学生便能在平时的学习中,注意做有心人,加强方法的积累和归纳,并能分析异同,把知识从一个角度迁移到另一个角度,最终达到常规图形能熟悉、常规结论要记忆、类同方法全套用、独创解法受启发的层次,提高举一反
三、触类旁通的能力。
优化复习过程,提高复习效率,可以将学生从题海战术中解脱出来,使学生学得灵活,学得扎实,是一个行之有效的重要途径。
三、不足之处
从整体情况看,本届数学不仅保住了上届的成绩,还从初考时的全县末位上升到了第九位,从整套数学题来看,还是比较难的。我所任的两个班,一个中等,一个一直在后面,本次也不例外,究其原因,有以下几点:
1、良好的班风是成绩的保证,我所任的两个班,其中一个便是。教师更换频繁,学生纪律涣散,两极分化极为严重,直接影响结果。
2、我校地处鄂陕交界,经济条件落后,部分优生即使考上,家庭也无力供应,致使学生放弃努力。
3、教师基本功也是成绩的保证,我校由于地处偏远,教师流动性大,对学生的教育脱节比较严重,到初三临时换教师,对学生也有影响。
4、由于本人的能力有限,在短时间内无法将本班成绩大幅度提高,也是成绩不理想的一个重要原因。
第二篇:中考数学总结
九年级数学教学工作总结
周艳
本学期我仍担任九年级(1)班、(2)班的数学教学工作,在本学期教学期间我认真备课、上课、听课,及时批改作业、讲评作业,做好课后辅导工作,广泛涉取各种知识,不断提高自己的业务水平。,充实自己的头脑,形成比较完整的知识结构,严格要求学生,尊重学生,使学生学有所得,学有所用,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务。下面我就这一学期中所做的一些工作做一下小结。
一、学生情况
九年级是初中三年的关键时期,学生取得好成绩才是最重要的事情。本学期九年级(1)班的黄仙、李小娟、杨伟沙等,他(她)们学习态度端正,学习肯努力,但其他绝大部分同学学习积极性不高,整体学风差,因此本班主要的工作重心是思想方面的引导及学风的树立。(2)班的学生除个别同学外,整体班风、学风都很浓,学习数学的积极性也很高,只需要做好复习工作既可以。
二、教学工作方面
1、备好课。本学期我每一节课前都认真钻研教材,对教材的基本思想、基本概念,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。了解学生的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防 1 措施。考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教材、如何安排每节课的活动。
2、在课堂上,组织好课堂教学,关注全体学生,注意信息反馈,调动学生的学习积极性,课堂语言简洁明了,课堂提问面向全体学生,注意引发学生学数学的兴趣,课堂上讲练结合,精讲多练。
三、总复习工作面向全体学生
1、课堂上注重学生当堂训练,教师精心讲解,加强学生解题过程训练。如果只分析,优等生还可以,但有些学生就可能跟不上,而且让学生板演还能让不同层次学生都有机会表现,因为学生板演可为教师提供反馈信息,如暴露知识上的缺欠,可弥补讲课中的不足,同时,学生板演中出现的优秀解题方法,为教师提供向学生学习的良好机会;另外也可以培养学生胆识,培养学生独立思考能力,促进记忆。
2、注重学生解题中的错误分析
在总复习中,学生在解题中出现错误是不可避免,教师针对错误进行系统分析是重要的,首先可以通过错误来发现教学中的不足,从而采取措施进行补救;错误从一个特定角度揭示了学生掌握知识的过程,是学生在学习中对所学知识不断尝试的结果,教师认真总结,可以成为学生知识宝库中的重要组成部分,使学生领略解决问题中的探索、调试过程,这对学生能力的培养会产生有益影响。
首先,应预防错误的发生,要了解不同层次学生对知识的掌握情况,调查中发现:(1)审题能力差、(2)分析能力差、(3)缺少创新思维。并针对以上情况进行了单独训练,效果较好。其次,在复习过程中,提问是重要复习手段,对于学生错误的回答,要分析其原因进行有针对性的讲解,这样可以利用反面知识巩固正面知识。
最后,课后的讲评要抓住典型加以评述。事实证明,练是实践,评是升华,只讲不评,练习往往走过场。
四、自我提高
本学期在工作中不断积累经验,并及时形成了材料。在中考复习中,发现问题及时进行小结并进行有针对性的训练。不断提高自身业务素质。现在网络资源非常丰富,在网上可以找到很多有关中考的题和信息,给中考复习带来了很大的方便。对学生进行知识的传授,激发和培养学生的学习兴趣,都有很大的帮助。
在本学期我严格要求自己,在教学中虚心向别的教师请教。并利用业余时间了解先进的教育教学方法,学习与借鉴对自己有用的教育学生的方法,加强理论学习,努力提高自己的教育理念与自身素质。
总之,初三总复习是重要的教学阶段,是学生再学习的过程,是中考前很重要的一个阶段,也是学生从整体上认识初中数学的一个阶段,是学生成绩迅速提高的一个阶段。在这个阶段,我首先注重了基础知识的复习,然后进行了能力的提高,最后进行了综合能力的提高。通过成绩来看,两个班都取得较好的成绩,(1)班平均分为:分;及格率为: 优生率为:;(2)班平均分为:分;及格率为: 优生率为: ;整个年级全线排名是平均分第5名,及格率第4名,优生 3 率第5名。这是所有学科中最好的成绩。今后我将继续努力,争取取得更佳的成绩。
第三篇:二年级数学中考总结
数学期中考试总结
二年级数学组
一、基本情况分析
数学期中考试已经结束了。全年级数学平均成绩86.153分,优秀率72.8%,及格率94.3%,100分人数3人,5个教学班平均成绩不太均衡,最高与最低班级积分相差13.7分。从整体上看比去年期末成绩进步很大,试卷中涵盖的知识内容全面,重视基础知识和基本技能的培养。学生的计算能力有所提高,而且题型丰富,卷面布局更注重了低年级学生心理需求,体现人文性和生活性。计算准确率达到93%,画图正确率达到98%。不足之处个别学生的口算、计算能力仍需加强和对旧知的巩固,更重要的是注重培养低年级学生的审题能力,个别学生仍有丢题现象或把图形个数数错,这些都是要注意的学习习惯问题。应用题中个别学生的思维能力、审题能力有待提高和培养。
二、存在的主要问题
1.学生粗心大意、数学学习习惯不好。
一是书写格式不规范,二是学生对所写的答案,认真检查的习惯差,比如计算符号,数字抄错,如原式是“+”,到第二步就写成“×”,数字17到第二步就写成27等等,本应不该出现的错误,竟然有相当一部分学生失误。
2.计算能力有待提高。
一些基本计算失误率高,计算方法、技巧掌握不够好。如24-20÷4应先算除法,再算减法,有85%的学生先算减法,再算除法,导致失分。
3.对概念的理解不深。
部分同学在回答填空题和判断题时对概念理解不深, 对定义的理解比较模糊,一些概念混淆不清。如陀螺的运动是旋转现象,有些学生当成平移现象。
4.学生分析解决问题的能力不强。
失分最严重的就是解决问题,由于学生分析问题的能力不强,不能很好的理解题意,所以失分较为严重.好多学生根本没有理解自己求出来的是什么,分析和解决问题的能力不强。
三、后半期努力方向 1.重视知识的形成过程。
备好课,向40分钟要效益。“剩饭难热”,第一次就做熟。不让学生吃夹生饭。传统教学中“重结果,轻过程”的问题现在还没有得到根本解决。本次考试学生的答题也反映出了教师在教学中只重视学生对知识结果的记忆,忽视让学生经历知识的形成过程的问题。
2.加强操作能力的培养。
在小学数学教学中,作图能力的培养不能忽视。重视操作不仅有利于学生理解和掌握基础知识,而且对发展学生的空间观念有着重要的意义,还能为高年级数学学习奠定基础。
3.加强学生解决问题能力的培养。
培养学生的数学应用意识和解决问题的能力是小学数学教学的重要任务。我们在今后的教学中要重视应用题解题思路和分析数量关系的训练,在应用题的条件和问题之间建
立起有效的联系。重视数学与生活的联系,向现实生活延伸,把培养学生的数学应用意识落到实处。
4.重视学生学习习惯的培养。
如果只关注学生能否正确解题,而忽视对学生良好的学习习惯的培养,是数学教育的严重失误。学生答题字迹潦草,格式混乱,审题不认真,计算不细心,反映出学生学习态度不够端正,做事浮躁,责任意识淡薄。本次测试学生的过失性失分相当普遍,严重地影响了学生的成绩。因此,我们在教学中要加强书写训练,格式指导,严格要求,严格监控,让每个学生养成认真审题,缜密思考,仔细计算,自觉检验的良好习惯。
5.注重分层次教学。
首先教师把问题分层。把有难度的问题留给优等生,把简单的、需要重复的问题留给学困生,让他们各有所得,发挥其所长。其次为了提高课堂教学质量,让学生养成认真听讲的好习惯,更主要的是端正了坐姿,积极思考问题,教师也能及时调控课堂发现问题,解决问题。努力激发学生学习数学的兴趣,有了兴趣才是提高质量的保证。还有及时鼓励和关注,加强学生的养成教育,建立奖励机制。根据低年级学生特点,每天进行小组竞赛活动。周末数学都有分层作业,每次都留有思考题,发挥优等生的特长,提高数学的思维能力和灵活运用知识的能力。
第四篇:初中数学中考知识点归纳总结
初中数学中考知识点归纳总结
1、一元一次方程根的情况 △=b2-4ac 当△>0时,一元二次方程有2个不相等的实数根; 当△=0时,一元二次方程有2个相同的实数根; 当△<0时,一元二次方程没有实数根
2、平行四边形的性质:
① 两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形
②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。矩形与正方形:
① 有一个内角是直角的平行四边形叫做矩形。② 矩形的对角线相等,四个角都是直角。③ 对角线相等的平行四边形是矩形。
④ 正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。多边形:
①N边形的内角和等于(N-2)180度
②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和
42、定理1 关于某条直线对称的两个图形是全等形
43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
51、推论 任意多边的外角和等于360°
52、平行四边形性质定理1平行四边形的对角相等
53、平行四边形性质定理2平行四边形的对边相等
54、推论 夹在两条平行线间的平行线段相等
55、平行四边形性质定理3平行四边形的对角线互相平分
56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形
58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等
62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等
65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a×b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形
68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理1 关于中心对称的两个图形是全等的
72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等
76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论2 经过三角形一边的中点与另一边平行的直线,必平分 108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109、定理 不在同一直线上的三点确定一个圆。
110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112、推论2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形
114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121、①直线L和⊙O相交 d﹤r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d﹥r 122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123、切线的性质定理 圆的切线垂直于经过切点的半径 124、推论1 经过圆心且垂直于切线的直线必经过切点 125、推论2 经过切点且垂直于切线的直线必经过圆心
126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 127、圆的外切四边形的两组对边的和相等
128、弦切角定理 弦切角等于它所夹的弧对的圆周角
129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等 134、如果两个圆相切,那么切点一定在连心线上 135、①两圆外离 d﹥R+r ②两圆外切 d=R+r ③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r)
⑤两圆内含 d﹤R-r(R﹥r)136、定理 相交两圆的连心线垂直平分两圆的公共弦 137、定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139、正n边形的每个内角都等于(n-2)×180°/n 140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长 142、正三角形面积√3a/4 a表示边长
143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144、弧长计算公式:L=n兀R/180 145、扇形面积公式:S扇形=n兀R^2/360=LR/2 146、内公切线长= d-(R-r)外公切线长= d-(R+r)
三、常用数学公式
公式分类
公式表达式
乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB
注:角B是边a和边c的夹角
初中数学知识点归纳口诀
1.1 有理数的加法运算
同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。1.2 有理数的减法运算 减正等于加负,减负等于加正 1.3 有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。2 合并同类项
说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。3 去、添括号法则
去括号、添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。4 解方程
已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。5.1平方差公式
两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。5.2.1 完全平方公式
二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。5.2.2 完全平方公式
首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。6.1 解一元一次方程
先去分母再括号,移项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。
6.2 解一元一次方程
先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。7 因式分解与乘法
和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。8.1因式分解
两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。8.2 因式分解
一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要记住 【注】 一提(提公因式)二套(套公式)8.3 因式分解
一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。8.4.1 用平方差公式因式分解 异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。8.4.2 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。8.5 二次三项式的因式分解
先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。9.1 比和比例
两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。9.2 解比例
外项积等内项积,列出方程并解之。9.3 求比值
由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走红。消元也是好办法,殊途同归会变通。9.4.1 正比例与反比例
商定变量成正比,积定变量成反比。9.4.2 正比例与反比例
变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。9.5.1 判断四数成比例
四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。9.5.2 判断四式成比例
四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。9.6 比例中项
成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。10 根式与无理式
表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。11 求定义域
求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。12.1 解一元一次不等式
先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无防碍,同乘除负也变号。12.2 解一元一次不等式组
大于头来小于尾,大小不一中间找。大大小小没有解,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)12.3 解一元二次不等式
首先化成一般式,构造函数
a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。13.1 用公式法解一元二次方程 要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。13.2 用常规配方法解一元二次方程 左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。13.3 用间接配方法解一元二次方程 已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式。完全平方等常数,间接配方显优势 【注】 恒等式 13.4 解一元二次方程
方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。14.1 正比例函数的鉴别
判断正比例函数,检验当分两步走。一量表示另一量,有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量,是与否。若有还要看取值,全体实数都要有。14.2 正比例函数的图象与性质 正比函数图直线,经过 和原点。K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。15.1 一次函数
一次函数图直线,经过 点。K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。15.2 反比例函数
反比函数双曲线,经过 点。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。15.3 二次函数
二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线 16 直线、射线与线段
直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。17 角
一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。18 证等积或比例线段
等积或比例线段,多种途径可以证。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。19 解无理方程
一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然。20 解分式方程
先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。21 列方程解应用题
列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。22 添加辅助线
学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。23 两点间距离公式
同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。24.1 矩形的判定
任意一个四边形,三个直角成矩形; 对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形; 两对角线若相等,理所当然为矩形。
24.2 菱形的判定
任意一个四边形,四边相等成菱形; 四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形; 两对角线若垂直,顺理成章为菱形。
初中数学知识点归纳口诀(方案二)
有理数的加法运算: 同号相加一边倒;
异号相加“大”减“小”,符号跟着大的跑; 绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。合并同类项:
合并同类项,法则不能忘。只求系数和,字母、指数不变样。去、添括号法则:
去括号、添括号,关键看符号。括号前面是正号,去、添括号不变号; 括号前面是负号,去、添括号都变号。一元一次方程: 已知未知要分离,分离方法就是移。加减移项要变号,乘除移了要颠倒。恒等变换:
两个数字来相减,互换位置最常见。正负只看其指数,奇数变号偶不变。【注】(a-b)2n+1 =-(ba)2n平方差公式:平方差公式有两项,符号相反切记牢。首加尾乘首减尾,莫与完全公式相混淆。完全平方:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央; 首±尾括号带平方,尾项符号随中央。因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱。两项只用平方差;
三项十字相乘法,阵法熟练不马虎;
四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组;
五项、六项更多项,二三、三三试分组; 以上若都行不通,拆项、添项看清楚。“代入”口决:
挖去字母换上数(式),数字、字母都保留; 换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)。
单项式运算:
加、减,乘、除,乘、开方,三级运算分得清。系数进行同级(运)算,指数运算降级(进)行。一元一次不等式解题的一般步骤: 去分母、去括号,移项时候要变号; 同类项、合并好,再把系数来除掉; 两边除(以)负数时,不等号改向别忘了。一元一次不等式组的解集: 大大取较大,小小取较小; 小大,大小取中间; 大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集: 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘); 乘法进行化简,因式分解在先,分子分母相约,然后再行运算; 加减分母需同,分母化积关键; 找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。分式方程的解法步骤:
同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。最简根式的条件: 最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征: 坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后; X轴上y为0,x为0在Y轴。象限角的平分线: 象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反。平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同; 直线平行于Y轴,点的横坐标仍照旧。对称点坐标: 对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反, Y轴对称,x前面添负号; 原点对称最好记,横纵坐标变符号。自变量的取值范围:
分式分母不为零,偶次根下负不行; 零次幂底数不为零,整式、奇次根全能行。函数图像的移动规律: 若把一次函数解析式写成y=k(x+0)+b,二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀:
“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。一次函数图像与性质口诀: 一次函数是直线,图像经过仨象限; 正比例函数更简单,经过原点一直线; 两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见, k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反; k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀: 二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限;
开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置, 符号反,一般、顶点、交点式,不同表达能互换。反比例函数图像与性质口诀: 反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限;k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减;图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。巧记三角函数定义:
初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:
一位不高明的厨子教徒弟杀鱼,说了这么一句话: 正对鱼磷(余邻)直刀切。
正:正弦或正切,对:对边即正是对;
余:余弦或余弦,邻:邻边即余是邻;切是直角边。三角函数的增减性: 正增余减
特殊三角函数值记忆: 分母口诀:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口诀:“123,321,三九二十七”。平行四边形的判定:
要证平行四边形,两个条件才能行。一证对边都相等;或证对边都平行; 一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”; 对角相等也有用,“两组对角”才能成。梯形问题的辅助线:
移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现; 延长两腰交一点,“△”中有平行线; 作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线。添加辅助线歌:
辅助线,怎么添?找出规律是关键。题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。圆的证明歌:
圆的证明不算难,常把半径直径连; 有弦可作弦心距,它定垂直平分弦;
直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆; 若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线; 四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。圆中比例线段:
遇等积,改等比,横找竖找定相似; 不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。正多边形诀窍歌: 份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。经过分点做切线,切线相交n个点,n个交点做顶点,外切正n边形便出现。
正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点;如果n值为偶数,中心对称很方便;正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。函数学习口决:
正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键;
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换;
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
第五篇:2016数学中考总结 彭玉丽
2016中考数学备考工作总结
景阳中学 彭玉丽
期待已久的中考成绩已经揭晓,看着成绩,内心已谈不上喜与悲,回顾一年来的点点滴滴似乎觉得一切都是理所当然。本,我担任九
(三)班数学教学。工作中,我认真备课、上课、听课、评课,及时批改作业、讲评作业,做好课后辅导工作,严格要求学生、尊重学生,发扬教学民主,使学生学有所得,学有所用,顺利完成了教育教学任务。下面,我就从学生、教师、教法三个方面来谈谈我自己的看法。
学 生 篇
要重视学生的主体作用。真正要上场考试的人是学生自己,老师就是再有水平,一堂课准备得再充分,知识总结得再经典,学生不认真学也是白搭。因而,课堂上,调动学生的学习积极性,发挥学生的主观能动性显得尤为重要。
一、对潜力生,要激发学习兴趣,促使学生乐学。
兴趣是最好的老师。这个年级从七年级开始,就很注重培养学生学习数学的兴趣。让他们体验成功的快乐,培养他们不服输的精神,对提高数学成绩很有帮助。例如:有同学课堂上问题没有回答好,课后找老师继续回答完善,直到得到老师的首肯才高兴而去;某单元测试没考好,全班集体决议重考,不过关决不罢休。正是学生对数学的浓厚的学习兴趣,使他们保持了旺盛的斗志。
二、对差生,倡导唤醒鼓励,杜绝挖苦讽刺。
你的讽刺下可能有牛顿,你的冷眼中也可能有爱迪生;学生没有笨的,只有不爱学的;要承认学生之间有基础的好坏、接受能力的快慢。各位教师认识到这些,有利于摆正教学心态、少发脾气。教学的艺术不仅仅只在于传授知识,如何激励、唤醒、鼓舞学生学习,其实更能考验你的智慧。大家教学时,都知道把目光放在优等生和潜力生身上,但我要提醒大家的是,那些不能上高中但对数学不排斥的学生仍要关注,把机会与鼓励送给他们,他们积极的学习数学的状态能够帮助你营造良好的课堂气氛。试想一下,这个班上的差生都在学,那些“精英”还敢马虎?若某次测试有些差生的成绩与某些“精英”相差无几,对那些“精英”的鞭策可想而知。这就是 “羊群效应”:当你驱赶后面的羊时,整个羊群都会快速前进。打个比喻:我们教学时,要口里含一块肉(优生),筷子上夹一块肉(潜力生),眼睛还要盯一块肉(差生)。吃相虽然不雅,但,实惠呀。
教 师 篇
要重视教师的主导作用。教师的主导作用体现在要做好以下几点工作:深入研究近几年的中考试题,特别是今年的模拟题,从而把握考点,做到有的放矢,然后有针对性训练,提高学生应变能力;上课要突出重点,专题训练突破难点,重点考点潜力生必须过关;注重归纳解题方法,规范答题模式;做好周期性的检测,及时捕捉问题,查漏补缺。以上工作的扎实与否,直接影响到复习备考的课堂效率。
一、集体备课,集思广益,省力又省心。一个集体的成功要靠每个人的辛勤付出,更要靠精诚团结,团结就是力量。俗话说,三个臭皮匠,顶一个诸葛亮。因此集体备课,集思广益显得更为重要。“教学案”是我校的一大特色,为确保教学案的质量,我们将传统的每个人单打独斗整合 “集体研讨,轮流主备,组长把关,教导主任审核,师生共用”。教学案必须提前一周备好,在上课前一周的校内教研活动时间,全体组员一起审阅。各位教师根据班级情况自己调整,按照自己班级的实际情况进行二次备课,以达到因材施教的目的。每次的集体备课程序为:主备人介绍自己备课的思路——备课组全体成员分析、研讨并达成共识——主备人根据大家的意见修改、定稿。正是我校实行的 “教学案”的教学,为我们团队的集体智慧的融合搭建了一个很好的平台。
二、把握好五个环节:备课、选题、讲课、训练、反馈。教 法 篇
五月前的第一轮复习,要注重基础,注意构建知识网络。
一、复习时要注重“双基”的落实。
所谓“基础不牢,地动山摇”、“概念不清,寸步难行”。纵观近几年的中考数学试卷,容易题直接来自基础,中等题变相来自基础,较难题绕弯来自基础。因此考生只要抓住了中等难度的基本内容,就等于抓住了中考的卷面分数。为此,在第一轮复习时,我们主要落实 “三抓”和“四会”:一抓基本概念的准确性和实质性理解;二抓公式、定理的熟练应用;三抓基本技能的正用、逆用、变用、连用、巧用。还要求学生会表述、会判断、会应用、会举一反三。
二、重视基本数学思想方法的归纳和总结。
数学思想方法是数学的精髓,它蕴涵在数学知识发生、发展和应用的全过程中。它比具体的数学知识具有更大的抽象性和概括性,它是数学的灵魂,也是必须掌握的重要的基础知识。提炼概括数学思想方法,增强学生对数学思想方法的运用能力,有利于优化认知结构,活化所学知识,形成独立分析问题、解决问题的能力。
在复习过程中,应该结合“双基”训练,对初中阶段学生应掌握的数学思想方法进行梳理、总结,逐个认识它们的本质特征、思维方法和应用范畴。《课程标准》要求学生淡化解题技巧,注重通性通法。因此,在复习中选编的例题一定要揭示解题的一般规律和方法。
如在复习函数时,结合一次函数、反比例函数、二次函数的相关问题,梳理、归纳解决函数问题所用到数形结合、方程、类比、转化等数学思想,以及求函数表达式的基本方法——待定系数法。总结出用待定系数法求解析式时,有几个系数待定,就要有几个独立的条件。
三、精选复习题目,精练一本书,不搞题海战术。
复习课时间紧,知识容量大,一定要把学生从“题海”中解放出来,精选例题、习题。数学家笛卡尔说过: “我所解决的每一个问题,都将成为一个范例,用于解决其他问题。”因此复习课的题目选择一定要作到典型性、层次性、适量性和组织性。典型性是选择的例题所涉及的知识应该是所复习内容的核心知识,所用的数学方法应具有良好的迁移性、广泛性,起到以点带面、举一反三的作用;层次性,同一类问题应具有容易题、中等难度题和较难题;适量性,即同一类型题选择要控制数量,不能多多益善,关键是要引导学生从这类题目中挖掘出解题的基本方法和数学思想,从而提高数学能力。组织性,例题要编组,每组题要有基础题和变式题,通过各组题目的复习,学生不仅能强化基础知识,更能使能力逐步提高。总而言之,题海大战不如跟着老师转。
五月后的第二轮复习,由于有章可循了,更多的精力要放在专题的训练和落实过关上。
四、加强专题复习,提高灵活运用能力
五、积极参加教研活动,向兄弟学校学习,共享资源。
最后,附上第二轮复习计划,让大家了解一下我们的复习方法。2016年九年级第二轮复习计划
1、坚持每周一次综合模拟检测并及时批阅、及时分析与反馈,让学生及时知道自己的状况,及时跟踪潜力生的得分与失分情况,并对错题的订正亲自面查并反复落实。
2、抓好学生计算能力的训练。搞好学生答题规范训练,减少计算丢分和格式丢分,竭力避免会而不对、对而不全的情况再度发生。
3、针对潜力生制作知识点过关记录表,对潜力生专题复习和测试出现问题的知识点做好记录,以个别辅导形式加强过关;对于已过关的点不要过多重复,减轻学生备考负担,才能有效地解决重点过关。
4、加强学生应试技巧训练,巧用赋值法、排除法、关联法解决选择题;加强难题分化的训练,争取每题尽可能多地得分。
回顾自己的教学,虽然做了许多工作,但也存在许多不足。在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为教育教学事业奉献自己的力量。