第一篇:初升高衔接教材第5讲二次函数最值问题
第五讲 二次函数的最值问题
二次函数yax2bxc(a0)是初中函数的主要内容,也是高中学习的重要基础。在初中阶段大家已经知道:二次函数在自变量x取任意实数时的最值情况(当a0时,函数在bb4acb2x处取得最小值,无最大值;当a0时,函数在x处取得最大值2a2a4a4acb2,无最小值。4a本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题。同时还将学习二次函数的最值问题在实际生活中的简单应用。
【例1】当2x2时,求函数yx22x3的最大值和最小值。
分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值。
【例2】当1x2时,求函数yx2x1的最大值和最小值。
【例3】当x0时,求函数yx(2x)的取值范围。
【例4】当txt1时,求函数y125xx的最小值(其中t为常数)。22分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置。
【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m1623x,30x54。
(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?
练习
第二篇:二次函数最值问题
《二次函数最值问题》的教学反思
大河镇 件,设所获利润为y元,则y=(x-2.5)[500+200(13.5-x)],这样,一个二元二次方程就列出,这也为后面学习二次函数与一元二次方程的关系奠定了基础,针对上述分析,把所列方程整理后,并得到y=-200x2+3700x-8000,这里再利用二次函数y=ax2+bx+c(a≠0)的解析式中a、b、c的大小来确定问题的最值。把问题转化怎样求这个函数的最值问题。
b4acbb4acb根据a>0时,当x=-,y最小=;a<0时,当x=-,y最大=
2a4a2a4a的公式求出最大利润。
例2是面积的最值问题(下节课讲解)
教学反馈:讲得丝丝入扣,大部分学生能听懂,但课后的练习却“不会做”。反思一:本节课在讲解的过程中,不敢花过多的时间让学生争辩交流,生怕时间不够,完成了不教学内容,只能按照自己首先设计好的意图引领学生去完成就行了。实际上,这节课以牺牲学生学习的主动性为代价,让学生被动地接受,去听讲,体现不了学生是学习的主人这一关键环节。
反思二:数学教学的目标不仅是让学生学到一些知识,更重要的是让学生学会运用知识去解决现实问题,让学生“从问题的背景出发,建立数学模型”的基本流程,如例题中,可让学生从“列方程→转化为二次函数解析式→
b4acb当x=-时,y最大(小)=→解决问题”,让学生在实践中发现数2a4a学,掌握数学。
反思三:教学应当促进学生成为学习的主人,离开了学生积极主动学习,老师讲得再好,学生也难以接受,或者是听懂了,但不会做题的现象。传统的教学“五环节”模式已成为过去,新的课程标准需要我们用新的理念对传统的教学模式、教学方法等进行改革,让学生成为课堂的主角。
第三篇:2015二次函数与最值问题
2015年中招专题---二次函数与最值问题
1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.
2.(2014•四川内江)如图,抛物线y=ax+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
3.(2014•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y
2),顶点坐标为N(﹣1,),轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;
(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;
(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.
4.(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为
;抛物线的解析式为
.
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
5.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
6.(2014•甘肃兰州)如图,抛物线y=﹣x+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
7.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴于A、B两点(点A在点B的左边),与y轴交于点C,点D抛物线的顶点.
(1)求A、B、C的坐标;
交为2(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=
2DQ,求点F的坐标.
8.(四川泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣(1)求二次函数的最大值;
(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程a的值;
(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四
=0的根,求2,0).
边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.
第四篇:二次函数的最值问题修改版
利用数形结合法解决二次函数在闭区间
上的最值问题
数学组:王勇
一、教学目标:
1. 理解二次函数的最值概念,掌握二次函数的最值求法; 2. 培养学生数形结合的能力和将数学问题转化的能力。
二、教学重点:二次函数最值求法
教学难点:二次函数在闭区间上的最值
三、教学过程:
二次函数是函数中重要的函数,二次函数在闭区间上的最值问题一直是函数中的一个难点。今天我们用数形结合的方法来突破这个问题。请看下面例题
问题1 求函数f(x)x22x3,x2,4的最大值与最小值
练习:将题中条件x2,4改为(1)x3,0,(2)x3,4
小结:求二次函数在固定区间上的最大值与最小值:考虑对称轴与区间的位置关系。
如果我们将x3,4改为xa,4,怎样求最值呢?
问题2 求函数f(x)x22x3,xa,4的最值
小结:注意分类讨论
以上问题是函数的图像不变,要研究的区间含字母,如果我们将区间固定,函数的解析式中含字母,又怎样求最值呢?
问题3 求函数f(x)x2ax3,x1,3的最大值与最小值
小结:对称轴的讨论是关键
练习4 已知fxx-2ax3在区间1,2上最大值为4,求a的值 2
f(x)a(xh)2k(a0)x[m,n]小结:二次函数在闭区间[m,n]上的最值
(三)作业:
1. 求函数fxx22x3在区间t,t1上的最值 2. 求函数fxx2ax3在区间1,1上的最小值
第五篇:二次函数最值问题参考答案
精英辅导学校 贾天宇 2013.7.17.二次函数最值问题
二、例题分析归类:
(一)、正向型
是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。1.轴定区间定
例1.函数yx4x2在区间[0,3]上的最大值是_________,最小值是_______。
解:函数yx4x2(x2)2函数的最大值为f(2)2,最小值f(0)2。练习.已知2x23x,求函数f(x)xx1的最值。
解:由已知2x3x,可得0x222223,函数f(x)的最小值为f(0)1,最大值为2319。f2
42、轴定区间变
2例2.如果函数f(x)(x1)1定义在区间t,t1上,求f(x)的最小值。
解:函数f(x)(x1)1 21t,当xt时,函数取得最小值f(x)minf(t)(t1)21。
t1t1,即0t1。当x1时,函数取得最小值f(x)minf(1)1。t11,即t0。当xt1时,函数取得最小值f(x)minf(t1)t21
综上讨论,f(x)min(t1)21,t1 1,0t12t1t02f(x)x2x3,当x[t,t1](tR)时,求f(x)的最大值. 例3.已知解:由已知可求对称轴为x1.
f(x)minf(t)tt21t3,f(x)maxf(t1)t22(1)当时,.(2)当t≤1≤t1,即0≤t≤1时,.
tt11即22tt111t≤12f(x)f(t1)t2max22即2若时,. 根据对称性,若
0≤t≤122时,f(x)maxf(t)t2t3.
f(x)maxf(t)t22t3t11t0(3)当即时,.
第1页(共4页)精英辅导学校 贾天宇 2013.7.17.综上,f(x)max12t2,t2 t22t3,t12
23、轴变区间定
例4.已知x21,且a20,求函数f(x)xax3的最值。
解:由已知有1x1,a2,于是函数f(x)是定义在区间1,1上的二次函数,将
aa f(x)配方得:f(x)x32422aa2a二次函数f(x)的对称轴方程是x顶点坐标为,3,图象开口向上
422a1,显然其顶点横坐标在区间1,1的左侧或左端点上。2函数的最小值是f(1)4a,最大值是f(1)4a。由a2可得x
图3 例.(1)求f(x)x2ax1在区间[-1,2]上的最大值。
(2)求函数yx(xa)在x[1,1]上的最大值。解:(1)二次函数的对称轴方程为xa,211即a时,f(x)maxf(2)4a5; 2211 当a即a时,f(x)maxf(1)2a2。
22当a综上所述:f(x)max12a2,a2。4a5,a12a2a2aaaa(2)函数y(x)图象的对称轴方程为x,应分11,1,1即242222第2页(共4页)精英辅导学校 贾天宇 2013.7.17.2a2,a2和a2这三种情形讨论,下列三图分别为
(1)a2;由图可知f(x)maxf(1)(2)2a2;由图可知f(x)maxf()(3)a2时;由图可知f(x)maxf(1)
a2
y最大(a1),a2f(1),a22aaf(),2a2;即y最大,2a2 24f(1),a2a1,a
2(二)、逆向型
是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。
例5.已知函数f(x)ax2ax1在区间[3,2]上的最大值为4,求实数a的值。
解:f(x)a(x1)1a,x[3,2](1)若a0,f(x)1,,不符合题意。(2)若a0,则f(x)maxf(2)8a1 22由8a14,得a3 8(3)若a0时,则f(x)maxf(1)1a 由1a4,得a3
第3页(共4页)精英辅导学校 贾天宇 2013.7.17.综上知a3或a3 8x2例6.已知函数f(x)x在区间[m,n]上的最小值是3m最大值是3n,求m,n的值。
2解法1:讨论对称轴中1与m,mn,n的位置关系。2①若,则f(x)maxf(n)3n
f(x)minf(m)3m 解得②若f(x)maxf(1)3nmn,无解 1n,则2f(x)minf(m)3mf(x)maxf(1)3nmn③若m1,则,无解
f(x)f(n)3m2min④若,则f(x)maxf(m)3n,无解
f(x)minf(n)3m综上,m4,n0 解析2:由f(x)1111(x1)2,知3n,n,,则[m,n](,1],2226f(x)maxf(n)3n
f(x)f(m)3mmin又∵在[m,n]上当x增大时f(x)也增大所以解得m4,n0
评注:解法2利用闭区间上的最值不超过整个定义域上的最值,缩小了m,n的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。
第4页(共4页)