二次函数最值问题的研究[五篇范例]

时间:2019-05-13 02:05:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二次函数最值问题的研究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二次函数最值问题的研究》。

第一篇:二次函数最值问题的研究

二次函数最值问题的研究

(内江师范学院 内江 641100)

摘要:最值问题是中学数学的重要内容之一,中学数学最值问题遍及代数、三角函数、立体几何及解析几何各部分之一,最值问题为载体,利用数形结合的思想,考查分类讨论、数形结合、转化与化归等思想考查二次函数的最值问题,利用二次函数的图像和性质进行研究最值问题,遍及初高中数学代数和几何部分的几乎所有,利用数与形进行分类和分轴以及参数问题讨论出最值问题的变化,同时利用数学等优秀的数学思想,将观察、类比、实验、归纳、一般化、抽象化等方法解决生活中遇到的最值问题。

关键字:数学 最值 数形结合 图像

1、前言

数学是一种古老而又年轻得文化,人类从蛮荒时代的结绳计数,到如今用电子计算机指挥宇宙航行,无时无刻不在受到数形结合和空中二次函数的思想的恩惠和影响,进入21世纪,我国数学课程中有关数学学习的理念时刻在发生变化,数学教学的主要目的和任务早已经不是简单的知识和方法的传授,而是通过数学学习在传授知识分方法的同时培养学生的数学能力,咋促进学生数学学习的过程中,加强数与行的结合,能化简为繁,对于帮助学生开阔思路,突破思维定势有积极地作用,能加深学生对知识的理解和掌握,学习二次函数的知识不仅是高中教材的内容,而且更是解决生活的实际问题有很大的帮助,但是二次函数包括的知识点不仅多,难度比较大之外,更重要的是具有可行性的量化和质变的本质区别,二次函数的最值问题作为研究二次函数的图像和性质,以及二次函数的区间最值问题都是需要学生去总结和探讨的。

作为初中和高中教材中的主要函数知识点的部分,学习二次函数起到一个承上启下的作用,同时二次函数也是中考和高考命题的重点,如何让初高中学生对二次函数了解的更加深刻和透彻,本文利用和数形结合的思想对初高中二次函数做了更深入的研究和讨论,主要运用数形结合的思想和分类讨论的思想以及根据二次函数的性质,从不同的角度进行分析二次函数的最值问题,利用二次函数的图像解决:定轴动区间、动轴动区间、动轴定区间的最值问题,以及根据开口方向、对称轴、所给区间确定;所给区间确定、对称轴位置变化;所给区间变化、对称轴位置确定;区间、对称轴位置都不确定,巧用二次函数的图像来进行讨论二次函数所遇到的最值问题,利用图像讨论含参数的问题,以及巧用二次函数图像讨论二次函数与一次函数交汇问题和运用数形结合求解问题误区的探讨这几个方面论述.2、国内外研究现状:

查阅相关文献,众多数学教育者和数学专家从不同角度和侧面探讨了二次函数的最值问题,同时结合教学、解题、以及函数的应用,王丰霞在文献[1]中浅谈了构造数形结合在二次函数中的培养创新思维,张冰、杨光在文献[2-3]中浅析二次函数最值问题的研究的概念以及培养学生数形结合的兴趣,孙雪梅、王雨来、朴林玉等文献[4-6]分析了二次函数的最值问题,周建涛、姚爱梅在文献[7]中二次函数在闭区间的最值问题的研究,陈晨在文献[8]闭区间上的二次函数的最值,张连友在文献[8]二次函数在最值求法例谈,陈林文在文献[9]巧解最值问题,黄小琴在文献[10]二次函数最值求法探索,张武在文献[11]中“数形结合”解题误区的认识与思考给出了自己独特的见解和分析,通过观看以上等教育工作者的研究和对二次函数最值问题的研究,让我受益匪浅,从他们的研究中看到了对二次函数最值问题的深入剖析。

2、国内外研究现状评价

在所查阅到的国内外参考文献中,教育者们对在二次函数中最值问题的研究,只是针对了二次函数的某一些问题或是某一些最值问题探究的比较清楚,其中关于二次函数的深层次或是大学知识的解决办法未能够涉及到里面去,相对高思想高研究高知识层面的探讨问题研究的不是很充分,其次对于二次函数利用思想方法和数形结合的思想方法的分析缺乏深入的研究和探讨,数形结合的思想在初高中二次函数中是比较重要的一个内容,对数形结合的思想在高中二次函数中的综合运用进行深入研究,使之形成完整的体系,对今后利用二次函数的图像和数形结合的思想去进行二次函数的教学、解题、以及二次函数最值问题的分析在初高考的应用具有重要的意义。

3、提出问题:

二次函数最值问题是结合初高考的代数和几何进行考试的内容,同时也是大部分学生遇到的问题最多的地方,所以探讨二次函数的最值问题的具有可行性的,同时也是对函数部分的知识进行深入的剖析,在具体探讨二次函数的最值问题的时候加入一些数学思想和数学方法以及高等数学的解题方法,根据定义域的问题和对称轴的问题进行深入分析和探讨是有必要的数学研究,4、结束语:

通过对国内外数学中二次函数的了解和研究以及专家和教育学者的文献的分析,二次函数是初高中数学的重点和难点,贯穿高中知识的始终,同时二次函数与其他知识的综合也是高考的重点和难点,是解决很多复杂的数学问题的一把利刃,利用二次函数的图像和性质进行研究最值问题,求解函数的最值是高考的重点以及难点,必须从根本上解决高中生面对最值问题所遇到的困难,很多文献都是有解法的缺乏思想,有教学的缺乏实践支撑,本文就是让学生将解题的技巧与求解函数的最值结合起来,让学生不再害怕最值问题,不再高考的大部分涉及函数最值的题目中失分。凡题有法而可解,高中生在做题的时候往往照抄书本模式,禁锢于思维定势,用解法解题便成了盲区,对于解法,教材中只提到了二次函数配方法求最值,利用函数的单调性、奇偶性求最值,这些方法可以应对一些简单的题目,如果题目加大难度,学生就束手无策,文章对函数最值问题的解法进行研究,目的就是为了扩大学生之视野,扩张学生之思维,以解学生学习最值问题的重点和难点。参考文献:

【1】 王丰霞,构造数形结合思想在二次函数中培养创新思维[J],胜利油田专科学校学报,2001,(04)

【2】 张冰、杨光,浅析二次函数最值问题的研究的概念以及培养学生数形结合的兴趣,山西财经职业技术学院,2011,(7)

【3】 孙雪梅、王雨来、朴林玉,二次函数的最值问题[J],2010,(11):45-46 【4】 周建涛、姚爱梅,二次函数在闭区间的最值问题的研究[J],数学教学学报,2005,(12):24-25 【5】 陈晨,闭区间上的二次函数的最值[J],中学数学杂志,2004(12)【6】 张连友,二次函数在最值求法例谈[J],黑河教育,2008(4)【7】 陈林文,巧解最值问题[J],时代教育,2007(7)

【8】 黄小琴,二次函数最值求法探索[M],中学数学教育,2012(15)【9】 张武,“数形结合”解题误区的认识与思考[J],太原市教育学院,2004,(3):59-62 【10】 朱永星,谈二次函数的学习[J],高中数学教育学,2007,(11):11-13 【11】 周建涛浅谈二次函数在高中阶段的应用[J],数学教学通讯,2005,(12):24-25 【12】二次函数在高中数学教学中的应用[J],内江师范学院学报,2008,(23):58-59

第二篇:二次函数的最值问题的研究

二次函数的最值问题的研究

(文献综述)

(内江师范学院数学与应用数学,四川 641100 王强)

摘 要函数的最值问题是高中阶段研究函数性质的一个重要指标,除了知道什么是函数最值如何求解最值这类高中生必须达到的基本要求外,能够精通求解函数最值的各种解法以及巧妙解答各类题型是对高中教师乃至高中学生的进一步要求。近年来,随着新课程的改革,教材中需要掌握的内容越加繁杂,对于知识的领悟程度也越发要求的高,高考中考查最值的题目难度增大,这不管是对于教师还是学生来说都是一个大的挑战,适应这一系列的变化,已经成为一种趋势,教师需要大量的学习、更精深的知识以及更多的方法来帮助学生度过难关,以达到一个高中生该具有的基本数学素养。

关键词 函数最值 解法 解题

前 言 最值问题是是高中数学乃至高考的热点以及重点,也是考察其他知识点的载体,它不但可以训练学生的逻辑思维,而且可以掌握很多的解题技巧,提高解决问题的能力,是解决函数问题的基准.如二次函数的最值问题可以更确切的认识图象,能够形象地判断所求闭区间内函数的最值.在实际生活中在具体问题中建立数学模型,解决高中数学建模中简单的最优化问题,以明确在生产生活中何时利润最大,成本最低,用料最省等等,它对其他学科也有辅助作用,如物理中的最短路线问题,经济学中的投资收益,航天发射计算最佳时间等.学习最值问题主要还是为了在高考中解决涉及最值问题的题型,如线性规划、三角函数、数列、圆锥曲线、导数等都会适当考查运用,是决战高考的基础知识。

1.高中生学习函数最值问题的困难

现在有很多学生遇到题目不会灵活应用,只会一味模仿以前做题的方式,用学到的很浅显的最值概念去解题,而没有作融会贯通,举一反三,计算能力以及解题技巧都还处在很基础的水平,在解题的时候很多学生搞不清已知条件所要传达的信息,无法正确的得出结论,更无法自如的应对结合诸多知识点的难题,亦或是高考.在平时的生活中,更是照本宣科,无法将学习到的最值问题,数学模型应用到实际生活中,当今时代,经济、金融已经是毕业生们想要争先步入的龙头行业,众所周知,学好经济学要很扎实的数学基础,由此看来,从长远考虑,最值问题是高中生在高中的一堂必修课。

2.先前研究成果

由于函数最值在高考以及日常生活的重要性,所以,对于函数的最值的研究也一直没有间断.如陈克胜于2005年在高等函授学报(自然科学版)发表的《求函数最值的方法举例》中为求解函数最值提供思路,重点是为了拓宽学生解决函数最值有关问题的视野,倡导应该通过解题,在解答过程中培育创新思维能力;游波平在《函数最值解法技巧探究》(《重庆文理学院》(自然科学版)2007.4)给出了一些求解函数最值的技巧,如数形结合思想这一类比较惯用的思想,并致力解决生产、生活和科学研究中的常见问题;王贵军2010年3月发表一篇题为《几何法在求解函数最值问题中的应用》的文章,旨在运用几何图形以及题目的几何意义来解决函数的最值问题,给我们以新的启迪.颜世序2012年3月在解题技巧与方法发表《浅谈导数在求函数最值中的应用》,将求函数最值的问题融入到求导的问题当中,导数也是高考的一个比较重要且相对较难的考点,笔者把函数最值与高考结合起来,更加说明函数最值的应用广泛性.2013年,张永红发表《新课标下高中数学应用题中的最值问题研究》,他在这项研究中紧密结合我国现阶段高中数学教学状况,精心挑选了部分高考题进行方法总结,并通过问卷调查得出实证,为读者分享了自己应对此问题的教学策略.陈荣灿在2010年发表毕业论文《高中数学最值问题的教学研究》,他主要指出了高中最值问题在教学过程中本身存在的一些不足,并且为了提高教学质量从例题的讲解、课时的安排、激发学生的学习兴趣、运用数学观点数学思想等方面给出建筑性的意见.

以上这些文献期刊都没有做到全面系统的给出有关最值的解题方面行之有效并且实用的方法。

3.二次函数最值问题的研究点

求解函数的最值是高考的重点以及难点,必须从根本上解决高中生面对最值问题所遇到的困难,前面的文献很多都是有解法的缺乏思想,有教学的缺乏实践支撑,这样学生依然会陷入自己原有的思维定势,不懂得理论与实践的结合,在今后的做题中依然会遇到同样的问题.本文就是让学生将解题的技巧与求解函数的最值结合起来,主要针对做题,也给教师一些习题课的建议,让学生不再害怕最值问题,不再高考的大部分涉及函数最值的题目中失分。函数最值的问题包括求解某初等函数在闭区间内的最值,复合函数的最值,经济生活中的最大收益、最小成本、最大期望等的最值,而求解函数最值的主要核心是解法,俗话说,凡题有法而可解,高中生在做题的时候往往照抄书本模式,禁锢于思维定势,用解法解题便成了盲区,对于解法,教材中只提到了二次函数配方法求最值,利用函数的单调性、奇偶性求最值,这些方法可以应对一些简单的题目,如果题目加大难度,学生就束手无策,这样一来,学生多学习课外知识就显得尤为重要.眼观六路,容易充实人的大脑,耳听八方,可以丰富人的思维,高中生需要这样的实践来提升自己.文章对函数最值问题的解法进行研究,目的就是为了扩大学生之视野,扩张学生之思维,以解学生学习最值问题。

参考文献

【1】谭永基,俞红.现实世界的数学视角与思维[M].上海:复旦大学出版社.2010:41-45.

【2】梁红.高考三年真题研究(文数)[G].陕西科学技术出版社.2014. 【3】梁红.高考真题超详解(理数)[G].陕西科学技术出版社.2014. 【4】陆军.三角函数最值问题的八种求解策略[J].延边教育学院学报.2012,26(1):46-53.

【5】游波平.函数最值解法技巧探讨[J].重庆文理学院学报.2007,26(2):108-110.

【6】陈克胜.求函数最值方法举例[J].高等函授学报(自然科学版).2016,20(2):59-61.【5】普通高中课程标准试验教科书.数学2(必修)[M].北京:北京师范大学出版社.2011

第三篇:二次函数最值问题

《二次函数最值问题》的教学反思

大河镇 件,设所获利润为y元,则y=(x-2.5)[500+200(13.5-x)],这样,一个二元二次方程就列出,这也为后面学习二次函数与一元二次方程的关系奠定了基础,针对上述分析,把所列方程整理后,并得到y=-200x2+3700x-8000,这里再利用二次函数y=ax2+bx+c(a≠0)的解析式中a、b、c的大小来确定问题的最值。把问题转化怎样求这个函数的最值问题。

b4acbb4acb根据a>0时,当x=-,y最小=;a<0时,当x=-,y最大=

2a4a2a4a的公式求出最大利润。

例2是面积的最值问题(下节课讲解)

教学反馈:讲得丝丝入扣,大部分学生能听懂,但课后的练习却“不会做”。反思一:本节课在讲解的过程中,不敢花过多的时间让学生争辩交流,生怕时间不够,完成了不教学内容,只能按照自己首先设计好的意图引领学生去完成就行了。实际上,这节课以牺牲学生学习的主动性为代价,让学生被动地接受,去听讲,体现不了学生是学习的主人这一关键环节。

反思二:数学教学的目标不仅是让学生学到一些知识,更重要的是让学生学会运用知识去解决现实问题,让学生“从问题的背景出发,建立数学模型”的基本流程,如例题中,可让学生从“列方程→转化为二次函数解析式→

b4acb当x=-时,y最大(小)=→解决问题”,让学生在实践中发现数2a4a学,掌握数学。

反思三:教学应当促进学生成为学习的主人,离开了学生积极主动学习,老师讲得再好,学生也难以接受,或者是听懂了,但不会做题的现象。传统的教学“五环节”模式已成为过去,新的课程标准需要我们用新的理念对传统的教学模式、教学方法等进行改革,让学生成为课堂的主角。

第四篇:2015二次函数与最值问题

2015年中招专题---二次函数与最值问题

1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;

(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;

(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.

2.(2014•四川内江)如图,抛物线y=ax+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;

(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;

(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

3.(2014•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y

2),顶点坐标为N(﹣1,),轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;

(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;

(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.

4.(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

(1)填空:点A坐标为

;抛物线的解析式为

(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?

(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

5.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;

(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;

(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

6.(2014•甘肃兰州)如图,抛物线y=﹣x+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;

(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

7.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴于A、B两点(点A在点B的左边),与y轴交于点C,点D抛物线的顶点.

(1)求A、B、C的坐标;

交为2(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=

2DQ,求点F的坐标.

8.(四川泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣(1)求二次函数的最大值;

(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程a的值;

(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四

=0的根,求2,0).

边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.

第五篇:二次函数的最值问题修改版

利用数形结合法解决二次函数在闭区间

上的最值问题

数学组:王勇

一、教学目标:

1. 理解二次函数的最值概念,掌握二次函数的最值求法; 2. 培养学生数形结合的能力和将数学问题转化的能力。

二、教学重点:二次函数最值求法

教学难点:二次函数在闭区间上的最值

三、教学过程:

二次函数是函数中重要的函数,二次函数在闭区间上的最值问题一直是函数中的一个难点。今天我们用数形结合的方法来突破这个问题。请看下面例题

问题1 求函数f(x)x22x3,x2,4的最大值与最小值

练习:将题中条件x2,4改为(1)x3,0,(2)x3,4

小结:求二次函数在固定区间上的最大值与最小值:考虑对称轴与区间的位置关系。

如果我们将x3,4改为xa,4,怎样求最值呢?

问题2 求函数f(x)x22x3,xa,4的最值

小结:注意分类讨论

以上问题是函数的图像不变,要研究的区间含字母,如果我们将区间固定,函数的解析式中含字母,又怎样求最值呢?

问题3 求函数f(x)x2ax3,x1,3的最大值与最小值

小结:对称轴的讨论是关键

练习4 已知fxx-2ax3在区间1,2上最大值为4,求a的值 2

f(x)a(xh)2k(a0)x[m,n]小结:二次函数在闭区间[m,n]上的最值

(三)作业:

1. 求函数fxx22x3在区间t,t1上的最值 2. 求函数fxx2ax3在区间1,1上的最小值

下载二次函数最值问题的研究[五篇范例]word格式文档
下载二次函数最值问题的研究[五篇范例].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数最值问题参考答案范文合集

    精英辅导学校 贾天宇 2013.7.17. 二次函数最值问题 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为......

    含参二次函数最值问题探讨

    含参二次函数最值问题探讨 甘肃畜牧工程职业技术学院 张发荣733006 二次函数模型是重要的函数模型,在北师大版高中《数学》新教材中占了大量的篇幅,详尽介绍了二次函数的性质......

    二次函数的最值问题

    二次函数的最值问题 雷州市第一中学 徐晓冬 一、 知识要点 对于函数fxax2bxca0, 当a0时,fx在区间R上有最 值,值域为 。 当a0时,fx在区间R上有最 值,值域为 。 二、 典例讲解 例1......

    二次函数的最值问题

    涟水县第四中学(红日校区)周练专用纸 初三:年级 数学:学科 出核人:杨守德 审核人:高阳 时间:12月26日 1.若二次函数y=x-3x+c图象的顶点在x轴上,则c=( ) 24411A. B.- C. D.- 9999222.抛物线y=ax+bx......

    二次函数的最值问题教案

    二次函数的最值问题 莘庄职校 :吴翩 班级:莘庄职校03级(4)班2003/12/4 [教学目标] 1、 2、 3、 4、 使学生掌握二次函数在给定区间上最值的理论和方法。 引入数形结合和分类讨论......

    专题六 二次函数的最值问题

    专题强化训练 专题六二次函数的最值问题初高中衔接教材 专题六 二次函数的最值问题 【要点回顾】 1.二次函数yaxbxc (a0)的最值. 二次函数在自变量x取任意实数时的最值情况 2......

    二次函数最值问题-解析版

    【A+级课程】第1讲:二次函数最值问题 1、当2x2时,求函数yx22x3的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、......

    《二次函数最值问题》教学设计(推荐五篇)

    一、教材分析本节课是在学习了二次函数的概念、图像及性质后,对二次函数性质的应用课。主要内容包括:运用二次函数的最大值解决最大面积的问题,让学生体会抛物线的顶点就是二次......