分式的教学反思

2022-11-08下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《分式的教学反思》及扩展资料,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《分式的教学反思》。

分式的教学反思

分式的教学反思1

本节课的内容有三点:分式的基本性质、约分、通分。总的来说分式的基本性质比较简单。因为分式的基本性质和分数的基本性质一样,一理通,百理通。约分和通分都是根据分数的基本性质来做的。但是在实际计算中,分式的约分和通分比分数要复杂,这是因为在这之前需要先对分子分母进行因式分解,再找出最简公分母,这中间还有分式是否有意义的问题。因式分解这个知识点是上学期学的,必须要复习。所以我对本节课的内容做了如下安排,先讲基本性质和约分,中间花一段时间复习因式分解,使得基础比较差的学生也能接受,而通分的内容就安排到第二课时,重点进行练习。

引入部分做到了由旧知,即分数的基本性质来推出分式的基本性质,进行类比,知识过渡自然。

从课后学生作业反馈的情况看,学生的算理都明白了,但是在计算中错误率较高,说明以前的知识还不牢固,计算能力不强。

在下节课中要有针对性的让学生练习!

分式的教学反思2

本课从实际问题引入,让学生感受到实际生活中会碰到分式加减法运算,这就有必要掌握分式加减运算的方法,从而引出本节内容。

由于分数与分式有着很多类似的性质,因而从直观的分数加减法运算开始。先探究同分母分式的加减运算法则,通过类比的思想方法,有数的运算引出式的运算规律,体现数学知识由具体到抽象、从特殊到一般的内在联系,符合学生的认知规律,并在得出结论的过程中,与学生一起探讨,注重学生的参与,学生很快融入了课堂,调动了学生的学习积极性。而后,同样利用类比的方法,安排了异分母分式加减运算的学习,这样由简到繁,由易到难,符合学生认知的发展规律,有助于知识的层层落实与掌握,并且通过通分将异分母分式加减化为同分母分式加减的运算,注重知识间的联系,体现了数学中转化的思想方法,课堂上气氛活跃,学生们积极参与,从课堂学生做习题的情况来看,知识握比较好,知识已落实到位。

分式的教学反思3

分式一章的第一课时教学,利用引例列出的代数式进行归纳比较,得出分式的概念,抓住分式概念最本质的特征“分母含有字母”,从而研究:分式有意义无意义的条件、分式的值为零的条件、分式的值为正数负数整数等条件,解决各种数学问题。

在解决分式的值为零,分子为零且分母不为零的题型时,有考虑字母的值的取舍的题目,采用学生在黑板上的说理方法比我原来的方法更有效,学生的方法是:由分子x2-4=0求得x=2及x=-2,再分别将求得的字母的值代入分母进行计算,使分母为零的情况舍去,使分母不为零的保留,进行这样的取舍检验,对于分母不是一次多项式的情况就能顺利地区分出来,学生使用的这个方法好。

在转化求解时,发现学生对一元一次不等式组的解题还是比较生疏的,为了使学生全面提高学习效果,在遇有类似情况时还是复习一下更有效果。学习的主体是学生,不是课堂的花架子。

对于-a2-1一定为负数,也同样要师生协作,生生协作讨论研究,确保全体学生理解和灵活应用。

对于题目:整数x取何值时,分式4/x-1的值为整数,学生的理解和解题也是一个难点。

由于学生没有课本,我们的课堂学案应设计的更具实用性,课堂知识内容的表达要更加便于学生理解和接受。

分式的教学反思4

不管是文科还是理科,教学中常常会出现易错易混的知识,应该在什么时候出现这样的类型题帮助同学样分析一起来克服这一难点呢,如果在新授课时出现,学生本应该掌握的知识还弄不透,再加上易混的内容,他们会感觉到更加的乱七八糟,我想放在第二课时比较好,这样经过了一节的基本训练,学生已经初步掌握知识,这时候再出现易错的问题,学生处理起来更顺利些。

在教分式的基本性质一节时,我是这样的处理教材的,

第一节的教学重点为,掌握分式的基本性质文字表达和字母表示,可以根据分式的基本性质解决一些式子的基本变形,会求分式有意义的字母的取值范围,别外会求分式值为0,值为正值为负,值为1,值为—1时字母的取值范围,作为教学的拓展部分,学生处理起来困难些。

第一部分出现易混易错的题型,

正如XX所说的解读分式的基本性质,学生分析题目出错的原因,

错因一,不是分子分母同时变化,只变化一方,

错因二,不是乘以或除以,而是加减乘方,中的一种,

错因三,不是同一个整式,而是不同的,

错因四,这个整式中含有字母,它使分式的分母的值可能为0。

第二部分分式的符号问题,

也就是分式的分子分母和分式本身三者任意改变两个的符号分工的值不变,

这一性质也是由分式的基本性质而来的,由此可以解决一些问题如改变分式分子分母中最高项的符号为正的题型另一种题型为将分式的分子和分母中各项的系数化为整数。

分式的教学反思5

《分式》一章检测结果出来了,学生成绩很不理想。学生们很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。

一是分式的运算错的较多。分式加减法主要是当分子是多项式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。 二是分式方程也是错误重灾区。

(一)是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述,

⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根; ⑵增根能使最简公分母等于0;

(二)是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;

(三)是列分式方程错误百出。

针对上述问题,我从基础知识和题型入手,用类比的方法讲解,与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。

《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。

分式的教学反思6

《分式》教学中,通过对教材的研读与操作,我觉得,教学应当根据学情对教材灵活应用,不必拘泥于教材,按部就班,甚至死板硬套,造成学生理解、应用的困难。

(一)适度添加“移号法则”。利用对比的方法认识了分式的基本性质以后,课本的编排是约分、通分,可在相关的例题训练中都不同程度的涉及到了“移号”的问题,而“移号法则”在新教材中有删略,仅仅体现在习题P9 第5题“不改变分式的值,使分式的分子、分母中都不含”-”号”,显然,教材的编写者试图淡化这一重要变形,仅仅从有理数的除法则方面再次加以提醒,这其实是远远不够的。基于此,我在引导学生完成粉饰的基本性质以后,对本题进行了深入探究:通过本题,你发现了什么?----通过提炼总结,得出了“分式、分式的分子、分式的分母中,改变其中两项的符号,分式的值不变(移号法则)”的结论。这样,通过铺垫,学生在完成P6 例3(1)、P11 例1(2)、例2(2)等问题时,困难就迎刃而解了。

(二)对整数指数幂点的处理。当前,教材倾向于“数学从实践中来”的理念的践行,很多知识点要从实际问题中反映出来,然后加以研讨,而就整数指数幂而言,似乎完全不必:数学是一门有严密的逻辑体系的学科,从原有的“正整数指数幂”的基础上构建,其实更符合数学科的特点。因此,在具体的教学中不妨引导学生从数的发展史方面进行类比教学,使学生的知识体系有一个渐进的完善过程,更有利于其对整个体系的构建。

(三)对列分式方程解应用题方面,是本章的教学难点,也是学生(何止是学生?)颇感头疼的部分。解决这个问题的关键是正确审题。学生依据已有的生活、知识经验对问题进行解读,提取、整合相关信息,找出相等关系(等量关系),抓住这个突破口,列方程也就顺理成章了,故而在这一部分的教学中,应当充分让学生身体,准确理解题意,这才是关键环节,教材的设计顺应了学生的常规思路,可让学生在预习时充分利用,课堂教学时应着力找出相等关系。

分式的教学反思7

一、设计思路:

本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。

二、教学知识点:

在本课的教学过程中,我认为应从这样的几个方面入手:

1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。

2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。

3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

三、总体反思

首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。

其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。

最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。

总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。

分式的教学反思8

一、设计思路:本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的`教学 应用 打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。

二.教学知识点:在本课的教学过程中,我认为应从这样的几个方面入手:

1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。

2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。

3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

三、总体反思:首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。

其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。

最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。

总而言之,教无定法,学无定法。我们应在教改的道路上不断充实自我,完善自我。

分式的教学反思9

美国学者波斯纳提出:“一个教师的成长=经验+反思”。一个人或许工作了二十年,如果没有反思,也只是一个经验的二十次重复。这样看来,反思对于数学课堂来说是十分重要的。我们所说的教学反思是教师以自己的教学活动过程为思考对象,来对自己所做出的行为、决策以及由此所产生的结果进行审视和分析的过程,是一种通过提高参与者的自我觉察水平促进能力发展的途径。那么在数学教学中我们不能忽视反思的重要,我们该反思些什么,又要如何反思?

1.对于活动的反思。这是个体在行为完成之后对自己的行动、想法和做法的反思。

2.活动中的反思。个体在行为过程中对自己的表现、想法、做法进行反思。

3.为活动反思。这种反思是以上两种反思的结果,以上述两种反思为基础来指导以后的活动。

对于这些抽象的理论,具体到我们数学课的反思我们怎么来理解呢?下面我们从一个教学案例来看。

案例:湘教版八年级下册《分式和它的基本性质》的反思

对于《分式和它的基本性质》的反思,我们可以根据教学的基本程序结合教学反思的主要内容来进行反思。

一、对课题及内容的反思

《分式和它的基本性质》这节课,我们学习到了分式的概念,书上是这么得出这个概念来的:一个整数m除以一个非零整数n,所得的商记作,称为分数,类似地,一个多项式f,除以一个非零多项式g,所得的商记作,把叫作分式。其中f叫作分子,g叫作分母。在提出了分式的概念后,书中还特别提出多项式也看成分式。例如,x-y可以看成分式。

我们在七年级学习单项式和多项式时学习了整式:整式是单项式与多项式的统称。这节课我们所学的分式的概念应该是相对于整式来说的,但是如果按照书上的说法难免让学生觉得:整式都可以写成分式的形式,那么所有的整式都是分式,整式就是分式的一种。为了避免这种情况的出现,我们应该采用这种分式概念的定义:用A、B表示两个整式,A÷B就可以表示成的形式.如果分母中含有字母,式子就叫做分式.其中A叫做分式的分子,B叫做分式的分母.采用分式的这种定义,学生就能很好地把握分式的特点,把它与七年级学习的整式的概念区别开。我们作为老师,在上课的时候不能完全奉教材为“圣旨”,我们应该思考学生更能理解什么、更容易掌握什么、怎么说才能让他们更好地接受,尤其是课题。为了更好地教学,我们都应该好好地进行反思。

二、对教学过程的反思

在上这节课时,可以从分数的概念类比出分式的概念,这样学生更好比较记忆,找出他们的异同。在提出了分式的概念后,我们可以设置一些式子,让学生判断是否为分式,或者让学生自己举出几个分式的例子来,通过这种方式可以加深学生对知识点的理解,并且让学生从练习中把握好分式概念中重要的两点:

1、分母中含有字母.

2、如同分数一样,分式的分母不能为零.

在讲分式的基本性质时同样可以先根据分数的基本性质类比得出,再通过练习加深学生对知识点的理解。

老师在教学过程中要善于观察学生的反映,及时调整语言、措辞、以及适当的问题和教法,促进学生对知识点的掌握,除了自己设置问题外,还要给学生提问的机会和时间。

对于课程中的教学反思,是为了总结学生更能接受哪一种授课方式、哪一种教学手段,什么样的语言他们更好理解掌握,也是为了更好地上好下一节课。

三、对学生课堂练习及作业的反思

课堂练习可以直接反映出学生对知识的掌握情况,老师需要在课堂中及时发现并解决好学生在学习中的问题。书上课堂练习的题型有两种,一种是连线题,一种是填空题。我发现学生连线题都做得很好,但是填空题有些错误。比如部分学生不知道从何入手,这时我们应该让他们回想分式的基本性质,引导、提示他们观察分式分母间的联系:1-x=-(x-1),这样观察得出,由等式左边到右边需要把分式的分子分母同时乘以-1,这样题目的突破口找到了,题目也就不难解决了。

这堂课学生究竟掌握了多少知识?掌握得怎么样?这些问题可以从课后作业中得出答案,所以,作为老师,我们要认真批改好课后作业。在批改作业的过程中,我们也能发现学生对知识点的掌握情况,把学生的易错点总结出来,分析错误多出在哪些知识点上,反思采用何种方法才能让学生更好地理解、掌握这些易错的知识点。

分式的教学反思10

在上节课介绍了分式的乘除运算法则的基础上介绍了分式的混合运算以及整式和分式的混合运算。并通过思考栏目中的问题,根据乘方的意义和分式的乘法法则,归纳出分式的乘方法则。

学生有了分式的乘除运算法则做为基础,很容易探究出并掌握住乘除混合运算的计算方法。有乘方的意义和分式的乘法法则做基础,学生很容易探究出分式的乘方运算法则。

本节课各个环节我紧紧围绕学习目标展开,让学生在每个环节学完后都要进行反思、反悟,感觉效果较好

分式的乘除以及乘方混合运算,是《分式》一章中的重要内容,在考试中常以计算题的面貌出现,在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,一批学生做好题目,再让一批学生上去批改,如果错的,直接让他把正确的做在旁边,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来。

教学中我发现分式的运算错的较多。分解因式的熟练程度成了这里的障碍。我知道。分解因式的好坏直接影响分式的有关学习。

总之,通过对上课方式的尝试,我从学生身上学到了很多东西。也促使我更加对课堂进行研究。

分式的教学反思11

学生前面已学习了分式的基本性质、分式的约分,对学好本课时内容有一定的帮助。八年级学生有一定逻辑推理能力、代数式的运算的能力。但数与式的差别也制约着学生的学习,特别是分子、分母为多项式的乘除法运算是学生学习的一个难点。

在分式的乘除法这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。

利用类比的数学方法教学分式的乘除法教学,学生理解并不难,但在运算上要以练为主。

1、学生对于法则的运用不难,但是基础较差班学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。

2、类比的学习方法是学习新知识的好方法。

分式的教学反思12

本节课在学生的认知水平和已有的知识经验基础上充分调动学生学习的自主性,让学生通过观察、类比的方式探究解分式方程的思路和方法,为学生提供了充分从事活动的机会,使学生在回顾与思考、合作和讨论的过程中理解和掌握知识与技能,体验感受过程、方法和数学思想,培养情感态度价值观,从而达成教学目标。

本节课关于分式方程的增根的教学,是通过创设小亮解法的情境,引导学生通过思考探索、阅读理解、动手解题等手段,从而获取知识、形成技能,发展思维,学会学习,而不是由教师去讲解增根的概念和产生原因。

本节课小结采取了学生提出问题、教师解答问题的形式.这种方法一方面为学生搭建了展示自己的平台,设置了独立思考的想象空间,提供了锻炼表达能力的机会;另一方面也为教师能及时弥补教学中存在的漏洞创设了条件和可能.不过,若时间允许的话,有些问题可以由学生讨论解决。

教学环节是否可行,最终是由教学目标是否达成来检验和评价的.所以本节课的某些教学环节对目标的达成是否行之有效,还有待于在今后的教学过程中不断实践和完善。

分式的教学反思13

数学的学习过程应当是一个充满生命力的过程。我们在教学中也应该想办法让学生动起来,使课堂活动起来。在今天我所听的《分式方程的应用》一课,也使我体会到了这一点。

本节课是《分式方程的应用》的第一课时,课堂上顾老师并没有纯粹地就题论题,而是采用了如下方法:一是改变例题和练习的呈现形式,使教学内容更有趣味性。二是让学生自编应用题目,体验学习数学的快乐。尤其是在让学生自编应用题的时候,个个都是紧皱眉头,冥思苦想,很快就开始你说我说,一个个精神抖擞,煞那间教室中一片热闹的场面。顾老师这时就抓住这个机会,让同学们之间互相交流,各自说出自己编的题目。同学们都能联系自己身边发生的或与生活密切相关的实际例子。通过这样的活动,我认为一方面可以锻炼学生的思维,另一方面也可以提高学生解决实际问题的能力。从而也可以使学生体会到数学的应用价值。

在以后的教学中,我也要象顾老师一样,精心设计活动,充分调动学生参与学习的积极性,使学生动起来,课堂活起来,真正使学生乐有所学,乐有所获。

分式的教学反思14

课后我进行了反思有以下体会:

1、较好的运用了知识的迁移,通过分数的类使学生很容易理解这个问题。

2、结合字母表示数理解分数,加深了学生对分式的理解。

3、对分式的分母不能为零讲解讲的有些繁杂。

4、所举例子离学生的实际较远,不好理解。

分式的教学反思15

通过复习同分母异分母分数的加减计算类比学习分式的加减运算以分式的通分(分母为异分母的情况)作为预备知识检测,再到学生自主学习所完成的基础练习题及熟练法则,通过让学生板演计算过程后出现的问题(分子的加减,去括号问题及分式的最简化等)给予讲解及问题的讨论。最后是课堂练习巩固和小结作业布置。

在授课结束后发现学生对于同分母的分式的加减运算掌握得比较好但是对于异分母的分式加减就掌握得不是很理想,很多学生对于分式的通分还很不熟练,也有学生对于计算结果应该为最简分式理解不够总是无法化到最简的形式。

分式的加减法上完后列举了一道加减混合运算题,在讲解时结合加减混合运算法则进行复习,分式的加减混合运算不同的是分母或者分子当中如果有出现可以因式分解的应该先进行因式分解,异分母的分式应先进行通分化为同分母再进行计算,除法应转化为乘法。并且计算的最终结果应该为最简分式的形式,在计算时应先观察分式的特点从而分析是不是可以结合乘法的分配律进行计算从而达到化繁为简的目的。

分式教学反思

我采取的教学方法是引导发现教学法:用数、式通性的思想,类比分数。引导学生独立思考、小组合作,完成对分式概念及意义的自主探索,突出数学合情推理能力的养成;通过 “课后练习应用拓展”这一环节发展了学生思维,巩固了课堂知识,增强了学生实践应用能力。让学生自己阅读课文,然后提出问题让学生解决,问题由易到难,层层深入,既复习了旧知识又在类比过程之中获得了解决新知识的途径,学生感到数学知识原来就这么简单。我在这一环节提问问题注意了循序性,先易后难、由简到繁、层层递进,台阶式的提问使问题解决水到渠成。

1、教学过程中还存在着“畏首畏尾,不敢放手”的现象。

课堂教学中,我确实很注意运用启发式教学,精心设计问题引发学生思考,但问题提出后没给学生留有足够的思维空间,总担心学生想不周全或课堂教学内容完不成,因此对于某些问题,不等学生思考完善就急于给出答案。导致学生对问题的片面理解,不能引发学生深思,也就不能给学生留下深刻印象,因此造成很多学生对于做过的题一点印象都没有。

2、课堂教学中注意培养学生的发散思维,但有时却“贪多而嚼不烂”,忽略了学生的接受能力。

在平时的授课过程中,特别是讲解例、习题时,我非常注意培养学生的发散思维,通过“一题多解,一题多变”的反复训练,开拓学生视野,不断总结方法,并进行相关联系,培养学生多角度思考问题,多途径解决问题的能力。但有时却忽略了学生的接受能力,特别是中、下等生的理解接受能力。因此,部分学生的应变能力没能得到提高,反而有个别学生将几种方法混为一谈记作一锅粥。

3、课堂教学中缺乏必要的耐心关注中下等生,使他们学习缺乏信心,导致两极分化。

课堂教学中,往往将精力集中在中上等生的身上,大多数学生理解掌握了就进行下一个环节,而忽略了更需要关心的中下等生。致使他们越落越远,最终失去学习信心而加重两极分化。通过这节课的教学我对大家说的这两句话认识非常深刻。一是:只要你给学生创造一个自由活动的空间,学生便会还给你一个意外的惊喜。二是:学生的潜力是无穷的,只有我们想不到,没有学生做不到的。

本节课的缺点,我认为有:一是在体现数学的实用价值方面不到位。二是我本人普通话不是很好。三是在因材施教方面做得还不到位,对学困生的照顾做的不是很好,课后的“拓展应用”对学困生来说就有相当大的困难,在这一环节没有呈现出梯度性。

针对以上问题,下阶段准备采取以下补救措施:

1、还给学生一片思维的空间,使他们受到适当的“挫折”教育,以加深对问题的理解

2、对过多的习题进行适当筛选,精讲精练,在45分钟内进行有效学习

3、课堂上注意教学节奏,关注中下等生的学习,让他们跟上老师的步伐,加强课堂管理及课后的辅导工作,尽量缩小两极分化

4、多给学生自己练习的时间,让学生真正成为学习的主体,做到不仅让老师完成教学任务,还要使学生完成学习任务。

在课程改革的今天,我们应对数学教学活动充分渗透新课标理念,为学生营造数学活动空间,创设教学情境,教学活动要把准教材,关注学生探究活动,关注学生的发展,让学生学得轻松,学得开心,以真正达到“教是为了不教”的目的。

下载分式的教学反思word格式文档
下载分式的教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    分式教学反思

    分式教学反思《分式》一章检测结果出来了,学生成绩很不理想。学生们很多不该错的题做错了。是什么原因致使错误频出呢?我辗转反侧。一是分式的运算错的较多。分式加减法主要是......

    分式加减教学反思

    分式加减教学反思 分式加减教学反思1 该节内容属于北师大版八年级数学下册第三章《分式》,本节主要讨论分式的加减法运算法则。为了完成教学目标,首先通过行程问题引入分式的......

    分式的教学反思

    分式的教学反思1 分式是有理式的一个重要组成部分。在整式的概念、变形、四则运算及因式分解的基础上,进一步学习分式,它既是对整式的运用和巩固,也是对整式的延伸。分式的学......

    认识分式教学反思

    认识分式教学反思 认识分式教学反思1 《认识分式》教学反思本节设计的思路是,从几个实际问题入手,让学生列出一些代数式,从中发现一种不同于整式但又类似于分数的一类代数式。......

    分式和方程教学反思

    分式和方程教学反思 分式和方程教学反思1 分式是八年级数学的第一章,经历了三周多的学习,学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运......

    分式和方程教学反思

    分式和方程教学反思 分式和方程教学反思1 初三第一轮复习至关重要,在这一轮复习中我们教师如能精心策划每一节课(学习目标的确定、习题的分层设计、课堂中学生们的学习方式的......

    第十五章《分式》教学反思

    第十五章《分式》教学反思 分式是有理式的一个重要组成部分。在整式的概念、变形、四则运算及因式分解的基础上,进一步学习分式,它既是对整式的运用和巩固,也是对整式的延伸。......

    分式的乘除教学反思

    今天,分裂的最后一个部门的自我反思的教学:学生在前几个阶段学习的小分数的基本特征,并且在上个学期也已经学习因素分解,本课中乘法和除法是应用分数的基本性质。在此基础上,小......