第一篇:《分式的乘除》教学反思
《分式的乘除法》教学反思
本节课的重点是分式乘除法的法则及应用,难点是分子、分母是多项式的分式的乘除法的运算。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。
在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。
教学后的启示:
学生对于法则的运用不难,但是较差班级的学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。
第二篇:分式的乘除教学反思
今天,分裂的最后一个部门的自我反思的教学:学生在前几个阶段学习的小分数的基本特征,并且在上个学期也已经学习因素分解,本课中乘法和除法是应用分数的基本性质。在此基础上,小学的分数的乘法和除法已经用于计算学生的分数乘法和除法。应当注意,分数乘法和除法运算的结果被减少到最简单的形式。
八年级学生具有一定的逻辑推理能力,代数计算能力,主动探索学习风格的知识也初步形成,七年级学生开始进行四组合作学习,因此使用数学活动容易动员学生学习兴趣,例如,对于本课的内容我设计了一系列梯度问题,并采取团体合作的形式,积极的教室气氛,学生学习积极性相对较高,课堂学习效果很好。但是约束的数量和类型之间的差异也影响学生的学习,特别是分子,多项式乘法和除法的分母是一个难学的学生。
在教学中,我使用类比法,以便学生回忆先前学习的乘法和除法运算方法的分数,表明学生乘法和除法法的乘法和除法律 的热情,也是同一组的问题,让更多的学生参与,从而提高学生的主动性。
存在的问题:(1)由于一些学生缺乏计算能力,或者一些细节没有注意到,有计算上的问题。在未来的教学中还应加强对计算能力的培训。(2)课程安排不是太适当,学生帮助学生解决问题时延迟一段时间,导致最终设计的链接没有完成。未来还应加强设置的细节,以提高课堂效率。(3)学生的标准回答了一些穷人,在黑板上的黑板上没有到位,在未来的教学中强化学生回答规范实践。(4)应用数学学习方法,将本课程转化为推理,推理,数学方法的归纳,教学后提醒学生应用数学方法。
第三篇:分式的乘除教学反思
分式的乘除教学反思
分式的乘除教学反思1
本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。
只是需注意的是,分式乘除运算的结果要化为最简分式。在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。
在分式运算的中,学生主要出现以下问题:
1、分式的乘法,如:运算方法有两种:一种是先乘后约分,另一种是先约分再乘,特别是多项式的时候更明显一些,学生不能很好的选择恰当的方法进行计算,从而使计算变得复杂,导致计算错误,计算结果要求必须为最简分式。
2、分式的加减法,有些学生总是在通分的时候忘记给分子乘代数式;再有就是遇到减法,而且后面分式的分子是多项式的时候,总是会出现符号上的错误(忘记变号),使得后面的计算全部错误。还有一部分同学在进行分式加减法的时候会和解分式方程相混淆,给分式去分母,还有得学生计算时把分母都漏掉了。
3、学生做题很不细心,也没有养成检查习惯。
针对以上问题,除了在讲清运算原理之外,要加强练习,针对学生的错误点反复训练,让学生真正掌握,提高学习效率。
分式的乘除教学反思2
分式是有理式的一个重要组成部分。在整式的概念、变形、四则运算及因式分解的基础上,进一步学习分式,它既是对整式的运用和巩固,也是对整式的延伸。分式的学习则需要类比分数的概念性质、运算法则等知识来完成。
在这一章的教学中,我首先从实际问题出发,类比分数,引出分式的概念;其次类比分数的基本性质和四则运算,学习相应分式的基本性质和四则运算;再次学习可化为一元一次方程的分式方程的求解;最后引入整数指数幂,把分式与负整数指数幂的互化有机地联系起来,同时又把科学记数法推广到绝对值小于1的数的表示。
结合学生的学习反馈,我认为在教学中应注意以下几个问题:
1.类比分数的概念性质,如分母不为零、零除以任何不为零的数都得零、一个数除以它本身都得1(零除外)、分子分母同号为正、异号为负等,可以帮助学生正确理解当分式中字母取何值时,分式有意义、分式无意义、分式值为零、分式值为1、分式值为正、分式值为负。
2.在进行分式的运算时,要强调运算顺序,要让学生体会到在运算的过程中,凡遇多项式要先因式分解再约分或通分,最后结果必须化为最简分式或整式。
3.在将分式方程化为整式方程求解的过程中,要渗透“转化思想”,要让学生知道可能产生增根,从而使学生认识到检验的目的和必要性。
4.学生容易出现提取负号后,括号里面各项不全变号的错误;容易将分式方程去分母的方法挪用到分式计算中去,出现随意去分母的错误等。
总的来说,联系旧知,对比新知,及时发现和纠正学生的错误,可以使分式的学习顺利进行。
分式的乘除教学反思3
设计思路建立在我校目标教学的前提下,由学生自主导学,然后再由教师考查和点拨,但是由于种种原因,我最终决定给学生一个半开半闭的区间。这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定和学生一起共同完成。
1.在本课的教学过程中,掌握范围分式方程的解法是关键,所以由两个习题过渡后,我复习了一元一次方程的解法,然后引导学生尝试利用解一元一次方程方法的基础上一起探索探索解分式方程的解法。我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。
2、在利用类比法解分式方程这一过程中,分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应渗透种化归思想的教学。
3、本节课的难点是对分式方程可能产生增根的原因,我为了让学生更深刻的理解就用了两个分式方程的解答过程进行对比,体现验根的重要性及必要性,
充分体现学生为主体,教师为主导的教学体系。
在这节公开课上,学生状态不错,所有的学生都能积极思考,踊跃回答问题,在课堂练习和最后的课堂小测里,学生的作答规范正确,而且对于增根产生的原因及相关知识点的难题的突破学生掌握的不错。
整节课下来,基本能够达成教学目标,但是作为年轻教师,我在一些细节的处理上仍然需要改进。个别教学语言不够规范,而且利用新知识的学习过程,对旧知识的复习仍然不够,语速有点快,个别问题的引导可以更深层次,没有充分放手让学生突破难点,也是比较遗憾的地方,希望听课的老师给我多提意见,我会珍惜的。
分式的乘除教学反思4
设计思路建立在我校目标教学的前提下,由学生自主导学,然后再由教师考查和点拨,但是由于种种原因,我最终决定给学生一个半开半闭的区间。这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定和学生一起共同完成。
1.在本课的教学过程中,掌握范围分式方程的解法是关键,所以由两个习题过渡后,我复习了一元一次方程的解法,然后引导学生尝试利用解一元一次方程方法的基础上一起探索探索解分式方程的解法。我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。
2.在利用类比法解分式方程这一过程中,分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应渗透种化归思想的教学。
3.本节课的难点是对分式方程可能产生增根的原因,我为了让学生更深刻的理解就用了两个分式方程的解答过程进行对比,体现验根的重要性及必要性,
充分体现学生为主体,教师为主导的教学体系。
在这节公开课上,学生状态不错,所有的学生都能积极思考,踊跃回答问题,在课堂练习和最后的课堂小测里,学生的作答规范正确,而且对于增根产生的原因及相关知识点的难题的突破学生掌握的不错。
整节课下来,基本能够达成教学目标,但是作为年轻教师,我在一些细节的处理上仍然需要改进。个别教学语言不够规范,而且利用新知识的学习过程,对旧知识的复习仍然不够,语速有点快,个别问题的引导可以更深层次,没有充分放手让学生突破难点,也是比较遗憾的地方,希望听课的老师给我多提意见,我会珍惜的。
分式的乘除教学反思5
分式是有理式的一个重要组成部分。在整式的概念、变形、四则运算及因式分解的基础上,进一步学习分式,它既是对整式的运用和巩固,也是对整式的延伸。分式的学习则需要类比分数的概念性质、运算法则等知识来完成。
在这一章的教学中,我首先从实际问题出发,类比分数,引出分式的概念;其次类比分数的基本性质和四则运算,学习相应分式的基本性质和四则运算;再次学习可化为一元一次方程的分式方程的求解;最后引入整数指数幂,把分式与负整数指数幂的互化有机地联系起来,同时又把科学记数法推广到绝对值小于1的数的表示。
结合学生的学习反馈,我认为在教学中应注意以下几个问题:
1.类比分数的概念性质,如分母不为零、零除以任何不为零的数都得零、一个数除以它本身都得1(零除外)、分子分母同号为正、异号为负等,可以帮助学生正确理解当分式中字母取何值时,分式有意义、分式无意义、分式值为零、分式值为1、分式值为正、分式值为负。
2.在进行分式的运算时,要强调运算顺序,要让学生体会到在运算的过程中,凡遇多项式要先因式分解再约分或通分,最后结果必须化为最简分式或整式。
3.在将分式方程化为整式方程求解的过程中,要渗透“转化思想”,要让学生知道可能产生增根,从而使学生认识到检验的目的和必要性。
4.学生容易出现提取负号后,括号里面各项不全变号的错误;容易将分式方程去分母的方法挪用到分式计算中去,出现随意去分母的错误等。
总的来说,联系旧知,对比新知,及时发现和纠正学生的错误,可以使分式的学习顺利进行。
分式的乘除教学反思6
这堂课是以学生探究为主的一堂新授课。
一、教材处理
分式乘除法类比分数乘除法,这样安排符合学生的认知规律。
二、教法学法
对于这堂课,我打破了传统教学的教师讲、学生练的教学模式,取而代之的'是学生自学、主动探究的教学方式。自学检测明确了法则,达到了预计的目标,分层训练完全超出了我的预计,效果非常好。学生在探究过程中,易错点都找得挺准。整个教学过程从多角度对分式的乘除法进行了训练,避免了教师一种讲法部分学生不理解的尴尬,既调动了学生探究的积极性,又有利于学生对知识的理解和吸收。
三、不足之处
1.对基础差的学生关注不够,他们在合作探究的过程中遇到的困难会很多,可是由于在课堂上需要面对的是大多数学生,另外在课堂上时间也是一个原因,如果是小班型授课这个问题就解决了。
2.对于错误的处理方法需要完善,在以后的教学中要鼓励学生发现错误、纠正错误。兵无常势,水无常形。合学教育必须调动学生的积极性,体现学生的主体地位,让他们通过协作获得双赢。
《分式的乘除》教学反思5
《分式的乘除法》这是八年级下册第十六章第二节的内容。主要学习的是分式的乘除法运算法则并会进行简单的应用。
本节课首先通过创设学生熟悉的问题情境,很自然的引入分式乘除法的运算:在运算律和运算法则的探究过程中,引导学生由分数的运算法则探究出分式的运算法则,利用练习加深理解:在分式的乘除运算教学过程中,从不同侧面引导学生巩固新知、提高计算能力。这节课重点是熟练掌握分式的乘除法则,教学设计提供给学生一个探索、思考与同伴交流合作的机会,学生通过对比观察,动脑思考对新旧知识进行联系探究,很自然地学习了新知识,本课设计充分体现了以学生为主体的教学方式,学生逐步探讨发现,通过学习既训练了猜想、归纳、表达能力,又提高了应变能力。
上完这节课后我认真的做了反思:
1、选取学生熟悉的分数的乘除运算问题,用类比的思想方法学习归纳出分式乘除法的运算法则,学生感到轻松容易的掌握了分式乘除法的运算,激发了学生的学习兴趣。
2、针对本节课内容我设计一系列有梯度的问题,并采取讨论形式。课堂气氛活跃,学生学习热情比较高。课堂学习效果较好。
3、课堂训练过程中采取生生合作,学生出现的计算问题由学生改正并说明理由,一个没将问题找完,另一个再找,直到连细节学生也不放过。课本上有些问题的答案不唯一,学生从不同的角度考虑问题,结论当然不同,只要有道理就应鼓励,不要把学生限制在一个固定的思维框中。
4、存在的问题:
(1)由于部分学生计算能力欠缺,或有些细节没注意到,计算上还出现问题。在以后的教学中还应加强计算能力的培养。
(2)时间安排不是太恰当,学生帮助学生解决问题时耽误了一些时间,导致最后设计的环节没完成。以后还应加强细节的设置提高课堂效率。
(3)学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中加强学生的答题规范性练习。
(4)数学学习方法的应用,本节课用到转化、猜想、归纳的数学方法,以后在教学中提醒学生数学方法的应用。
5、学生能力的培养,创设良好的问题情境,强化问题意识,激发学生的求知欲;培养学生敢于独立思考,敢于探索、敢于质疑的习惯;培养学生善于观察的习惯和心里品质;培养学生良好的思维习惯,教会学生在多方面思考问题,多角度解决问题的能力。
6、教学效果还有些欠缺,争取以后在课堂上让学生思维活跃,气氛热烈,学生受益面大,不同程度学生在原有的基础上都有进步。知识、能力、情感目标都能达到,让学生学的轻松,积极性高,当堂问题当堂解决。
分式的乘除教学反思7
本节的教学重点是探索分式方程概念、会解可化为一元一次方程的分式方程、明确分式方程与整式方程的区别和联系。教学难点是如何将分式方程转化成整式方程。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。
我认为比较成功的
1、把思考留给学生,课堂教学试一试这个环节中,我把更多的思维空间留给学生。问题不轻易直接告诉学生答案,而由学生通过动手动脑来获得,从而发挥他们的主观能动性。我主要在做题方法上指导,思维方式上点拨。改变那种让学生在自己后面亦步亦趋的习惯,从而成为爱动脑、善动脑的学习者。
2、积极正确的引导,点拨。保证学生掌握正确知识,和清晰的解题思路。由于学生总结的语言有限,我就把本节课的重点内容:解分式方程的思路,步骤,如何检验等都用多媒体形式给学生展示出来。还有在解分式方程过程中容易出现的问题都给学生做了强调。
3、及时检查纠正,保证学生认识到自己的错误并在第一时间内更正。学生在做题过程中我就在教室巡视,及时发现学生的错误,及时纠正。对于困难的学生也做个别辅导。
虽然在课堂上做了很多,但也存在许多不足的地方,这也是我在今后教学中应该注意的地方。第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。第二,给学生的鼓励不是很多。鼓励可以让学生有充分的自信心。“信心是成功的一半”,“在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化。多鼓励,少批评;多肯定,少指责。用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心。赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生。一句肯定的话、一个赞许的点头、一张表示优胜的卡片,都是很好的鼓励,会起到意想不到的良好结果。
分式的乘除教学反思8
昨天去实验小学听课,课题是《分式的乘除》的第一课时,刚开始秦老师利用类比的数学思想,通过复习分数的乘除的运算法则推出分式的乘除法则。紧接着秦老师要求组长批改组员的预习作业,随后由小组组长汇报检查的情况,并把计算题出现那些错误一一类举出来。我看看手表已经过了15分钟,随后秦老师以学生错题为例题,讲解了两题分子、分母都是单项式的乘除运算。当时我在疑惑,一节课最重要的是前20分钟,为什么还没有讲解分子、分母是多项式的分式乘除的计算题呢?我觉得计算是学生的弱项,应该教师先做好解题的示范,然后学习加强练习,只有学生自己动手计算才会发现不足。课进行到25分钟左右,秦老师开始讲解分子、分母是多项式的分式乘除。秦老师不是自己单独讲解,而是和学生互动,一步一步的写出解题过程,并要求学生说出依据。最后秦老师请了四位学生在黑板上做练习,可能时间上没有分配好,留有余尾。
随后我们进行了评课,听了秦老师的课题简述,我才发现课堂上自己的评课方向是错误的,秦老师的课题就是研究学生预习出会出现的错误以及探讨预习中错题的类型,最后我觉得秦老师的课还是很优秀的,值得我们学习。
分式的乘除教学反思9
在上节课介绍了分式的乘除运算法则的基础上介绍了分式的混合运算以及整式和分式的混合运算。并通过思考栏目中的问题,根据乘方的意义和分式的乘法法则,归纳出分式的乘方法则。
学生有了分式的乘除运算法则做为基础,很容易探究出并掌握住乘除混合运算的计算方法。有乘方的意义和分式的乘法法则做基础,学生很容易探究出分式的乘方运算法则。
本节课各个环节我紧紧围绕学习目标展开,让学生在每个环节学完后都要进行反思、反悟,感觉效果较好
分式的乘除以及乘方混合运算,是《分式》一章中的重要内容,在考试中常以计算题的面貌出现,在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,一批学生做好题目,再让一批学生上去批改,如果错的,直接让他把正确的做在旁边,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来。
教学中我发现分式的运算错的较多。分解因式的熟练程度成了这里的障碍。我知道。分解因式的好坏直接影响分式的有关学习。
总之,通过对上课方式的尝试,我从学生身上学到了很多东西。也促使我更加对课堂进行研究。
分式的乘除教学反思10
学生前面已学习了分式的基本性质、分式的约分,对学好本课时内容有一定的帮助。八年级学生有一定逻辑推理能力、代数式的运算的能力。但数与式的差别也制约着学生的学习,特别是分子、分母为多项式的乘除法运算是学生学习的一个难点。
在分式的乘除法这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。
利用类比的数学方法教学分式的乘除法教学,学生理解并不难,但在运算上要以练为主。
1、学生对于法则的运用不难,但是基础较差班学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。
2、类比的学习方法是学习新知识的好方法。
第四篇:《分式的乘除》教学反思(通用)
《分式的乘除》教学反思(通用5篇)
在不断进步的时代,我们要在教学中快速成长,所谓反思就是能够迅速从一个场景和事态中抽身出来,看自己在前一个场景和事态中自己的表现。怎样写反思才更能起到其作用呢?下面是小编精心整理的《分式的乘除》教学反思(通用5篇),欢迎大家分享。
《分式的乘除》教学反思1在上节课介绍了分式的乘除运算法则的基础上介绍了分式的混合运算以及整式和分式的混合运算。并通过思考栏目中的问题,根据乘方的意义和分式的乘法法则,归纳出分式的乘方法则。
学生有了分式的乘除运算法则做为基础,很容易探究出并掌握住乘除混合运算的计算方法。有乘方的意义和分式的乘法法则做基础,学生很容易探究出分式的乘方运算法则。
本节课各个环节我紧紧围绕学习目标展开,让学生在每个环节学完后都要进行反思、反悟,感觉效果较好
分式的乘除以及乘方混合运算,是《分式》一章中的重要内容,在考试中常以计算题的面貌出现,在学生做习题时,我想平时都是老师来看,讲评,这次我何不把主动权还给学生,我就想让学生做小老师,一批学生做好题目,再让一批学生上去批改,如果错的,直接让他把正确的做在旁边,这样既调动了学生的积极性,又使同一组题让更多的学生参与进来。
教学中我发现分式的运算错的较多。分解因式的熟练程度成了这里的障碍。我知道。分解因式的好坏直接影响分式的有关学习。
总之,通过对上课方式的尝试,我从学生身上学到了很多东西。也促使我更加对课堂进行研究。
《分式的乘除》教学反思2本节课的乘除法是分式基本性质的应用,在此基础上类比小学学过的分数的乘除法运算法则进行学习分式的乘除运算,学生不难接受。
只是需注意的是,分式乘除运算的结果要化为最简分式。在教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。
在分式运算的中,学生主要出现以下问题:
1、分式的乘法,如:运算方法有两种:一种是先乘后约分,另一种是先约分再乘,特别是多项式的时候更明显一些,学生不能很好的选择恰当的方法进行计算,从而使计算变得复杂,导致计算错误,计算结果要求必须为最简分式。
2、分式的加减法,有些学生总是在通分的时候忘记给分子乘代数式;再有就是遇到减法,而且后面分式的分子是多项式的时候,总是会出现符号上的错误(忘记变号),使得后面的计算全部错误。还有一部分同学在进行分式加减法的时候会和解分式方程相混淆,给分式去分母,还有得学生计算时把分母都漏掉了。
3、学生做题很不细心,也没有养成检查习惯。
针对以上问题,除了在讲清运算原理之外,要加强练习,针对学生的错误点反复训练,让学生真正掌握,提高学习效率。
《分式的乘除》教学反思3学生前面已学习了分式的基本性质、分式的约分,对学好本课时内容有一定的帮助。八年级学生有一定逻辑推理能力、代数式的运算的能力。但数与式的差别也制约着学生的学习,特别是分子、分母为多项式的乘除法运算是学生学习的'一个难点。
在分式的乘除法这一课的教学中,我采用了类比的方法,让学生回忆以前学过的分数的乘除法的运算方法,提示学生分式的乘除法法则与分数的乘除法法则类似,要求他们用语言描述分式的乘除法法则。学生反应较好,能基本上完整地讲出分式的乘除法法则。
利用类比的数学方法教学分式的乘除法教学,学生理解并不难,但在运算上要以练为主。
1、学生对于法则的运用不难,但是基础较差班学生在运用法则计算时遇到单项式乘单项式,单项式乘多项式或多项式乘多项式即整式的乘法运算时,情况较差,另外在结果的化简上存在问题,化简意识不够,应该在复习分数的乘除法时复习分数的约分,通过对分数的约分类比分式的约分,加强化简意识和能力。还有因式分解的基础知识不扎实,这些直接影响这节课的学习,这充分体现了数学知识是相关相联的,所以课前有必要巩固整式的乘法运算和因式分解这两方面的知识,进行有针对的练习。
2、类比的学习方法是学习新知识的好方法。
《分式的乘除》教学反思4这堂课是以学生探究为主的一堂新授课。
一、教材处理
分式乘除法类比分数乘除法,这样安排符合学生的认知规律。
二、教法学法
对于这堂课,我打破了传统教学的教师讲、学生练的教学模式,取而代之的是学生自学、主动探究的教学方式。自学检测明确了法则,达到了预计的目标,分层训练完全超出了我的预计,效果非常好。学生在探究过程中,易错点都找得挺准。整个教学过程从多角度对分式的乘除法进行了训练,避免了教师一种讲法部分学生不理解的尴尬,既调动了学生探究的积极性,又有利于学生对知识的理解和吸收。
三、不足之处
1.对基础差的学生关注不够,他们在合作探究的过程中遇到的困难会很多,可是由于在课堂上需要面对的是大多数学生,另外在课堂上时间也是一个原因,如果是小班型授课这个问题就解决了。
2.对于错误的处理方法需要完善,在以后的教学中要鼓励学生发现错误、纠正错误。兵无常势,水无常形。合学教育必须调动学生的积极性,体现学生的主体地位,让他们通过协作获得双赢。
《分式的乘除》教学反思5《分式的乘除法》这是八年级下册第十六章第二节的内容。主要学习的是分式的乘除法运算法则并会进行简单的应用。
本节课首先通过创设学生熟悉的问题情境,很自然的引入分式乘除法的运算:在运算律和运算法则的探究过程中,引导学生由分数的运算法则探究出分式的运算法则,利用练习加深理解:在分式的乘除运算教学过程中,从不同侧面引导学生巩固新知、提高计算能力。这节课重点是熟练掌握分式的乘除法则,教学设计提供给学生一个探索、思考与同伴交流合作的机会,学生通过对比观察,动脑思考对新旧知识进行联系探究,很自然地学习了新知识,本课设计充分体现了以学生为主体的教学方式,学生逐步探讨发现,通过学习既训练了猜想、归纳、表达能力,又提高了应变能力。
上完这节课后我认真的做了反思:
1、选取学生熟悉的分数的乘除运算问题,用类比的思想方法学习归纳出分式乘除法的运算法则,学生感到轻松容易的掌握了分式乘除法的运算,激发了学生的学习兴趣。
2、针对本节课内容我设计一系列有梯度的问题,并采取讨论形式。课堂气氛活跃,学生学习热情比较高。课堂学习效果较好。
3、课堂训练过程中采取生生合作,学生出现的计算问题由学生改正并说明理由,一个没将问题找完,另一个再找,直到连细节学生也不放过。课本上有些问题的答案不唯一,学生从不同的角度考虑问题,结论当然不同,只要有道理就应鼓励,不要把学生限制在一个固定的思维框中。
4、存在的问题:
(1)由于部分学生计算能力欠缺,或有些细节没注意到,计算上还出现问题。在以后的教学中还应加强计算能力的培养。
(2)时间安排不是太恰当,学生帮助学生解决问题时耽误了一些时间,导致最后设计的环节没完成。以后还应加强细节的设置提高课堂效率。
(3)学生答题的规范性还差了些,在黑板上的板书不到位,在以后的教学中加强学生的答题规范性练习。
(4)数学学习方法的应用,本节课用到转化、猜想、归纳的数学方法,以后在教学中提醒学生数学方法的应用。
5、学生能力的培养,创设良好的问题情境,强化问题意识,激发学生的求知欲;培养学生敢于独立思考,敢于探索、敢于质疑的习惯;培养学生善于观察的习惯和心里品质;培养学生良好的思维习惯,教会学生在多方面思考问题,多角度解决问题的能力。
6、教学效果还有些欠缺,争取以后在课堂上让学生思维活跃,气氛热烈,学生受益面大,不同程度学生在原有的基础上都有进步。知识、能力、情感目标都能达到,让学生学的轻松,积极性高,当堂问题当堂解决。
第五篇:分式乘除教学设计
《16.2 二次根式的乘除》教学设计
一.教材分析
二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础.
基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式.
二、学情分析
本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行.二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算.教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向.
本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用.
三、目标和目标解析
1.教学目标
(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;
(2)会进行简单的二次根式的除法运算;
(3)理解最简二次根式的概念.
2.目标解析
(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;
(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算.
(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式.
四、教学过程设计
1.复习提问,探究规律
问题1 二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?
师生活动 学生回答。
【设计意图】让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.
2.观察思考,理解法则
问题2 教材第8页“探究”栏目,计算结果如何?有何规律?
师生活动 学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:
.
问题3 对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?
师生活动 学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了.
【设计意图】学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误.
问题4 对例题的运算你有什么看法?是如何进行的?
师生活动 学生利用法则直接运算,一般根号下不含分母和开得尽方的因数.
【设计意图】让学生初步利用二次根式的性质、乘除法法则进行简单的运算.
问题5 对比积的算术平方根的性质,商的算术平方根有没有类似性质?
师生活动 学生类比地发现,商的算术平方根等于算术平方根的商,即.利用该性质可以进行二次根式的化简.
3.例题示范,学会应用 例1 计算:(1);(2);(3).
师生活动 提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?
再提问:第(2)用什么方法计算更简捷?第(3)题根号下含字母在移出根号时应注意什么?
【设计意图】通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,问题5 你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?
师生活动 学生总结,师生共同补充、完善。要总结出:
(1)这些根式的被开方数都不含分母;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不含根号;
【设计意图】引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式.
问题6 课件展示一组二次根式的计算、化简题.
【设计意图】让学生用总结出的结论进行二次根式的运算.
4.巩固概念,学以致用
例2
师生活动 提问 本题是以长方形面积为背景的数学问题,二次根式的除法运算在此发挥什么作用?
再提问 章引言中的问题现在能解决了吗?
【设计意图】巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。
5.归纳小结,反思提高
师生共同回顾本节课所学内容,并请学生回答以下问题:
(1)除法运算的法则如何?对等式中字母的取值范围有何要求?
(2)你能说明最简二次根式需要满足的条件吗?
6.布置作业:教科书第10页练习第1,2,3题;
教科书习题16.2第10,11题.
五、目标检测设计
1.在、、中,最简二次根式为 .
【设计意图】考查对最简二次根式的概念的理解.
2.化简下列各式为最简二次根式: ; .
【设计意图】复习二次根式的运算法则和运算性质.鼓励学生用不同方法进行计算.对于分母含二次根式的处理,要结合整式的乘法公式进行计算.
3.化简:(1);(2).
【设计意图】综合运用二次根式的概念、性质和运算法则进行二次根式的运算.