第一篇:实际问题与一元二次方程教学反思
实际问题与一元二次方程教学反思
曾文祥
本节课主要是培养学生运用已学过的一元二次方程知识来解决常见的实际问题。首先,教师让学生回顾一下列方程解应用题的一般步骤:一。审清题意,设未知数;二。找等量关系式;三。列方程;四。解方程并检验;五。解答。接下来教师设计一种情境:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?先让学生设未知数:设每轮传染中平均一个人传染了X个人。再找出等量关系式:第一人+第一轮被传染人数+第二轮被传染人数=总传染人数。然后让学生自主列出一元二次方程:1+X+X(1+X)=121.那么接下来解方程就可以让学生上台演板完成。最后解答。教师需要对学生强调的是:如何通过理解题意来寻找题目中隐含的等量关系式,这是列方程解应用题的关键。另外教师在布置练习的时候也注意引导学生根据题意去发现问题,分析问题最终解决问题。总的来说,这节课的中心任务是学会运用一元二次方程去解决常见的实际问题,这一目的已经初步达到,那么下节课时将进一步强化这一种思维方式,提高学生解决问题的能力。
第二篇:实际问题与一元二次方程教学反思
实际问题与一元二次方程教学反思
实际问题与一元二次方程教学反思1
新课改下,要求改变教师的课堂教学行为,发挥学生的主体作用,主张学生个性化学习。善思善想的学生得到几种不同的解答都有自己的道理。但是数学教学中虽提倡一题多解,可答案是确定的,并非灵活多变,对于上述类型题到底该如何确定答案,新课改实施后考题灵活多变,学生翻阅资料扩大知识面无可厚非。并且随着社会的发展,家长逐渐重视对孩子的教育,通过为孩子买各种各样的教辅资料来提高孩子的学习成绩。孰不知资料中对一些题的答案众说不一,到底谁是权位,我们师生又该如何面对。
新课程中教学活动是师生双边的活动,它是以教材为中心,教师教的活动和学生学的活动的相互作用,教师与学生要想发展,必须要将实践与探究融为一体,使之成为促进师生发展、能力不断提升的过程,而反思则是将二者有效结合。应从哪些方面实现师生互动的反思模式构建呢?
1、要求做好课堂简要摘记。
当前,老师讲学生听已成了教学中最普遍的方法。而要学生对教学的内容进行反思,听是远远不够的。要反思,就要有内容。所以学生就要先进行课堂简要摘记。课堂简要摘记给学生提供了反思的依据。学生也能从课堂简要摘记中更好的体验课堂所学习的内容,学生的学习活动也成了有目标,有策略的主体行为,可促使老师和学生进行探索性,研究性的活动。有利于学生在学习活动中获得个人体验,提高个人的创造力,所以课堂简要摘记是学生进行反思的重要环节。
2、指导学生掌握反思的方法。
课堂教学是开展反思性学习的主渠道。在课堂教学中有意识的引导学生从多方位、多角度进行反思性的`学习。学生的实践反思,可以是对自身的认识进行反思,如,对日常生活中的事物及课堂中的内容,都可引导学生多问一些为什么?也可以是联系他人的实践,引发对自己的行为的比较反省,我们可以多引导学生进行同类比较,达到“会当凌绝顶,一览众山小”的境界;也可以是对生活中的一种现象,或是周围的一种思潮的分析评价,此外学生的反思还何以是阶段性的,如:一节课尾声时,让学生进行一下反思,想想自己这节课都有什么收获?还有哪些疑问?当天睡前,反思一下今天自己的感受;或是一周反思一下自己的进步和不足等等。
实际问题与一元二次方程教学反思2
1. 教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。
2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”
3、以导学案的形式,创设由特殊性到一般性的实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。
4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。
5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。
6、学案的设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。
7、在时间的安排上,教学环节(一)、(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的'形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节(一)、(二)的习题设置有点多和重复,使得环节(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精选,力求做到精选精炼。
8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。
实际问题与一元二次方程教学反思3
问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的`二次方程的应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:
1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?
(学生很自然列方程解决)
改换题目条件和问题:
2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?
分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。
于是学生很容易完成下列求解。
解:设该商品定价为x元时,可获得利润为y元
依题意得:y=(x-40)?〔300-10(x-60)〕
=-10x2+1300x-36000
=-10(x-65)2+6250300-10(x-60)≥0
当x=65时,函数有最大值。得x≤90
(40≤x≤90)
即该商品定价65元时,可获得最大利润。
增加难度,即原例题
3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?
该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。
实际问题与一元二次方程教学反思4
用一元二次方程解决实际问题是初中数学教学阶段重难点,仍运用将实际问题转化为数学问题,从而抽象出数学模型——方程解决、验证实际问题这一重要的数学思想,而且,一元二次方程解法熟练灵活程度直接体现学生的基本解题素养,因此,学会分析问题审清题意、布列方程解好方程就成了本节课、本阶段的重点。而学生经四五年方程训练,已有运用方程解题的意识和技能,所缺的是分析问题、解决题解的自主思维能力、灵活的'解题技能,所以也成了教学难点。
如何突出重点、突破难点?(1)采用抓住关键条件即处于变化中的数量及其关系,进行具化——“物”化,假设联想,从而发现数量间变化关系,布列出方程。例如在讲习题:某京剧团准备在市歌舞剧院举行迎春演出活动,该剧院能容纳800人。经调研,如果票价定为30元,那么门票可以全部售完,门票价格每增加1元,售出的门票数目将减少10张。如果只想获得28000元的门票收入,那么票价应定为多少元.?
分析:“如果人数多于30人,那么每增加1人,人均旅游费用降低10元”是指“(30+1)时人均旅游费用(800—10)元;(30+2)时人均旅游费用(800—10×2)元;(30+3)时人均旅游费用(800—10×3)元;(30+4)时人均旅游费用(800—10×4)元…自然增加X人,即(30+X)时人均旅游费用(800—10X)元。根据基本数量关系式,不难得到[800-10(x-30)]·x=28000或(800-10x)·(x+30)=28000。”
(2)反复提炼、对比优化思考过程,经过思、说、辩,从而内化为解题图式,学生因成功体验的累积产生解题自信心,有为的动力。如就同一方程创设了不同的问题情境,拓展了学生的思维视野,同化了不同问题情境的题,增强了学生举一反三、融会贯通的解题技能,收到事半功倍的效果。
(3)解方程要因题而异,先化简再转化为一般形式的方程,不要匆匆地展开,展开时做一步验一步,最终结合实际情况取舍方程的解。
尽管细致引导,不激励,不让其自圆其说,学生自我矫正系统掌握还是比较困难的。把课件当作激励启思载体,教学案当作技能形成的砺石,是我教学主要风格,本节课充分体现这点。
实际问题与一元二次方程教学反思5
从试题结构看,共分三个大题,包括填空题、选择题、解答题,相对来说试题比较简单。从学生的答卷来看,存在以下问题:
一、学生计算能力总体差.
如:最后计算题解一元二次方程时出错和一大题的一半出错.
二、基础知识掌握不扎实如:
填空题7题和10题,学生对一元二次方程和一元一次方程的条件理解不透彻
根据题意列方程审题不清
三、基本的概念定理不清楚
如:选择题14和15题有关角平分线和垂直平分线定理的考查好多学生出错.15题是有关一元二次方程和一元一次方程和整式方程,分式方程的考查,包括有优生都出错.
四、证明题逻辑思维不条理
对于95%的学生证明步骤依然是他们的弱点,是初三阶段的训练目标.
针对上述问题,今后需采取以下措施:落实基础,提高学生的计算能力,加强审题能力的培养,规范学生的书写及解题格式的规范程度,针对我们班及格人数和其他班有差距,需要加强及格边缘学生的个别关注,尤其充分利用辅导课的.时机有针对性的辅导.对不同的学生给以不同的关注,使每个学生都能克服其缺点以提高学习成绩.
实际问题与一元二次方程教学反思6
新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。
通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。
1、本节课第一个例题是增长率问题,有一定难度,我在讲解时设置问题细化,从多方位多角度帮助学生解析这道题,这样的问题引导,既节省了课堂时间,又降低了解题难度。在学习方法上给学生一定的空间去交流、探索、思考,能够体现新课标让学生主动获取知识的思想。在例1讲完之后,我随即设置了两个练习加以巩固。
2、在课堂上将更多教学时间留给学习小组,这样小组中,个人的成功会带来团体的成功,进而导致团体内其他成员的成功,因而学生感到成功机会增加,从而有一种积极的'学习态度,同时学生在学习中相互尊重、相互欣赏。
3、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
4、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励,以及组织小组合作学习,帮助学生形成积极主动求知态度,课堂收效大。
由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。同时我的分组以位置为准,前后交流,这样层次不大合理,有待于课前做好思考与准备。
实际问题与一元二次方程教学反思7
1.教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。
2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”
3、以导学案的形式,创设由特殊性到一般性的实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。
4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。
5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。
6、学案的'设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。
7、在时间的安排上,教学环节
(一)、
(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节
(一)、
(二)的习题设置有点多和重复,使得环节
(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精选,力求做到精选精炼。
8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节
(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。
实际问题与一元二次方程教学反思8
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:① 用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的平均气温与该山的海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
平均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的'山区?
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。
四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。
五、布置作业:
课本108页8、9题。
六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
第三篇:实际问题与一元二次方程
实际问题与一元二次方程
(一)-------传播问题和比赛问题
列方程解应用题的一般步骤:(1)__________(2)__________(3)__________(4)__________(5)__________(6)__________。
1、有一人患了流感,经过两轮传染后共有
点121人患了流感,(1)每轮传染中平均一个人传染了几个
人?
(2)如果按照这样的传染速度,三轮传
染后有多少人患流感?
2、有一人患了流感,经过两轮传染后共有
100人患了流感,那么每轮传染中平均一个人传染的人数是_________,如果不及时控制,第三轮将又有_________人被传染?
3、某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出_________个分支?
4、某生物实验室需培养一群有益菌。现有
60个活体样本,经过两轮培植后,总和达到目24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌。(1)每轮分裂中平均每个有益菌可分裂
出多少个有益菌?、(2)按照这样的分裂速度,经过三轮后
有多少个有益菌?
5、(1)参加一次足球比赛的每两队之间都
进行两次比赛,共要比赛90场,共有多少个队参加比赛?
(2)参加一次篮球比赛的每两队之间都进行两次比赛,共要比赛15场,共有多少个队参加比赛?
6、生物兴趣小组的同学将自己制作的标本
向本组其他成员各赠送一件,全组共互赠了182件,则该兴趣小组共有多少名同学?
7、在某次聚会上,每两个人都握了一次手,所有人共握手10次,则有多少个人参加这次聚会?
8、某航空公司有若干个飞机场,每两个飞
机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场多少个?
9、(1)两个相邻偶数的积是168,求这两个偶数。(2)两个连续偶数的和为6和8,则这两个连续偶数是________。
第四篇:一元二次方程实际问题
例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5×10kg.
(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]
(3)月销售成本不超过10000元,那么销售量就不超过10000=250kg,在这个提前下,40
•求月销售利润达到8000元,销售单价应为多少.
解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.
当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).
例4.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x
则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第五篇:实际问题一元二次方程
22.3《实际问题与一元二次方程(2)》学案
课型:上课时间:课时:
学习目标:
能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.学习过程:
一、自主学习:
(一)复习巩固:
1、某商店销售一批服装,每价成本价100元,若想获得25%,这种服装的售价应为_______________元。
2、某商品原价a元,因需求量大,经营者将该商品提价10%,后因市场物价调整,又降价10%,降价后这种商品的价格是_______________。
(二)、归纳总结:
1、有关利率问题公式:利息=本金×利率×存期本息和=本金+利息
2、有关商品利润的关系式:(1)利润=售价-进价
(2)利润率= 利润售价进价(3)售价=进价(1+利润率)进价进价
(三)、自我尝试:
某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?
(四)例题选讲
某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张.•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.
二、课堂检测:
1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().
A.12人B.18人C.9人D.10人
2.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.
3.一个容器盛满纯药液63升,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28升,设每次倒出液体x升,•则列出的方程是________.
4.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?
5.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?
6.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
三、布置作业
一、选择题
1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().
A.12人B.18人C.9人D.10人
2.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是().
A.12%B.15%C.30%D.50%
3.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为().
A.600B.604C.595D.605
二、填空题
1.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.
2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,•最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.
3.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,•则列出的方程是________.
三、综合提高题
1.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200
万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?
2.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?
3.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a>0)个成品,且每个
车间每天都生产b(b>0)个成品,质量科派出若干名检验员周一、•周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.
(1)这若干名检验员1天共检验多少个成品?(用含a、b的代数式表示)
(2)若一名检验员1天能检验
4b个成品,则质量科至少要派出多少名检验员? 5