液力传动在车辆上应用的优缺点

时间:2019-05-12 12:41:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《液力传动在车辆上应用的优缺点》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《液力传动在车辆上应用的优缺点》。

第一篇:液力传动在车辆上应用的优缺点

液力传动在车辆上应用的优缺点

液力传动之所以在车辆上能得到广泛应用,是因为它的应用使车辆获得了一些新的优异性能:①使传动系统获得自动地无级变速和变矩能力,使车辆具有自动适应能力。

②在困难和复杂路面行驶时,可以防止发动机过载或突然熄火。

③液力传动元件以液体为工作介质,具有减振作用,可以衰减发动机曲轴的转矩振动,可以大大降低行走部分传来的或传动系统中产生的动负荷。因此,可以提高发动机和传动部件的使用寿命,有试验表明通过液力变矩器传动后,扭转振动的振幅可降低到50%以下。曾在重型载重汽车上做过应用液力传动和机械传动的对比试验,前者比后者的最大负荷降低18.5%,发动机使用寿命延长47%,齿轮变速器寿命延长400%,差速器寿命延长93%,足可见液力传动在车辆上应用的技术经济效益是何等优越。

④液力传动的主要构件,工作轮之间无直接机械连接,没有界限摩擦损失,使用可靠、寿命长、保养简单。

⑤液力传动使车辆具有良好的稳定的低速性能,可以提高车辆在软路面如泥泞、沙地、雪地和其他非硬土壤路面的通过性。曾用汽车做过对比试验,在阮路面上起步和形式时,采用液力传动较用机械传动的车轮下限量约少25%,滑转小,附着储备大2~3倍,提高了汽车的通过性。

⑥由于液力传动具有良好的自动适应性,故运输车辆应用液力传动后,可使车辆起步平稳、加速迅速、均匀、乘员舒适,可以简化操作,减速换挡或不换挡,提高车辆的平均行驶速度,减轻驾驶员的疲劳,提高安全行驶能力。

⑦液力制动器在重载汽车上应用,使车辆在长大坡度公路上行驶时,能得到柔性制动的性能,提高车辆行驶安全性。

⑧减速对空气的污染,由于手动变速器在换挡过程中常伴有供油量的急剧变化,发动机的转速变化较大,导致燃烧过程恶化,使废气中有害成分增加,当用液力自动变速器时,由于液力传动和自动换挡技术,能把发动机限制在污染较小的转速范围工作,从而可减少发动机排气中有害物质的含量。

车辆采用液力传动与机械传动相比,也有一些缺点:①液力传动的效率比机械传动低,经济性要差些,如带有液力变矩器的自动挡汽车就比手动挡汽车费油。②需要增加一些为液力传动所必需的附加设备,如供油系统、冷却系统等,因而体积和重量比机械传动略大,结构较复杂,造价略高。③由于液力元件的输入与输出构件无直接机械连接,所以不能利用发动机的惯性来制动,也不能用牵引的办法起动发动机。如要获得此方面的性能,则需要添加附加装置。

尽管液力传动有一定的缺点,但优点是突出的,所以在车辆上的应用越来越广泛,液力传动工业的最大支撑点是汽车工业。

文章来源:广州液力传动设备有限公司

第二篇:臭氧应用优缺点

臭氧应用优缺点

预臭氧的主要作用是杀藻、改善絮凝沉淀效果、去除部分有机物、优点:臭氧-生物活性炭滤池工艺是将活性炭物理化学吸附、臭氧化学氧化、生物氧化降解及臭氧灭菌消毒四种技术合为一体,与传统水处理工艺相比,具有明显的优势,主要体现在:

① 常规加氯工艺处理的自来水的Ames致突变试验结果多为阳性,而臭氧-生物活性炭工艺处理后为阴性;② 臭氧-活性炭工艺对有机污染物的去除率为50%以上,比常规处理提高15~20个百分点;③ 提高色度和嗅味的去除率,改善感官性指标;④ 提高对铁、锰的去除率;⑤ 可以去除氨氮到90%左右,水中的氨氮和亚硝酸盐可被生物氧化为硝酸盐,从而减少了后氯化的投氯量,降低了三卤甲烷等消毒副产物的生成;⑥ 有效去除AOC、蛋白氨氮,提高处理水的生物稳定性,提高管网水质。

另外臭氧和活性炭联合使用,还可以延长活性炭的运行寿命,减少运行费用。

缺点:尽管臭氧-生物活性炭滤池深度处理技术对于控制饮用水质污染和改善水质发挥了较好的作用,但也存在局限性。主要表现在:

① 臭氧氧化处理饮用水存在臭氧利用率低、氧化能力不足等缺陷;② 臭氧可以有效降解含有不饱和键或者部分芳香类有机污染物,而对于部分的稳定性有机污染物(如农药、卤代有机物和硝基化合物等)难以氧化降解。臭氧对一些有机物的降解仅仅局限与母体化合物结构上的变化,可能会生成毒性更大且不易被生物活性炭降解的中间氧化产物;③ 臭氧可以将大分子有机物氧化成小分子有机物,而有研究表明,活性炭吸附对分子质量为500~3000Da的有机有较好的去除效果,而对大分子和小分子的有机物去除效果较差。臭氧氧化后有机物的分子质量变小,将不利于活性炭的吸附;④ 当水中含有溴化物(Br-)时,臭氧氧化将会生成溴酸根(BrO3-)及溴代三卤甲烷(Br-THM)等有害副产物,对人体健康有很大的影响。

第三篇:LED照明灯具在轨道车辆上的应用

LED照明灯具在轨道车辆上的应用

技术工程部 宋玉庆 高夫基

摘要:本文简述了LED照明灯具特点及应用场合,重点介绍在轨道车辆客室照明系统的应用结构及可行性。

1.简介

近年来,随着以节约能源、保护环境为宗旨的绿色照明灯具的应用。LED是Light Emitting Diode(发光二极管)的简称,早在上世经60年代就已经出现,80年代后在辅助、指示、信号等低照度的场合成功地广泛应用。从LED产生到现在,其能够达到的最高光通量已经增加了几个数量级,目前达到了100lm以上,已逐渐开始成为白炽灯甚至荧光灯的实际替代品。

随着轨道车辆的技术发展,客室照明要求相应地日趋严格,LED作为一种新型的固态光源,正逐渐被应用在客室照明系统中,将成为轨道车辆的新一代照明光源。

2.LED发光的原理及性能特点 电致发光原理

与其他二极管一样,LED包含有一片半导体材料基片与杂质相互渗秀或掺杂形成的pn结。稳态时,极性相反的载流子(电子或空穴)因形成了空间电场无法穿过Dpn结。当LED的pn结正向偏置时,电流可以正分容易地从P区(阳极)流向N区(阴极),但不能反向流动。当电子空过PN结从N型材料进P型材料时,电子和空穴的复合过程会产生光子。这一过程称为电致发光。因此暴露的的半导体材料表面可以发光,这就是LED发光的原理。

灯具的作用

灯具是能起到分配、透过和改变光源的光的设备,包括除光源外所有用于固定和保护所需的全部零部件,必要时还可包括其与电源连接的线路附件。其具体作用是

1).合理地分配光,即将光源的光通量重新分配 2).防止光源或灯具所产生的眩光 3).提高光的利用率 4).保护光源免受损伤 5).美化和装饰照明环境。

光学特性

灯具的光学特性主要由下列三特性决定。1).灯具效率

灯具效率是在规定条件下灯具所发出的光通量ΦL与灯具内的全部光源在灯具外点燃时发射的总光通量Φs之比。以符号η表示。

η=ΦL/ΦS

灯具的效率愈高愈好,一般灯具的效率为0.7时属于较高效率的灯具;如果灯具效率达到0.8,则属于高效率灯具。灯具所用的材料影响灯具的效率,如采用高反射比和透射比的材料,则灯具效率提高甚大。效率也取决于灯具的出光口大小,出光口愈大,则效率愈高。此外灯具效率还取决于灯罩和反射器形状的光学设计。

2).灯具的截光角和遮光角 灯具的截光角(γ)是在灯具垂直轴与刚好看不见高亮度发光体的视线之间的夹角。而遮光角是截光角的余角(α)。遮光角愈大,则眩光愈小。

3).配光曲线

灯具在空间各个方向上的光强分布情况,用配光曲线来描述。配光特性是衡量灯具光学特性的重要指标。

在城轨车辆的客室照明实际应用中,一般要求灯具光线均匀,不能有防碍视觉的眩光或闪光。同时照度均匀易于控制。在距地板面0.8米处的照度不低于300lx。

LED灯具特点

与轨道车辆上目前广泛应用日光灯相比,LED灯具的优点是比较明显的,作为新一代的照明光源,较其他照明光源,具有以下优点:光效高、功率因素高、无频闪、无紫外光、启动快、寿命长、抗震性好、绿色环保。

第一,节能,在满足同样要求照度情况下,采用LED灯的功率仅为普通日光灯的1/2~1/3。节省效果是很明显的。这一点在轨道车辆的客室照明系统,将再通过合理的电源选择形式与应急灯设置方式,可以在简化线路与控制方式的同时,并大大减少照明系统辅助功率的需求。

第二,耐震性优良,作为一种新型的固态光源确立了在机动车、轨道交通等车辆中应用的绝对优势,目前汽车除前大灯外几乎都由LED取代。

第三,维护简单寿命长。一般普通日光灯的寿命在5000小时左右,由于轨道车辆的交流供电品质影响,其实际寿命会更低。再加上因镇流器、启辉器等零件的故障造成车辆使用过程的维护保养方面花费在照明系统的费用与时间很大。而LED灯的寿命一般在30000小时,远远长于日光灯的使用寿命,几乎是轨道车辆系统寿命最长的零部件。而且LED灯采用直流恒压供电,受电源品质的影响也小得多。因此采用LED灯具会极大地减轻轨道车辆在照明系统的维护精力,提高整个车辆的可靠性。

第四,无频闪效应,照明品质高。日光灯的闪烁频率为电源频率的两倍。第五,启动过程简单、迅速,并且不会因频繁启动而损害LED的工作寿命。

第六,工作时动态范围大,从3%工作电流~100%工作电流范围内可大幅度调光的特性,易实现智能化调光节能,既节能又延长LED的使用寿命。这在上海地铁3号线等有频繁开关或调节亮度的应用中具有绝对优势。

第七,LED供电电压低,在普通照明中要设置电源转换电路,使灯具结构复杂。但是在轨道车辆上通过合理选择客室照明系统的供电方式,会简化照明系统的电气设计及要求。

第八,LED灯具的制造和使用过程无重金属污染,而且还能再利用,是具有绿色前景的新一代照明灯具。

3.LED照明灯具的结构形式

LED作为轨道车辆的客室照明形式主要有三种方式

第一种方式最为简单,制作外形结构与原来荧光灯外形接口一致的LED灯具,直接替换下原来灯具。需要说明的是由于LED的工作方式与原来荧光类大不相同,电源部分需要重新设计,由于目前市场一般用的超高亮度LED单元,为直流12V或24V。所以这种荧光灯式LED灯在LED单元的背面均设有电源驱动转换电路,将交流220V电源转换成LED照明单元所需的直流电源。对于我们轨道车辆来说,因为车辆系统本身有24V的直流电源,因此可以对客室照明系统的供电电路重新进行设计,直接使用车辆的24V系统供电,取消灯具本身的驱动电路,将会极大增强灯具的可靠性。这种灯管式的LED灯具由于受制于遮光角度问题,难以避免在灯罩背面产生暗区,目前还难以被广泛应用。但是,在已有车辆的节能改造中是优选的易行方案。

图2 荧光灯管式LED灯具

第二种方式是边缘布置LED光源的平板照明形式,这种灯的结构如图3所示,主要有超高亮度LED灯带、散热片、弹性卡簧、平板灯体、封装胶带及电源线组成,一般的平板灯的厚度可以做到8mm或者更小,长度和宽度通过组合几乎不受限制。这种结构的平板灯体将导光板与扩散板设计集于一体,因此不会产生牛顿环等现象。与通过将单个LED光源通过列组成的平面光源(深圳地铁5号线)相比,这种结构的简单,散热性良好,此外还可以很容易地与顶板或侧顶板集成嵌入安装,但是由于结构布置上的限制灯具照度较低,导光板的选材上也必须保证其出光率高,光色纯正,无眩光,无暗区,透光率在90%以上,据报道目前已有可用于LED热管理系统冷却组件的聚碳酸脂导光板。在轨道车辆的客室照明上边缘布置LED光源的平板灯应趋于设计成条状灯具,可以沿客室纵向布置多条灯具,来扩大灯具面积,满足照度要求。

图3 LED平板灯结构示意图

第三种方式是设计LED灯带(国外称Light Bar),安装在原来的灯安装位置。这种结构的灯具进行线状设计,利用LED自身的出光方向性把有效的光投到客室内部,出光的利用率高,散热性好。从根本消除了把几十颗、甚至上百颗LED串、并联集成在很小的面积内,造成散热差,影响光效,抹杀了LED长处的缺点。能充分发挥LED发出的光束集中,不需要反射器聚光的长处,或通过利用平面镜光学系统,在用较少LED发光单元情况下照亮很大的面积,同时LED灯带的截面尺寸可以做得很小,如图4所示。因此原有的安装空间完合可以满足。固定形式可以采用端部或者背部嵌入安装皆可。

图4 LED灯带结构示意图

图5双排布置的灯带结构

5.LED照明灯具设计注意的问题

LED照明灯具以其节能耐振及高可靠性,很适合于在轨道车辆客室照明中的应用,但是LED产品本身也有不可避免的缺点:

1)怕高温,尤其散热不好时,会造成光效低、使用寿命短,光衰快。2)怕超功率运行,那怕是瞬时的超功率也会明显影响使用寿命。

因此,在实际应用过程中,重视设计需求,从产品安全要求(结构、IP等)、性能要求(包括配光要求),EMC(包括EMI和EMS)要求以及用户使用的要求。采取适宜的措施,对照明系统的灯具、布置、电源、控制系统进行分析设计,从整车匹配到紧急照明灯的启用等进行系统规划考虑。杜绝产品缺陷,确保客室照明系统寿命与可靠性。才能体现LED的安全、高效和长寿特性。

虽然传统光源的产热量远高于LED光源,但不会因为高温而降低其光输出,然而LED的光输出会因为结温升高而下降,因此散热问题在LED灯具中设计中至关重要。结合我们轨道车辆的具体情况来看,LED灯具的布置上一般靠近空调风道,因此这对灯具的散热特性有所改善,使散热通道短,热阻小。

电源及控制电路的设计,电源方面要设置合理的恒流源供电电路,提高LED灯具的稳定性,同时进一步加强对照明电源的电流监控手段,尤其在有调光要求的应用情况下,提高的系统可靠性。

6.结论及建议

LED用于轨道车辆的客室照明中,可以减少照明系统的辅助功率需求,通过对照明系统电路的系统的综合设计还能简化整个照明系统的电气线路,同时以其节能、高可靠、长寿命的特性将极大地减少客室照明系统灯具的维护,目前已在深圳5号线,北京14号线等车辆上逐步应用,随着LED照明技术迅速发展,此类产品必将以强大生命力更广泛地应用。

参考文献

〔1〕刘军良

钟碧羿,城轨车辆客室LED照明的特点及灯具选型分析,《电力机车与城轨车辆》,2010年第2期

〔2〕张国富

方宇等,上海地铁3号线列车客室照明节能方案设计,《上海工程技术大学学报》,2011年第1期

〔3〕王声学

吴广宁等,LED在汽车照明系统中的应用,《灯与照明》,2007年第1期

第四篇:浅议新材料在铁道车辆上的推广与应用

浅议新材料在铁道车辆上的推广与应用

摘要:铁道行业与航天、船舶以及汽车工业相比,对材料的开发应用较少。随着第六次火车提速和高速动车组的应用普及,车体结构的轻量化技术是目前研究的重要课题之一。文章对铁道使用的相关材料进行了概述。

一、新材料概述

随着铁道工业对自重问题重要性的认识提高,材料的开发和应用将有大大增加的趋势。主要新材料类型如下:

(一)复合材料

复合材料(如玻璃纤维/聚酯复合材料)在铁路其他零部件中的应用已被用于制造支承铁道电器系统的跨轨信号架。用复合材料制造跨越四根钢轨的信号架技术已经论证可行,而且与相当的钢结构相比,除耐蚀性好外,还能大大减轻自重。

(二)高分子材料

高分子材料是分子量高达1万至数十万的巨大“高分子”聚合而成的材料,塑料、FRP(纤维增强塑料)、弹性体、橡胶、纤维等都属于高分子材料。高分子材料具有质量轻、强度高、减振、绝缘等特性,故在铁道行业获得广泛应用:塑料、FRP具有质量轻、强度高、绝缘等特性;橡胶具有防振、减振、绝缘等特性。

(三)合成材料

合成材料的主要优越性有:减轻重量、减少车内噪音、提高旅客舒适性、安装费用低、防火性能好。特别是使用合成材料后,车辆的加速和减速都加快,减少了转向架和轨道的磨损,降低了能耗,降低了每旅客公里的运营费用。

二、新材料在铁路客运车辆上的应用

现在铁路运输业新材料应用较多,而且正在不断地扩展其应用范围,下面列举几个应用实例:

(一)复合材料在客车中的使用

车辆质量轻和加工方便的优点,也促进了复合材料在车辆内部的广泛应用。实际上,FRP在Inter City旅客列车上占垒车总重量的8%(3t左右)。一般车辆内部配件最常用的复合材料,是由玻璃纤维和阻燃聚酯树脂构成。窗框、卫生窗、通过台墙板以及通过台开敞车顶端,都成功地用玻璃钢制造过,其加工方法有冷压、喷射和手糊,有采用无规则玻璃毡,也有采用半连续玻璃毡。模压成型工艺所需设备费用较高,适用于大规模生产。座椅骨架常常采用片状模塑材料(SMC)模压加工制造。复合材料还被用于制造铁道车辆用的高比强度的夹层结构板中。这种墙板已在航空工业应用多年,其典型结构是由两层FRP板包覆着泡沫或蜂窝芯构成。随着设计师对轻质车辆的优越性认识的不断提高,这种结构在客车上应用得越来越广泛。意大利的ETR500型列车,再次为这种复合材料在现代高速列车上的应用提供了一个极好的范例。该车所有的内墙板、顶板及行李间全部由夹层板制造。这种夹层板结构包括一个由Airex公司提供的Nomex蜂货车用复合材料。

(二)高分子材料在客车中的使用

高分子自润滑材料除用作机车车辆的承载件、车内装饰件等外,还作为减摩耐磨材料用作磨损件。高分子自润滑材料在机车车辆上的应用实例。高分子自润滑材料本身具备的或通过改性获得的良好耐磨性和自润滑性,使它能够在少油或无油的条件下安全运行,因此,高分子自润滑材料在许多场合下完全能取代金属。高分子自润滑材料在机车车辆上取代金属制作磨耗件取得了较好的效果。

心盘垫。美国用超高分子量聚乙烯制作车辆的摇枕心盘垫。德国规定,货车的心盘垫用尼龙

6制作。用塑料制作的整体碗形心盘垫已装用在美国铁路的内燃机车和货车的转向架上。

磨耗板。美国铁路在60年代将尼龙用于导框衬板后,又扩大应用到摇枕磨耗板。美国应用超高分子量聚乙烯制作的车钩钩身托板磨耗板已在货车上运行80万公里,未发生损坏,也不需润滑、维护。

轴承保持架。瑞典SKF公司在客车车辆轴承和机车牵引电机轴承上,采用25%玻璃纤维增强尼龙66制作轴承保持架。德国市郊运输车辆和干线车辆的圆柱滚柱轴承采用尼龙保持架已经过数百万次运用考核,效果令人满意。俄罗斯自1986年在货车轴承上开始装用尼龙保持架,在温升、磨损、可靠性及耐久性等方面进行了长期考验。试验结果表明,这种尼龙保持架在温升、磨损和油脂亲和等方面有优良特性,对提高轴承负荷能力和寿命,特别是润滑作用对延缓轴承事故、保证行车安全具有显著特点。

其他磨耗件。美国芝加哥和西北铁路公司用热塑性塑料制作拉杆村套。这种衬套可用八年。德国规定,各类车辆的车钩导框用尼龙66制作,客车的摇枕横向挡块用尼龙66制作,且使用量都已超过1万件。

(三)合成材料在客车中的使用

利用合成材料来代替传统用材,以求实现机车车辆的轻量化,满足高速列车要求轻、快、稳和安全可靠的要求。

裙板、顶板、墙板和车内隔板。法国双层高速列车TGV2N 采用三聚氰胺树脂代替玻璃钢墙板,重量比玻璃钢更轻而隔热隔声性能和玻璃钢相似。TGV2N 的天花板顶块采用自承式酚醛三聚氟胺制造,每辆车可减轻重量200kg。大西洋TGV的车内与电话间隔板采用聚碳酸醇材料。车体为铝板加玻璃棉。Keller公司为TGV2N 研制的车顶板采用了重量轻、致密、具有优良绝热性能和声学特性的合成材料。这种车顶板集自承载声学特性、热特性、可拆卸性和装饰性于一身,厚度只有大西洋TGV的一半。

裙板要求重量轻、耐腐蚀。德国新型城市间客车和汉堡城市的新型动车、鲁尔工业区的二等大开敞式客车两侧均采用塑料裙板,裙板材料为:聚氯乙烯硬质泡沫塑料芯层和玻璃钢面层。

车窗和车窗玻璃。采用聚碳酸酯板做车窗玻璃材料,热塑性塑料(如ABS树脂)压铸窗框,可收减轻重量、减少维修费用之效。

车门。车门要求重量轻、耐腐蚀、稳定和保养方便。采用玻璃钢能满足这些要求。法国大西洋高速列车TGV~A的内门、行李车车门和厕所门均采用氯磺化聚乙烯制成。

厕所、盥洗室。要求采用尺寸稳定性好、耐腐蚀、易清洗的材料。玻璃钢能满足这些要求。德国联邦铁路新研制的客车卫生间的特点是:易于安装和拆卸,适应不同客车布局需要,节水且便于机械清洗。该卫生间由四部分组成:玻璃纤维增强聚酯壁板,玻璃纤维增强聚酯马桶覆盖层,玻璃纤维增强聚酯盆形地板,塑料贴面壁板。德国联邦铁路的新乘务员车的盥洗室设有玻璃钢马桶。

茶桌、行李柜(架)。法国新的大西洋TGV—A装用一种坚实、轻便的折叠式茶桌。该荼桌由法国Trio—plast公司研制,采用美国杜邦公司的Kevlar复合纤维和浸渗了聚酯树脂的玻璃纤维作增强材料。蜂窝状的聚丙烯为阻燃泡沫填充料。Keviar具有高强度重量比。茶桌厚仅20ram,重量只有铝茶桌的二分之一,但能承受350kg的集中压力。

地板。地板除要求重量轻、阻燃外,还要求耐磨、防滑、耐腐蚀、电绝缘、隔热、隔声。日本在通勤型103、105、201、301系,市郊日本新型地铁车辆的多层地板为铝板夹以聚氨酯泡沫塑料和玻璃纤维。

三、新材料在铁路货运车辆上的应用

(一)复合材料的应用

现在铁道车辆上复合材料的应用,主要局限于机车头部的三维模制外壳及客车内部的一些轻质配件。复合材料之所以在车辆司机室前端外壳上得到了广泛的应用,是因为现代列车外形既要

适应空气动力学的要求,又要满足人们的审美需要,这使得车头的三维外形结构非常复杂,用金属制造起来难度较大,而且费用很高。由于复合材料质量轻、耐冲击等优点越来越突出,复合材料的制造能力也逐渐提高,这些都使得FRP在铁道车辆的自支承结构上得到了广泛的应用。

(二)高分子材料的应用

我国的大连内燃机车研究所和大连塑料研究所进行了玻璃纤维增强尼龙塑料保持架的研究,并在轴承试验台上顺利地进行了20余万公里的模拟高速试验。试验结果表明,各项指标均符合设计要求,温升值及其规律均属正常。由于尼龙保持架的成本约为铜保持架的20%,一旦此种保持架获得推广,其经济效益是非常可观的。仅以1000台东风机车的牵引电机小端轴承为倒,其购置费每年可节约50万元。

(三)合成材料的应用

1.走行机构、连续装置磨耗件。摇枕心盘采用超高分子量的聚烯烃塑料,其耐磨性比其他塑料高15倍。比不锈钢高4倍,价格则与钢相当,聚烯烃心盘垫和车钩托板磨耗板已在货车上运行了80万公里,不需润滑、维护,未发生损坏。

2.车头、司机室。机车头部和司机室若采用金属件。曲面加工比较困难。采用易于造型的玻璃纤维增强塑料制造比较合适。日本著名的东北、上越新干线“光号”车前头部分采用FRP制成,其直径由1400mm逐渐缩小到1300mm。

3.轴承保持架。德国E12O型机车牵引电动机的ECP滚柱轴承采用聚酰胺滚柱隔离圈与金属隔离圈相比。因其外形精密度高,弹性、滑动性能好、重量轻,摩擦力小,所以能显著减少滚柱运动的阻力,降低工作温度和润滑材料的消耗。

4.绝缘材料。日本新干线车辆主电动机采用聚酰亚胺作绝缘材料。主电动机在转向架内的安装位置因车辆种类和轮径不同而在尺寸和重量方面均受到严格限制。随着机车车辆的高速化,高调速运转和动力集中化,迫切要求主电动机大功率化和小型轻量化。采用聚酰亚胺作绝缘材料及该材料系统的绝缘技术,对主电动机的小型轻量化作用极大。东海道新干线MT200型主电动机采用聚酰亚胺作绝缘材料,在相同尺寸和相同重量条件下,功率从185kw 提高到205kw,提高11%。

四、结语

车体结构的轻量化技术是目前研究的重要课题之一,随着高速铁路的迅速发展,材料问题得到越来越多的重视。为了使铁路这项传统运输方式具有更强的竞争力,高速性、舒适性、安全性、方便性、经济性等应当考虑的问题还有很多,在解决这些问题方面材料所起的作用是很大的。因此,对各项高性能,优越性材料的开发研制以及应用有很大的期望。

第五篇:镁合金的优缺点及应用

镁合金的优缺点及应用

镁合金是以镁为原料的高性能轻型结构材料,比重与塑料相近,刚度、强度不亚于铝,具有较强的抗震、防电磁、导热、导电等优异性能,并且可以全回收无污染。镁合金质量轻,其密度只有1.7 kg/m3,是铝的2/3,钢的1/4,强度高于铝合金和钢,比刚度接近铝合金和钢,能够承受一定的负荷,具有良好的铸造性和尺寸稳定性,容易加工,废品率低,具有良好的阻尼系数,减振量大于铝合金和铸铁,非常适合用于汽车的生产中,同时在航空航天、便携电脑、手机、电器、运动器材等领域有着广泛的应用空间。

一、镁合金的优点

1、镁合金密度小但强度高、刚性好。在现有工程用金属中,镁的密度最小,是钢的1/5,锌的1/4,铝的2/3。普通铸造镁合金和铸造铝合金的刚度相同,因而其比强度明显高于铝合金。镁合金的刚度随厚度的增加而成立方比增加,故而镁合金制造刚性好的性能对整体构件的设计十分有利。

2、镁合金的韧性好、减震性强。镁合金在受外力作用时,易产生较大的变形。但当受冲击载荷时,吸收的能量是铝的1.5倍,因此,很适合应于受冲击的零件—车轮;镁合金有很高的阻尼容量,是避免由于振动、噪音而引起工人疲劳等场合的理想材料。

3、镁合金的热容量低、凝固速度快、压铸性能好。镁合金是良好的压铸材料,它具有很好的流动性和快速凝固率,能生产表面精细、棱角清晰的零件,并能防止过量收缩以保证尺寸公差。由于镁合金热容量低,与生产同样的铝合金铸件相比,其生产效率高40%~50%,且铸件尺寸稳定,精度高,表面光洁度好。

4、镁合金具有优良的切削加工性。镁合金是所有常用金属中较容易加工的材料。加工时可采用较高的切削速度和廉价的切削刀具,工具消耗低。而且不需要磨削和抛光,用切削液就可以得到十分光洁的表面。

5、资源丰富。中国是镁资源大国,菱镁矿、白云石矿和盐湖镁资源等优质炼镁原料在中国的储量十分丰富,为中国的原镁工业及“下游”产业的蓬勃发展和不断进步提供了物质保证。进入20世纪90年代以来,随着改革开放和市场经济的不断深入发展,中国镁工业也有了突飞猛进的发展。2000年全国镁产量约为200 kt,几乎占世界镁产量的40%,位居全球第一。2005年,原镁产量达到354 kt,原镁产能接近600 kt,比2004年净增100kt,同比增长32.1%,占全球镁产量的2/3,成为中国继铝、铜、铅、锌之后的第五大有色金属。

二、镁合金的缺点

1、易燃性。镁元素与氧元素具有极大的亲和力,其在高温下甚至还处于固态的情况下,就很容易与空气中的氧气发生反应,放出大量热,且生成的氧化镁导热性能不好,热量不能及时发散,继而促进了氧化反应的进一步进行,形成了恶性循环,而且氧化镁疏松多孔,不能有效阻隔空气中氧的侵入。

2、室温塑性差。镁属于密排六方晶体结构,其在室温下只有1个滑移面和3个滑移系,因此它的塑性变形主要依赖于滑移与孪生的协调动作,但镁晶体中的滑移仅发生在滑移面与拉力方向相倾斜的某些晶体内,因而滑移的过程将会受到极大地限制,而且在这种取向下孪生很难发生,所以晶体很快就会出现脆性断裂。在温度超过250℃时,镁晶体中的附加滑移面开始起作用,塑性变形能力变强。

3、耐蚀性差。镁具有很高的化学活泼性,其平衡电位很低,与不同类金属接触时易发生电偶腐蚀,并充当阳极作用。在室温下,镁表面与空气中的氧发生反应,形成氧化镁薄膜,但由于氧化镁薄膜比较疏松,其致密系数仅为0.79,即镁氧化后生成氧化镁的体积缩小,因此耐蚀性很差。

三、镁合金应用及发展现状

全球镁合金的需求年均增长达到10% 左右,西方镁合金的市场需求增长率达到了15% 以上,未来镁合金的市场需求将呈现快速增长的趋势。镁合金主要应用于汽车、3C、航空航天领域,其中应用于汽车产业(70%)、3C行业(20%)、军事和航空航天(10%)。

1、国外镁合金应用发展现状

国外对于镁及其合金的研究开发较早,到目前镁及其合金材料的开发应用已进入相对比较成熟的阶段。其中北美是目前镁及其合金材料用量最多的地区,而欧洲镁及镁合金产业的发展速度也增长迅速。但比较来看,国外不同国家和地区对于镁及其合金材料的开发应用仍然存在较大的差异,其中表现突出的仍然集中在德国、俄罗斯、美国、加拿大、日本等对镁合金研究开发较早的国家。具体应用主要集中在以下几个方面:

镁合金在汽车工业中的应用

镁合金在汽车上的应用已经有许多年的历史,从20 世纪20年代开始,镁制零件就开始在赛车上应用。到了20 世纪90 年代,镁合金发展迅速,各国相继出台了镁研究计划,开展了大型的“产、学、研”联合攻关项目和计划。德国政府制订了一个投资2500 万德国马克的镁合金研究开发计划,主要研究压铸合金工艺,快速原型化与工具制造技术和半固态成型工艺,以提高德国在镁合金应用方面的能力;1993 年欧洲汽车制造商提出“3 L 汽油轿车”的新概念,美国也提出了“PNGV”(新一代交通工具)的合作计划,其目标是生产出消费者可承受的每百公里耗油3 L 的轿车,且整车至少80%以上的部件可以回收,这些要求迫使汽车制造商采用更多高新技术,生产重量轻、耗油少、符合环保要求的新一代汽车,因此除汽车轮毂外,镁合金还被广泛应用于增压器转子、发动机传动箱体、风扇、发动机零件、整体座椅系统、仪表板整体框架、方向盘、草坪机底盘等其他零部件。

国际国内对于镁合金在汽车上的应用的研究不断发展,应用领域不断扩大,应用的量也相应增加。目前全球汽车平均每辆用镁合金4~5 kg,根据西方汽车工业界的展望,在未来二十年里,平均每辆汽车上的镁合金用量将达到100~120 kg,将比目前增长50 倍以上,届时仅用于汽车的镁合金将超过500 万t,约为目前全球镁年生产量(80 万t)的6 倍。相较于铝合金、在成熟产品上镁合金将具备更高的性价比:如果按原镁16000 元/t 和电解铝13000 元/t 的行业平均成本分析,由于镁合金比重较小(镁比重为1.7kg/m3,铝比重为2.7 kg/m3),相同体积的镁合金成本较铝合金低30%。

图1 汽车中各种原材料使用比例

镁合金在电子领域中的应用

在3C 产品领域,以笔记本电脑、手机和数码相机为代表的3C 产品朝着轻、薄、短、小方向发展的推动下,镁合金的应用得到了持续增长。镁合金与传统3C产品使用的外壳材料相比具有轻量化、刚性高、减震性好、无磁、散热、可回收等优点;特别是应用于3C 产品外壳上其外观及触摸质感极佳,已成为设计和消费的流行趋势。

与塑料相比镁合金具有良好的导热性、刚性,特别是极其易于回收。一旦镁合金的应用进入良性循环之后,其废料不仅不会危害环境,其优良的再生性也会致使镁资源得到充分利用,也使镁合金使用成本更进一步的降低。不仅如此,镁合金还具有非常好的压铸工艺性能,采用压铸的方法制造的镁合金3C 类产品外壳,厚度最薄可达0.4 mm,并且强度和刚度都极为优异。以耐冲撞性为例,其耐撞强度及吸振性均远较塑料佳,尤其是相同抗力下厚度仅塑料的1/3,且具良好的散热性及防电磁波干扰的性能。

以上特性使镁合金在3C 产业(计算机、通讯、消费电子)及电动工具,运动器材等方面的应用,已成为一个新的市场热点,如笔记本计算机、掌上计算机外壳、照相机外壳、摄相机外壳、投影录像机外壳、电视机、音响外壳等,而且其应用领域还在迅速扩大。

镁合金在国防领域及其他领域的应用

镁合金由于质量轻而被广泛地应用于国防和航空航天产品,其应用包括飞行器机身及其发动机、起落轮、火箭、导弹及其发射架、卫星探测器、旋转罗盘、电磁套罩、雷达和电子装置以及地面控制装置等。如MD600 直升机的主传动系统使用镁合金后,水平旋翼系统的功能得到有效提高。太空飞船和卫星部件使用镁合金后能适应太空运行的特殊环境,诸如由空气动力学加热引起的温度极限、臭氧侵蚀、短波电磁辐射和高能粒子(电子、质子和小陨石)的冲击等。

镁合金在航空、航天较早得到应用, 在兵器上也得到一定应用,最早应用于军事工业领域是在1916年,被用于制造77mm炮弹引线。国外一些发达国家由于资源原因,对镁合金在兵器上的应用还持谨慎态度。

2、国内镁合金应用发展现状

我国的镁储量世界第一,我国已探明的白云石矿资源总量为40 亿t,青海柴达木盆地的33 个盐湖镁盐储量为47.5 亿t,而且储存形式为非常有利于开采的高纯度氯化镁。我国的菱镁矿资源总量31.45 亿t,符合炼镁要求的一、二级矿占78%,已探明储量可开采年限至少有1000 年之久。而大海则是最大的“镁矿”,海水中含镁约2100 亿t,其中每千克海水中约含3.8 g 氯化镁,可以预见的将来中国绝不会缺镁资源。而与镁不同的是中国的铝土矿资源非常贫乏,中国国内铝土矿资源仅能供应中国生产10 年,目前60% 的铝土矿资源依赖进口,发展镁合金产业符合中国的资源战略。

我国对镁合金的开发利用也非常重视,科技部、国家自然科学基金委员会等部门针对镁合金开发相继出台了各种研究计划,加深、加快对镁合金材料的应用与开发研究。2000 年3 月,科技部启动了“镁合金开发应用及产业化”的前期战略研究,全国共有4 个研究所、7 所高校、20 多家企业直接参与了“镁合金开发应用及产业化”项目的实施。该项目开发的新型水氯镁石脱水制备无水氯化镁的工程技术在国际上处于较高水平;开发的皮江法炼镁工艺技术不断提高,有效节约了资源,提高了生产效率,减少了污染;开发的高品质镁合金短流程工艺,降低了成本;开发的具有自主知识产权的10 款镁合金冷、热室压铸机及配套设备,国内市场占有率达到50%,基本满足了国内镁合金压铸生产需求。目前该项目已取得一些阶段性成果:解决了材料研究、产品设计、模具制造、压铸成型到表面防腐等系列关键工程技术。成功开发应用了25 种镁合金摩托车零件和52 种镁合金汽车零件,分别装车90 万辆和54.65 万辆,微型汽车单车最高用镁零件9 kg,轿车最高用镁零件8.17 kg ;同时开发了14 类镁合金3C 产品零件和8 种列车制动器零件,为进一步扩大应用打下了良好基础。同时建立了从镁合金前沿高科技研发到产业化技术开发的研发体系,突破了一批前沿核心技术和产业化关键技术,培育组建了十几家有关镁合金及制品的股份制公司,建立了一批镁合金产业化基地,启动了镁合金标准体系建设工作,并已完成一批标准的制定。

镁合金材料作为21世纪新型绿色环保结构材料,将在实现产品轻量化技术领域起到越来越重要的作用,西方工业发达国家已将镁合金材料作为重要的战略物资进行研究开发,对其相关材料和制造技术的研究实行严格保密。而我国是镁资源最丰富的国家,可利用的镁资源占世界贮量的70%,是世界上原镁生产和出口量最大的国家。但是,我国镁产品和镁合金加工技术水平较低,属于典型的以牺牲资源和环境为代价的原料出口性产业。开展兵器用镁合金材料及镁合金零件的研发,争取形成具有自主知识产权的镁合金在兵器上应用的集成技术,即可加快和推动国防工业科技技术进步,使我国武器研制和生产达到国外同等先进技术水平,同时,也为镁合金在民品上的应用提供先进制造技术,拓宽镁合金的应用领域,实现军民品双向互动,带动镁合金产业发展,将我国的镁资源优势转化为镁技术优势和产业优势都具有重大战略意义。

下载液力传动在车辆上应用的优缺点word格式文档
下载液力传动在车辆上应用的优缺点.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    各类接地系统优缺点及其应用5篇

    各类接地系统优缺点及其应用 系统接地型式以拉丁字母作代号,低压系统接地型式以拉丁字母作代号,其意义如下: 第一个字母表示电源端与地的关系: T-电源端有一点直接接地; I-电源端所......

    信息技术在化学教学中应用的优缺点

    信息技术在化学教学中应用的优缺点 一、 多媒体教学与传统教学法相比所具有的优势 ..................................................................... 1 1、 激发学......

    浅谈计算机网络在教育教学应用中的优缺点

    《浅谈计算机网络在现代教育教学应用中的优缺点》 作者:吴金来 单位:商水县第一职业中专 电话:*** E-mail:wujinlai390@163.com 浅谈计算机网络在现代教育教学应用中......

    谐波齿轮减速机优缺点及应用

    谐波齿轮减速机优缺点及应用 作者:http:// 由于谐波齿轮减速机的构造和工作原理与普通的齿轮减速机友很大的差异,决定其在应用上有所不同,下面列出谐波齿轮减速机的优缺点及应......

    信息技术在化学教学中应用的优缺点[5篇模版]

    信息技术在化学教学中应用的优缺点 一、 多媒体教学与传统教学法相比所具有的优势 1、 激发学生的学习兴趣 2、 教学内容趋于生动化、形象化 3、 增大教学信息量 4、 运用多......

    油田高分子材料3PE在管道防腐中应用及优缺点

    三层PE优缺点及其应用 ——石油化工高分子新材料 一、三层PE在国内的使用现状 当前石油、天然气管线外防腐涂层类型大致有石油沥青、环氧粉末、环氧煤焦瓷漆、聚乙烯胶粘带......

    PPT多媒体教学手段在教学应用中的优缺点浅析

    PPT多媒体教学手段在教学应用中的优缺点浅析 【摘 要】在我国,(Powerpoint)PPT多媒体信息技术是一门进一二十年兴起的一种教学辅助手段,本文就大中专教育信息化潮流下,PPT多媒体......

    现代信息技术在历史教学中应用的优缺点

    现代信息技术在历史教学中应用的优缺点 长白山保护开发区管委会池北区第二中 刘晔华 【摘要】: 现代信息技术的迅猛发展,其具有新颖性、形象性、交互性、灵活性,可以大大提高......