心电信号分析处理课程设计 2

时间:2019-05-12 14:29:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《心电信号分析处理课程设计 2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《心电信号分析处理课程设计 2》。

第一篇:心电信号分析处理课程设计 2

设计原理

1.信号频谱的含义。任一信号,只要符合一定条件都可以分解为一系列不同频率的正弦(或余弦)分量的线性叠加;每一个特定频率的正弦分量都有它相应的幅度和相位。因此对于一个信号,它的各分量的幅度和相位分别是频率的函数;或者合起来,它的复数幅度是频率的函数。这种幅度(或相位)关于频率的函数,就称为信号的频谱。把信号频谱,即幅度(或相位)关于频率的变化关系用图来表示,就形成频谱图。从频谱图上,我们既可以看到这个周期信号由哪些频率的谐波分量(正弦分量)组成;也可以看到,对应各个谐波分量的幅度,它们的相对大小就反映了各谐波分量对信号贡献的大小或所占比重的大小。

2.处理对象分析。待处理对象为一段心电信号(ecg.txt),选取抽样频率为fs=360。首先画出其时域波形图,对此信号求傅里叶变化,利用MATLAB绘制出其频谱图。然后按要求选取合适的噪声信号(x1=0.03sin(2*pi*50*p)),把该噪声信号和上述心电信号进行叠加,并求出叠加后的信号的时域波形和频谱图(幅频)。

3.滤波器设计原理。用窗函数法设计FIR滤波器(具有线性相位的性质,就是不同频率分量的信号经过fir滤波器后他们的时间差不变。)时,首先根据技术指标要求,选取合适的阶数 N 和窗函数的类型 w(n)(布莱克曼窗),使其幅频特性逼近理想滤波器幅频特性。其次,因为理想滤波器的 hd(n)是无限长的,所以需要对 hd(n)进行截断。简而言之,用窗函数法设计FIR滤波器是在时域进行的,先用傅里叶变换求出理想滤波器单位抽样相应hd(n),然后加时间窗w(n)对其进行截断,以求得FIR 滤波器的单位抽样响应h(n)。由于噪声信号的频率为50Hz,故可选取低通滤波器实现对其滤波,通带阻带截止频率分别取为40Hz,45Hz。

4.滤波器对信号的滤波分析。用3中设计的滤波器对加噪声后的信号进行滤波处理,低于阻带截止频率的信号可以通过,从而使得50Hz的噪声信号被滤除。

第二篇:课题三 心电信号分析系统的设计任务书--LABVIEW(40人)

课题三 心电信号分析系统的设计(LabVIEW)

一、本课题的目的本设计课题主要研究数字心电信号的初步分析方法及滤波器的应用。通过完成本课题的设计,拟主要达到以下几个目的:

1.了解基于LabVIEW虚拟仪器的特点和使用方法,熟悉采用LabVIEW进行仿真的方法。

2.了解人体心电信号的时域特征和频谱特征。

3.进一步了解数字信号的分析方法;

4.通过应用具体的滤波器进一步加深滤波器理解。

5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。

二、课题任务

利用labvIEW设计一个基于虚拟仪器的简单的心电信号分析系统。其基本功能包括:输入原始心电信号,对其做一定的数字信号处理,进行时域显示、分析及频谱分析。根据心电信号的具体特性参数设计系统各功能模块的源程序,进行调试。

1.对原始数字心电信号进行读取,由数字信号数据绘制出其时域波形。

2.对数字信号数据做一次线性插值,使其成为均匀数字信号,以便后面的信号分析。

3.根据心电信号的频域特征(自己查阅相关资料),设计相应的低通、带通、高通滤波器。

4.编程绘制进行信号处理前后的频谱,做频谱分析,得出相关结论。

5.对系统进行综合测试,整理数据,撰写设计报告。

三、主要设备和软件

1.PC机一台。

2.LabvIEW软件一套,要求最低版本8.20。

第三篇:数字信号处理课程设计..

课程设计报告

课程名称: 数字信号处理 课题名称: 语音信号的处理与滤波

姓 名: 学 号: 院 系: 专业班级: 指导教师: 完成日期: 2013年7月2日

目录

第1部分 课程设计报告………………………………………3 一.设计目的……………………………………………3 二.设计内容……………………………………………3 三.设计原理……………………………………………3 四.具体实现……………………………………………5 1.录制一段声音…………………………………5 2.巴特沃斯滤波器的设计………………………8 3.将声音信号送入滤波器滤波…………………13 4.语音信号的回放………………………………19 5.男女语音信号的频谱分析……………………19 6.噪声的叠加和滤除……………………………22 五. 结果分析……………………………………………27 第2部分 课程设计总结………………………………28 一. 参考文献……………………………………………28

第1部分 课程设计报告

一.设计目的

综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。

二.设计内容

录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换法设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;换一个与你性别相异的人录制同样一段语音内容,分析两段内容相同的语音信号频谱之间有什么特点;再录制一段同样长时间的背景噪声叠加到你的语音信号中,分析叠加前后信号频谱的变化,设计一个合适的滤波器,能够把该噪声滤除;

三.设计原理

1.在Matlab软件平台下,利用函数wavrecord(),wavwrite(),wavread(),wavplay()对语音信号进行录制,存储,读取,回放。

2.用y=fft(x)对采集的信号做快速傅立叶变换,并用[h1,w]=freqz(h)进行DTFT变换。

3.掌握FIR DF线性相位的概念,即线性相位对h(n)、H()及零点的约束,了解四种FIR DF的频响特点。

4.在Matlab中,FIR滤波器利用函数fftfilt对信号进行滤波。

5.抽样定理

连续信号经理想抽样后时域、频域发生的变化(理想抽样信号与连续信号频谱之间的关系)

理想抽样信号能否代表原始信号、如何不失真地还原信号即由离散信号恢复连续信号的条件(抽样定理)

理想采样过程描述: 时域描述:

ˆa(t)xa(t)T(t)xa(t)(tnT)xa(nT)(tnT)xnnT(t)频域描述:利用傅氏变换的性质,时域相乘频域卷积,若

n(tnT)ˆa(t)Xa(j)xXa(j)xa(t)T(j)T(t)

则有

ˆ(j)1X(j)(j)XaaT2121ˆXa(j)Xa(jjk)Xa(jjks)TkTTkˆ(j)与X(j)的关系:理想抽样信号的频谱是连续信号频谱的Xaa

周期延拓,重复周期为s(采样角频率)。如果:

X(j)Xa(j)a0s/2s/2即连续信号是带限的,且信号最高频率不超过抽样频率的二分之一,则可不失真恢复。

奈奎斯特采样定理:要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的两倍:s2h 或 fs2fh

四.具体实现

1.录制一段声音

1.1录制并分析

在MATLAB中用wavrecord、wavread、wavplay、wavwrite对声音进行录制、读取、回放、存储。

程序如下:

Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号 fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令

wavplay(x,Fs);%按任意键播放语音信号

wavwrite(x,Fs,'C:UsersacerDesktop数字信号sound.wav');%存储语音信号

N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(2);subplot(2,1,1);plot(x);%录制信号的时域波形 title('原始信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(x);%快速傅立叶变换 figure(2);subplot(2,1,2);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 title('原始信号的频谱图');%加标题

grid;%加网格

图1.1 原始信号的时域与频谱图

1.2滤除无效点

针对实际发出声音落后录制动作半拍的现象,如何拔除对无效点的采样的问题: 出现这种现象的原因主要是录音开始时,人的反应慢了半拍,导致出现了一些无效点,而后而出现的无效的点,主要是已经没有声音的动作,先读取声音出来,将原始语音信号时域波形图画出来,根据己得到的信号,可以在第二次读取声音的后面设定采样点,取好有效点,画出滤除无效点后的语音信号时域波形图,对比可以看出。这样就可以解决这个问题。

x=wavread('C:UsersacerDesktop数字信号sound.wav', 7

[4000,24000]);%从4000点截取到24000结束 plot(x);%画出截取后的时域图形 title('截取后的声音时域图形');%标题 xlabel('频率');ylabel('振幅');grid;%画网格

图1.2 去除无效点

2.巴特沃斯滤波器的设计

2.1设计巴特沃思低通滤波器

MATLAB程序如下。滤波器图如图3.3所示。

%低通滤波

fp=1000;fs=1200;Fs=22050;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'s');[Bz,Az]=bilinear(B,A,Fs1);figure(1);[h,w]=freqz(Bz,Az,512,Fs1*22050);plot(w,abs(h));title('巴特沃斯低通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');gridon;9

图2.1 巴特沃思低通滤波器

2.2设计巴特沃思高通滤波器

MATLAB程序如下。滤波器图如图3.5所示。%高通滤波

fp=4800;fs=5000;Fs=22050;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;T=1;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);10

[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'high','s');[Bz,Az]=bilinear(B,A,Fs1);figure(1);[h,w]=freqz(Bz,Az,512,Fs1*22050);plot(w,abs(h));title('巴特沃斯高通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');grid on;

图2.2巴特沃思高通滤波器

2.3设计巴特沃思带通滤波器

MATLAB程序如下。滤波器图如图3.7所示。%带通滤波

fp=[1200,3000];fs=[1000,3200];Fs=8000;rp=1;rs=100;wp=2*pi*fp/Fs;ws=2*pi*fs/Fs;T=1;Fs1=1;wap=2*tan(wp/2);was=2*tan(ws/2);[N,wc]=buttord(wap,was,rp,rs,'s');[B,A]=butter(N,wc,'s');[Bz,Az]=bilinear(B,A,Fs1);figure(4);[h,w]=freqz(Bz,Az,512,Fs1*1000);plot(w,abs(h));title('巴特沃斯带通滤波器');xlabel('频率(HZ)');ylabel('耗损(dB)');grid on;12

图2.3巴特沃思带通滤波器

3.将声音信号送入滤波器滤波

x=wavread('C:UsersacerDesktop数字信号sound.wav');%播放原始信号

wavplay(x,fs);%播放原始信号 N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(4);subplot(4,2,1);plot(x);%录制信号的时域波形

title('原始信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(x);%快速傅立叶变换 subplot(4,2,3);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 title('原始信号的频谱图');%加标题 grid;%加网格

3.1低通滤波器滤波 fs=8000;beta=10.056;wc=2*pi*1000/fs;ws=2*pi*1200/fs;width=ws-wc;wn=(ws+wc)/2;n=ceil(12.8*pi /width);h=fir1(n,wn/pi,'band',kaiser(n+1,beta));[h1,w]=freqz(h);

ys=fftfilt(h,x);%信号送入滤波器滤波,ys为输出 fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 figure(4);subplot(4,2,2);%在四行两列的第二个窗口显示图形 plot(ys);%信号的时域波形

title('低通滤波后信号的时域波形');%加标题 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 grid;%网格

subplot(4,2,4);%在四行两列的第四个窗口显示图形 plot(f, abs(fftwave(n1)));%绘制模值 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义

title('低通滤波器滤波后信号的频谱图');%标题 grid;%加网格

wavplay(ys,8000);%播放滤波后信号

3.2高通滤波器滤波 fs=8000;beta=10.056;ws=2*5000/fs;wc=2*4800/fs;

width=ws-wc;wn=(ws+wc)/2;n=ceil(12.8*pi/width);h=fir1(n,wn/pi, 'high',kaiser(n+2,beta));[h1,w]=freqz(h);ys=fftfilt(h,x);%将信号送入高通滤波器滤波 subplot(4,2,5);%在四行两列的第五个窗口显示图形 plot(ys);%信号的时域波形 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 title('高通滤波后信号的时域波形');%标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%网格

fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 subplot(4,2,7);%在四行两列的第七个窗口显示图形 plot(f,abs(fftwave(n1)));%绘制模值 axis([0 1 0 50]);xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义

title('高通滤波器滤波后信号的频谱图');%标题 grid;%加网格

wavplay(ys,8000);%播放滤波后信号

3.3带通滤波器 fs=8000;beta=10.056;wc1=2*pi*1000/fs;wc2=2*pi*3200/fs;ws1=2*pi*1200/fs;ws2=2*pi*3000/fs;width=ws1-wc1;wn1=(ws1+wc1)/2;wn2=(ws2+wc2)/2;wn=[wn1 wn2];n=ceil(12.8/width*pi);h=fir1(n,wn/pi,'band',kaiser(n+1,beta));[h1,w]=freqz(h);ys1= fftfilt(h,x);%将信号送入高通滤波器滤波 figure(4);subplot(4,2,6);%在四行两列的第六个窗口显示图形 plot(ys1);%绘制后信号的时域的图形 title('带通滤波后信号的时域波形');%加标题 xlabel('频率w/pi');ylabel('幅值/A');%显示纵坐标表示的意义 grid;%网格

fftwave=fft(ys1);%对滤波后的信号进行快速傅立叶变换 subplot(4,2,8);%在四行两列的第八个窗口显示图形

plot(f, abs(fftwave(n1)));%绘制模值 axis([0 1 0 50]);xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 title('带通滤波器滤波后信号的频谱图');%加标题 grid;%网格

wavplay(ys1,8000);%播放滤波后信号 图形如下:

原始信号的时域波形幅值/A0-1012x 10原始信号的频谱图34幅值/A1低通滤波后信号的时域波形0.50-0.5012频率w/pi3400.51频率w/pi高通滤波后信号的时域波形幅值/A0幅值/A0幅值/Ax 10高通滤波器滤波后信号的频谱图5012频率w/pi34幅值/A0.20-0.2幅值/A2001000x 10低通滤波器滤波后信号的频谱图200100000.51频率w/pi带通滤波后信号的时域波形0.50-0.501234频率w/pix 10带通滤波器滤波后信号的频谱图50幅值 00.5频率w/pi1000.5频率w/pi1

分析:三个滤波器滤波后的声音与原来的声音都发生了变化。其中低

通的滤波后与原来声音没有很大的变化,其它两个都又明显的变化

4.语音信号的回放

sound(xlow,Fs,bits);%在Matlab中,函数sound可以对声音进行回放,其调用格式: sound(xhigh, Fs,bits);%sound(x, Fs, bits);sound(xdaitong, Fs,bits);5.男女语音信号的频谱分析

5.1 录制一段异性的声音进行频谱分析

Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号 fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令 wavplay(x,Fs);%按任意键播放语音信号

wavwrite(x,Fs,'C:UsersacerDesktop数字信号sound2.wav');%存储语音信号

5.2 分析男女声音的频谱

x=wavread(' C:UsersacerDesktop数字信号sound2.wav ');%播放原始信号,解决落后半拍

wavplay(x,fs);%播放原始信号 N=length(x);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;

f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(1);subplot(2,2,1);plot(x);%录制信号的时域波形

title('原始女生信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(x);%快速傅立叶变换 subplot(2,2,2);plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始女生信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 grid;%加网格

[y,fs,bits]=wavread(' C:UsersacerDesktop数字信号sound.wav ');% 对语音信号进行采样

wavplay(y,fs);%播放原始信号 N=length(y);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 subplot(2,2,3);plot(y);%录制信号的时域波形

title('原始男生信号的时域波形');%加标题 ylabel('幅值/A');%显示纵坐标的表示意义 grid;%加网格

y0=fft(y);%快速傅立叶变换

subplot(2,2,4);%在四行两列的第三个窗口显示图形 plot(f,abs(y0(n1)));%原始信号的频谱图 title('原始男生信号的频谱图');%加标题 xlabel('频率w/pi');%显示横坐标表示的意义 ylabel('幅值 ');%显示纵坐标表示的意义 grid;%加网格

5.3男女声音的频谱图

原始女生信号的时域波形0.50-0.5-1150100原始女生信号的频谱图幅值/A幅值 012345000x 10原始男生信号的时域波形0.50.5频率w/pi原始男生信号的频谱图1300200幅值/A0幅值 012x 1034100-0.5000.5频率w/pi1

图5.3男女声音信号波形与频谱对比

分析:就时域图看,男生的时域图中振幅比女生的高,对于频谱图女生的高频成分比较多

6.噪声的叠加和滤除

6.1录制一段背景噪声

Fs=8000;%抽样频率 time=3;%录音时间 fprintf('按Enter键录音%ds',time);%文字提示 pause;%暂停命令 fprintf('录音中......');x=wavrecord(time*Fs,Fs,'double');%录制语音信号

fprintf('录音结束');%文字提示 fprintf('按Enter键回放录音');pause;%暂停命令 wavplay(x,Fs);%按任意键播放语音信号 wavwrite(x,Fs,'C:UsersacerDesktop数字信号噪音.wav');%存储语音信号

6.2 对噪声进行频谱的分析

[x1,fs,bits]=wavread(' C:UsersacerDesktop数字信号噪音.wav ');%对语音信号进行采样

wavplay(x1,fs);%播放噪声信号 N=length(x1);%返回采样点数 df=fs/N;%采样间隔

n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(5);subplot(3,2,1);plot(x1);%信号的时域波形 title('噪声信号的时域波形');grid;ylabel('幅值/A');y0=fft(x1);%快速傅立叶变换

subplot(3,2,2);plot(f,abs(y0(n1)));%噪声信号的频谱图 ylabel('幅值');title('噪声信号的频谱图');

6.3原始信号与噪音的叠加

fs=8000;[x,fs,bits]=wavread(' C:UsersacerDesktop数字信号sound.wav ');%对录入信号进行采样

[x1,fs,bits]=wavread(' C:UsersacerDesktop数字信号噪音.wav ');%对噪声信号进行采样

yy=x+x1;%将两个声音叠加

6.4叠加信号的频谱分析:

wavplay(yy,fs);%播放叠加后信号 N=length(yy);%返回采样点数 df=fs/N;%采样间隔 n1=1:N/2;f=[(n1-1)*(2*pi/N)]/pi;%频带宽度 figure(5);subplot(3,2,3);plot(yy,'LineWidth',2);%信号的时域波形

title('叠加信号的时域波形');xlabel('时间/t');ylabel('幅值/A');grid;y0=fft(yy);%快速傅立叶变换 subplot(3,2,4);plot(f,abs(y0(n1)));%叠加信号的频谱图 title('叠加信号的频谱图');xlabel('频率w/pi');ylabel('幅值/db');grid;

6.5 设计一个合适的滤波器将噪声滤除 fs=18000;%采样频率 Wp=2*1000/fs;%通带截至频率 Ws=2*2000/fs;%阻带截至频率 Rp=1;%最大衰减 Rs=100;%最小衰减

[N,Wn]=buttord(Wp,Ws,Rp,Rs);%buttord函数(n为阶数,Wn为截至频率)

[num,den]=butter(N,Wn);%butter函数(num为分子系数den为分母系数)

[h,w]=freqz(num,den);%DTFT变换

ys=filter(num,den,yy);%信号送入滤波器滤波,ys为输出 fftwave=fft(ys);%将滤波后的语音信号进行快速傅立叶变换 figure(5);subplot(3,2,5);plot(ys);%信号的时域波形

title('低通滤波后信号的时域波形');%加标题 ylabel('幅值/A');%显示标表示的意义 grid;%网格 subplot(3,2,6);plot(f, abs(fftwave(n1)));%绘制模值 title('低通滤波器滤波后信号的频谱图');%标题 xlabel('频率w/pi');ylabel('幅值/A');%显示标表示的意义 grid;%加网格

wavplay(ys,8000);%播放滤波后信号 grid;图形如下:

噪声信号的时域波形1100噪声信号的频谱图幅值/A0-1幅值0123450000.5叠加信号的频谱图1x 10叠加信号的时域波形10-101时间/t2200幅值/db34幅值/A100000.5频率w/pi1x 10低通滤波后信号的时域波形0.5低通滤波器滤波后信号的频谱图200幅值/A0-0.5幅值/A012x 1034100000.5频率w/pi1

图6.1噪音的叠加与滤除前后频谱对比

7.结果分析

1.录制刚开始时,常会出现实际发出声音落后录制动作半拍,可在[x,fs,bits]=wavread('d:matlavworkwomamaaiwo.wav')加 窗[x,fs,bits]=wavread('d:matlavworkwomamaaiwo.wav',[100 10000]),窗的长度可根据需要定义。

2.语音信号通过低通滤波器后,把高频滤除,声音变得比较低沉。当通过高通滤波器后,把低频滤除,声音变得比较就尖锐。通过带通滤波器后,声音比较适中。

3.通过观察男生和女生图像知:时域图的振幅大小与性别无关,只与说话人音量大小有关,音量越大,振幅越大。频率图中,女生高 27

频成分较多。

4.叠加噪声后,噪声与原信号明显区分,但通过低通滤波器后,噪声没有滤除,信号产生失真。原因可能为噪声与信号频率相近无法滤除。

第2部分 课程设计总结

通过本次课程设计,使我们对数字信号处理相关知识有了更深刻的理解,尤其是对各种滤波器的设计。在设计的过程中遇到了很多问题,刚刚开始时曾天真的认为只要把以前的程序改了参数就可以用了,可是问题没有我想象中的那么简单,单纯的搬程序是不能解决问题的。通过查阅资料和请教同学收获了很多以前不懂的理论知识。再利用所学的操作,发现所写的程序还是没有能够运行,通过不断地调试,运行,最终得出了需要的结果。整个过程中学到了很多新的知识,特别是对Matlab的使用终于有些了解。在以后的学习中还需要深入了解这方面的内容。在这次的课程设计中让我体会最深的是:知识来不得半点的马虎。也认识到自己的不足,以后要进一步学习。

八.参考文献

[1]数字信号处理教程(第三版)程佩青 清华大学出版社 [2]MATLAB信号处理 刘波 文忠 电子工业出版社 [3]MATLAB7.1及其在信号处理中的应用 王宏 清华大学出版社

[4]MATLAB基础与编程入门 张威 西安电子科技大学出版社

[5] 数字信号处理及其MATLAB实验 赵红怡 张常 化学工业出版社

[6]MATLAB信号处理详解 陈亚勇等 人民邮电出版社 [7] 数字信号处理

钱同惠 机械工业出版社 29

第四篇:数字信号处理课程设计

目 录

摘要...........................................................................................................................................1 1 绪论..............................................................................................................................................2

1.1 DSP系统特点和设计基本原则......................................................................................2 1.2 国内外研究动态.............................................................................................................2 2系统设计........................................................................................................................................3 3硬件设计........................................................................................................................................5

3.1 硬件结构...........................................................................................................................5 3.2 硬件电路设计...................................................................................................................7

3.2.1 总输入电路...........................................................................................................7 3.2.2 总输出电路...........................................................................................................7 3.2.3 语音输入电路.......................................................................................................9 3.2.4 语音输出电路.......................................................................................................9 实验结果及分析.........................................................................................................................10 4.1 实验结果.........................................................................................................................10 4.2 实验分析.........................................................................................................................12 5 总结与心得体会.........................................................................................................................13 参考文献.........................................................................................................................................14 致谢................................................................................................................................................15

摘要

基于DSP的语音信号处理系统,该系统采用TMS320VC5509作为主处理器,TLV320AIC23B作为音频芯片,在此基础上完成系统硬件平台的搭建和软件设计,从而实现对语音信号的采集、滤波和回放功能,它可作为语音信号处理的通用平台。

语音是人类相互之间进行交流时使用最多、最自然、最基本也是最重要的信息载体。在高度信息化的今天,语音信号处理是信息高速公路、多媒体技术、办公自动化、现代通信及智能系统等新兴领域应用的核心技术之一。通常这些信号处理的过程要满足实时且快速高效的要求,随着DSP技术的发展,以DSP为内核的设备越来越多,为语音信号的处理提供了良好的平台。本文设计了一个基于TMS320VC5509定点的语音信号处理系统,实现对语音信号的采集、处理与回放等功能,为今后复杂的语音信号处理算法的研究和实时实现提供一个通用平台。

关键词:语音处理;DSP;TMS320VC5509;TLV320AIC23B

1 绪论

语音是人类相互间所进行的通信的最自然和最简洁方便的形式,语音通信是一种理想的人机通信方式。语音通信的研究涉及到人工智能、数字信号处理、微型计算机技术、语言声学、语言学等许多领域,所以说语音的通信是一个多学科的综合研究领域,其研究成果具有重要的学术价值。另外通过语音来传递信息是人类最重要的、最有效、最常用的交换信息的形式。语言是人类特有的功能,声音是人类常用的工具,是相互传递信息的主要手段。同时也是众构成思想交流和感情沟通的最主要的途径。

1.1 DSP系统特点和设计基本原则

DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

1.2 国内外研究动态

语音信号处理作为一个重要的研究领域,已经有很长的研究历史。但是它的快速发展可以说是从1940年前后Dudley的声码器和Potter等人的可见语音开始的;20世纪60年代中期形成的一系列数字信号处理的理念和技术基础;到了80年代,由于矢量量化、隐马尔可夫模型和人工神经网络等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工神经网络的结合成为研究的热点。另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。

在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动 通信、IP电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。因此,语音编码一直是通信和信号处理的研究热点,并其取得了惊人的进展,目前在PC机上的语音编码已经趋于成熟,而如何在嵌入式系统中实时实现语音压缩编码则是近些年来语音信号处理领域的研究热点之一。

2系统设计

在实际生活中,当声源遇到物体时会发生反射,反射的声波和声源声波一起传输,听者会发现反射声波部分比声源声波慢一些,类似人们面对山体高声呼喊后可以在过一会儿听到回声的现象。声音遇到较远物体产生的反射会比遇到较近的反射波晚些到达声源位置,所以回声和原声的延迟随反射物体的距离大小改变。同时,反射声音的物体对声波的反射能力,决定了听到的回声的强弱和质量。另外,生活中的回声的成分比较复杂,有反射、漫反射、折射,还有回声的多次反射、折射效果。

当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。如此产生的回声,我们称之为数字回声。

本次实验的程序流程图如下:

图2.1 程序流程图

本次实验的系统框图如下:

图2.2 系统框图

3硬件设计

3.1 硬件结构

图3.1是系统的硬件结构框图, 系统主要包括VC5509和A IC23 两个模块。

图3.1系统硬件结构框图

利用VC5509 的片上外设I2C(Inter-Integrated Circuit, 内部集成电路)模块配置AIC23 的内部寄存器;通过VC5509 的McBSP(Multi channel Buffered Serial Ports, 多通道缓存串口)接收和发送采样的音频数据。控制通道只在配置AIC23 的内部寄存器时工作, 而当传输音频数据时则处于闲置状态。

AIC23通过麦克风输入或者立体声音频输入采集模拟信号, 并把模拟信号转化为数字信号, 存储到DSP的内部RAM中,以便DSP处理。

当DSP完成对音频数据的处理以后, AIC23再把数字信号转化为模拟信号, 这样就能够在立体声输出端或者耳机输出端听到声音。

AIC23能够实现与VC5509 DSP的McBSP端口的无缝连接, 使系统设计更加简单。接口的原理框图, 如下图所示。

图3.2 AIC23与VC5509接口原理图

系统中A IC23的主时钟12 MHz直接由外部的晶振提供。MODE接数字地, 表示利用I2 C控制接口对AIC23传输控制数据。CS接数字地, 定义了I2 C总线上AIC23的外设地址, 通过将CS接到高电平或低电平, 可以选择A IC23作为从设备在I2 C总线上的地址。SCLK和SDIN是AIC23控制端口的移位时钟和数据输入端,分别与VC5509的I2C模块端口SCL和SDA相连。

收发时钟信号CLKX1和CLKR1由A IC23的串行数据输入时钟BCLK提供, 并由A IC23的帧同步信号LRCIN、LRCOUT启动串口数据传输。DX1和DR1分别与A IC23 的D IN 和DOUT 相连, 从而完成VC5509与AIC23间的数字信号通信。

3.2 硬件电路设计

3.2.1 总输入电路

图3.3 总输入电路

从左到右各部分电路为:

话筒,开关,语音输入电路,UA741高增益放大电路,有源二阶带 通滤波器。

3.2.2 总输出电路

图3.4 总输出电路

从左到右各部分电路为:

LM386高频功率放大器及其外围器件连接电路,语音输出电路,开关,扬声器。

3.2.3 语音输入电路

图3.5语音输入电路

3.2.4 语音输出电路

图3.6 语音输出电路

语音信号通道包括模拟输入和模拟输出两个部分。模拟信号的输入输出电路如图所示。上图中MICBIAS 为提供的麦克风偏压,通常是3/4 AVDD,MICIN为麦克风输入,可以根据需要调整输入增益。下图中LLINEOUT 为左声道输出,RLINEOUT为右声道输出。用户可以根据电阻阻值调节增益的大小,使语音输入输出达到最佳效果。从而实现良好的模拟语音信号输入与模拟信号的输出。4 实验结果及分析

4.1 实验结果

按“F5”键运行,注意观察窗口中的bEcho=0,表示数字回声功能没有激活。这时从耳机中能听到麦克风中的输入语音放送。将观察窗口中bEcho的取值改成非0值。这时可从耳机中听到带数字回声道语音放送。

分别调整uDelay和uEffect的取值,使他们保持在0-1023范围内,同时听听耳机中的输出有何变化。

当uDelay和uEffect的数值增大时,数字回声的效果就会越加的明显。

图4.1 修改前程序图

图4.2 修改前程序图

图4.3 频谱分析

图4.4 左声道及右声道波形 4.2 实验分析

所以,从本实验可知当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。

声音放送可以加入数字回声,数字回声的强弱和与原声的延迟均可在程序中设定和调整。5 总结与心得体会

通过本次课程设计,我明白了细节决定成败这句话的道理,在实验中,有很多注意的地方,都被忽视了,导致再花费更多的时间去修改,这严重影响了试验的进度。同时,在本次实验中我了解了ICETEK – VC5509 – A板上语音codec芯片TLV320AIC23的设计和程序控制原理,并进一步掌握了数字回声产生原理、编程及其参数选择、控制,以及了解了VC5509DSP扩展存储器的编程使用方法。

这一学期的理论知识学习加上这次课程设计,使我对DSP有了更加深刻的了解,对数字信号的处理功能,软硬件相结合,语音信号的采集与放送等等方面都有了很深的了解,相信本次课程设计,无论是对我以后的学习,还是工作等方面都有一个很大的帮助。因此,本次课程设计让我受益匪浅。

参考文献

[1]李利.DSP原理及应用[M].北京:中国水利水电出版社,2004.[2]王安民,陈明欣,朱明.TMS320C54xxDSP实用技术[M].北京:清华大学出版社,2007 [3]彭启琮,李玉柏.DSP技术[M].成都:电子科技大学出版社,1997 [4]李宏伟,等.基于帧间重叠谱减法的语音增强方法[J].解放军理工大学学报,2001(1):41~44 [5]TexasInstrumentsIncorporated.TMS320C54x系列DSP的CPU与外设[M].梁晓雯,裴小平,李玉虎,译.北京:清华大学出版社,2006 [6]赵力.语音信号处理[M].北京:机械工业出版社,2003比较图4和图5,可以看到1200Hz以上的频谱明显得到了抑制。

[7]江涛,朱光喜.基于TMS320VC5402的音频信号采集与系统处理[J].电子技术用,2002,28(7):70~72[8]TexasInstrumentsIncorporated:TMS320VC5402Datasheet,2001

致谢

在本次课程设计的即将完成之际,笔者的心情无法平静,本文的完成既是笔者孜孜不倦努力的结果,更是指导老师樊洪斌老师亲切关怀和悉心指导的结果。在整个课程设计的选题、研究和撰写过程中,老师都给了我精心的指导、热忱的鼓励和支持,他的精心点拨为我开拓了研究视野,修正了写作思路,对课程设计的完善和质量的提高起到了关键性的作用。另外,导师严谨求实的治学态度、一丝不苟的工作作风和高尚的人格魅力,都给了学生很大感触,使学生终生受益。在此,学生谨向老师致以最真挚的感激和最崇高的敬佩之情。

另外,还要感谢这段时间来陪我一起努力同学,感谢我们这个小团队,感谢每一个在学习和生活中所有给予我关心、支持和帮助的老师和同学们,几年来我们一起学习、一起玩耍,共同度过了太多的美好时光。我们始终是一个团结、友爱、积极向上的集体。

第五篇:基于+MATLAB+的语音信号分析与处理的课程设计

1.课程设计目的………………………………………………………………(1)

2.课程设计基本要求……………………………………………...………….(1)

3.课程设计内容………………………………………..……………………..(2)

4.课程设计实现……………………………………………………..…..……………(3)

(1)语音信号的采集……………………………………………………..(5)

(2)语音信号的频谱分析………………………………………………..(6)

(3)设计滤波器和画出频率响应………………………………………..(6)

(4)用滤波器对信号进行滤波…………………………………………..(9)

(5)比较滤波前后语音信号的波形及其频谱…………………………..(9)

(6)回放语音信号………………………………………………………..(11)

(7)设计系统界面………………………………………………………..(13)

5、心得体会……………………………………………..……………………..(14)

6、参考文献…………………………………….……………………………..(14)

下载心电信号分析处理课程设计 2word格式文档
下载心电信号分析处理课程设计 2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《信号与系统》课程设计——语音信号的分析和处理

    《信号与系统》课程设计——语音信号的分析和处理 【设计题目】基于时频域的分析方法对语音信号进行分析和处理 【设计目标】尝试对语音信号进行时频域分析和处理的基本方法......

    数字图像处理课程设计5篇范文

    数字图像处理课程设计 目 录 1.课设目的 ................................................................................................................................

    数字图像处理课程设计(推荐阅读)

    1.前言 数字图像处理技术是20世纪60年代开始发展起来的一门新兴学科。近40年来,由于大规模集成电路和计算机技术的迅速发展,离散数学的创立及理论上的不断突破,以及军事、医学......

    数字信号处理课程设计参考题目

    数字信号处理课程设计资料 使用MATLAB(或其他开发工具)编程实现下述内容并写出课程设计报告。 一、课程设计参考题目与设计内容(也可自行选题) 设计一基于DFT的信号频谱分析 主......

    课程设计心得与体会

    课程设计心得与体会 这学期结束的时候我们开展了贸易实务流程课程设计,对国际贸易基本流程有了全面的了解,下面就本次试验,谈谈我们对CIF贸易术语和L/C结算方式条件下的国际贸......

    课程设计心得与体会

    通过两周的课程设计,我感受很深,同时,学到了很多的知识。 最重要的是我对课本中学到的知识重新复习了一遍。加强了我的动手能力和动脑能力。例如:机械设计中齿轮、键、轴等零件......

    数字信号处理—课程设计(小编整理)

    广西工学院 数字信号处理课程设计 题目:语音信号的处理与滤波 系 别: 计算机系 专 业 : 通 信 工 程 班 级: 学 号 : 姓 名 : 指导教师: 日 期: 2012-1-3 - 1摘要: 本次设计主要是......

    数字信号处理(DSP)课程设计报告

    中南大学 数字信号处理课程设计报告 专业班级: 通信工程1201 指导老师:李宏姓名: 学号: 完成日期:2014年10月18日 前 言 现代信号处理是将信号表示并处理的理论和技术,而......