光纤通信与系统设计(第一次作业)(共5则范文)

时间:2019-05-12 15:24:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《光纤通信与系统设计(第一次作业)(共)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《光纤通信与系统设计(第一次作业)(共)》。

第一篇:光纤通信与系统设计(第一次作业)(共)

第一次作业(第二章)

1、光波从空气中以 θ1=60°的角度入射到一平板玻璃上,此时一部分光束被反射,另一部分被折射。如果反射光束与折射光束之间的夹角正好为 90°,该玻璃板的折射率等于多少?又当光波从玻璃板入射到空气中时,该玻璃板的全反射临界角是多少?

答:(1)折射角β=30°,折射率n=sin60°/sin30°=√3

(2)sin90°/sinα=√3=>α=arcsin(√3/3)

2、一阶跃光纤,其纤芯折射率 n1=1.52,包层折射率 n2=1.49。求:

(1)光纤放置在空气中,光从空气中入射到光纤输入端面的最大接收角是多少?

(2)光纤浸在水中(n0=1.33),光从水中入射到光纤输入端面的最大接收角是多少?答:(1)n0sinα=n1sinβ

n1sin(90°-β)=n2sin90,求得sinα=√1.52*1.52-1.49*1.49=0.3,求得α=17.5°

(2)公式同上n0sinα=n1sinβ

n1sin(90°-β)=n2sin90,其中n0=1.33,求得α=13.06°

3、某阶跃光纤的纤芯折射率为 1.5,相对折射率差为 Δ=0.003,纤芯的直径为 7μm,问:

(1)该光纤的 LP11 高阶模的截止波长 λct 是多少?

(2)当纤芯内光波长 λ1=0.57μm和 0.87μm时,能否实现单模传输?

答:

(1)NA=(n12-n22)1/2可得归一化频率V=(2π/λ)·α·n1·(2⊿)1/2<2.405,可得第一高次模的截止波长为:λct=(2π/2.405)·α·n1·(2⊿)1/2=1.06μm

(2)λ1=0.57μm和0.87μm时均<λct,所以不能实现单模传输

4、已知 LD 发出的激光,其中心波长为 λ=1.31μm,谱线宽度 Δλ=0.002μm,将其入射到单模光纤内,问该单模光纤每千米产生的模内色散带宽是多少?

答:⊿τ=D·⊿λ·L=3.5·2·1=7ps/km

F3db=0.44/(7·10-12)=63GHz

第二篇:光纤通信系统

第一章

1、实现光纤通信的关键器件与技术是什么?

答:(1)低损耗、宽带宽的光纤。

(2)高可靠性、长寿命的光源及高响应的光检测器件。

(3)光测量及光纤连接技术。

2、光纤通信使用光源的波长范围是什么?

答:在近红外区内,即0.8~1.8um。

第二章

5、光纤的损耗机理及危害是什么?

答:损耗机理:主要有吸收损耗、散射损耗及辐射损耗。

吸收损耗与光纤材料有关。散射损耗与光纤材料及光波导中的结构缺陷、非线性效应有关,这两种损耗是光纤材料固有的。辐射损耗则与光纤几何形状的扰动有关。

危害:由于损耗的存在,在光纤中传输的光信号,不管是模拟信号还是数字脉冲,其幅度都要减小。光纤损耗是光纤传输系统中中继距离的主要限制因素之一。

6、光纤的色散机理及危害是什么?

答:色散机理:由于光纤中所传信号的不用频率成分或不同模式成分,在传播的过程中因群速度不同互相散开,并且造成它们到达光纤终端的时间各不相同,从而引起传输信号波形失真、脉冲展宽。光线的色散,主要有材料色散、波导色散和模式色散。

危害:由于信号的各频率成分和各模式成分的传输速度不同,当它在光纤中传输一定的距离后,将互相散开,致使光脉冲展宽。若脉冲展宽过大将会造成码间干扰,从而使误码率增加,通信质量下降。由于脉冲宽度与频带宽度成反比,脉冲展宽越大,表示带宽能力越小。

7、光缆的主要结构是什么?答:光纤芯线、护套和加强部件。

第三章

3、半导体激光器发光的基本条件是什么?

答:向半导体P-N结注入电流,实现粒子数反转分布,产生受激辐射,再利用谐振腔的正反馈,实现光放大而产生激光振荡输出激光。

4、能级跃迁有那几种形式?

答:热跃迁、光跃迁(自发发射、受激辐射、受激吸收)。

5、半导体激光器的工作电压是正向还是反向?

答:正向。

8、比较半导体激光器和发光二极管的异同。

答:不同之处:(1)工作原理不同,半导体激光器是受激辐射,再利用谐振腔的正反馈。而发光二极管是自发辐射,不需要光学谐振腔,没有阈值。(2)发光二极管工艺简单、成本低、可靠性好。适用于短距离、低码速的数字光纤通信系统,或者是模拟光纤通信系统。半导体激光器适用于长距离大容量的光纤通信系统。

相同之处:使用的半导体材料相同,结构相似。

11、光电探测器的主要特性是什么?

答:(1)要有高的光电转化效率,或者具有高的增益因子。

(2)对应于使用波长的光波,要有高的灵敏度,即响应度要高。

(3)要有足够宽的带宽,即检测器输出的电信号能不失真地反映出接受的光信号。

(4)要求稳定、可靠、便宜。

12、光电探测器的工作电压是正向还是反向?

答:反向。

16、试说明APD和PIN在性能上的主要区别。

答:PIN光电二极管响应频率高,可高达10GHZ,响应速度快,供电电压低,工作十分稳定。

APD雪崩二极管灵敏度高,响应快,但需要上百伏的工作电压,而且性能和入射光功率有关,当入射光功率大时,增益引起的噪声大,带来电流失真。

17、无源光器件的种类有哪些?

答:无源光器件大致可分为连接用的部件和功能性部件两大类。

连接用的部件有各种光连接器,它们不仅可用做光纤和光纤的连接,而且还可以组成功能部件及设备的一部分,用于部件(设备)和光纤、或部件(设备)和部件(设备)的连接。

功能性部件有分路器、耦合器、光分波合波器、光衰减器、光开关和光隔离器等,它们主要用于光的分路、耦合、复用、衰减、开关、防反射等方面。

第四章

1、数字信号调制半导体激光器时,直流偏置应如何设置?

2、数字信号调制发光二极管时,直流偏置应如何设置?

4、在数字光纤通信中,线路编码的基本要求是什么?

答:(1)要便于在不中断通信业务的条件下进行误码检测,这就要求码型有一定的规律性。

(2)码率增加要少,如码速提高过多,会使系统信噪比因带宽增大而减小,这对于高次群系统特别重要。

(3)尽量减少码流中连0、连1码的个数,便于定时信号的提取。

(4)要有利于减少码流的基线漂移,即要求码流中的“1”、“0”码分布均匀,否则不利于接收端的再生判决。

(5)接收端将线路码还原后,误码增值要小。

(6)电路简单,体积小,耗电少。

6、现有码流信号为***011110110,采用8B1P编码方式,请分别给出P为奇校验码和偶校验码时的码流信号。

(1)P为奇校验码:

8B码***011110110

8B1P码 ***101111101101

(2)P为偶校验码:

8B1P码 ***1001111011007、现有码流信号为***011110110,采用4B1C编码方式,请给出编码后的码流信号。4B码***011110110

4B1C码******

10、SDH帧结构可分为哪几个部分?

答:(1)段开销。(2)信息载荷。(3)管理单元指针。

17、数字光接收机的主要性能指标是什么?

答:(1)光接收机的灵敏度。(2)光接收机的噪声。(3)数字光接收机的误码率。(4)模拟光接收机的性噪比。(5)动态范围。(6)抖动。

18、设计数字光纤通信系统的中继距离时,应该考虑哪些因素?

答:(1)发射光功率。(2)光接收机灵敏度。(3)光纤的每公里损耗。(4)光纤的色散。

第五章

1、什么叫做基带—光强调制?

答:模拟信号没有经过任何电的调制就是基带信号如电视信号。基带信号直接对光源进行强度调制就称为基带—光强调制。

2、什么叫做副载波调幅—光强调制?

答:原始的电信号先对某一电载波进行调幅,然后再对光源进行调制。

3、什么叫做副载波调频—光强调制?

答:原始的电信号先对某一电载波调频,然后再对光源调制。

4、什么叫做脉冲调制—光强调制?

答:首先用原始的模拟信号对脉冲副载波进行预调制,然后再对光源进行强度调制。

8、什么叫做调幅频分多路技术?

答:首先将各频道的视频基带信号对各自的副载波进行残留边带调幅,组成频分多路信号,然后对光源进行强度调制。

9、什么叫做调频频分多路技术?

答:首先是将各频道的视频基带信号对各自的副载波进行调频,组成频分多路信号,再对光源进行强度调制。

10、什么叫做副载波复用(SCM)技术?

答:将数字视频基带信号对各自的副载波进行调制(如FSK、PSK、QAM等),组成频分多路信号,再对光源进行强度调制。

第六章

1、EDFA的工作原理是什么?有哪些应用方式?

答:工作原理:在掺铒光纤(EDF)中,铒离子(Er3+)有三个能级: 能级1代表基态,能量最低,能级2是亚稳态,处于中间能级,能级3代表激发态,能量最高,当泵浦(Pump, 抽运)光的光子能量等于能级3和能级1的能量差时,铒离子吸收泵浦光从基态跃迁到激发态(1→3)。但是激发态是不稳定的,Er3+很快返回到能级2。如果输入的信号光的光子能量等于能级2和能级1的能量差,则处于能级2的Er3+将跃迁到基态(2→1),产生受激辐射光,因而信号光得到放大。由此可见,这种放大是由于泵浦光的能量转换为信号光的结果。为提高放大器增益,应提高对泵浦光的吸收,使基态铒离子尽可能跃迁到激发态。

应用方式:线路放大、接收端前路放大、发射端放大。

3、EDFA的基本种类有哪些?

答:线路放大器、前置放大器、功率放大器。

4、半导体激光放大器的种类有几种?主要原理分别是什么?

答:FP型(FPA)和行波型(TWA)

FPA:两端的发射系数较高,在两端面间产生正反馈谐振放大,因此要求输入信号与FP腔间有严格的频率匹配。在略低于阈值电流偏置时,设单次通过的增益为Gs,放大器的内增益可达20~30dB。只有靠近阈值时才能获得高增益。由于FPA的高度谐振性,它必然是一个窄带放大器。

TWA:虽然也是与FPA一样的LD芯片构成,但其端面反射系数要低得多。只有当端面的反射系数为零时才能被称作行波放大器。而实际情况下,只能说只能说工作在接近行波状态。

第七章

1、什么是波分复用系统?

答:为了充分利用单模光纤低损耗区带来的巨大带宽资源,根据每一信道光波的频率不同,可以将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来,送入一根光纤进行传输,在接收端再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看做互相独立,从而在一根光纤中可实现多路光信号的复用传输。

2、WDM技术的主要特点是什么?

答:(1)可以充分利用光纤的巨大带宽资源,使一根光纤的传输容量比单波长传输增加几倍至几十倍。

(2)使N个波长复用起来在单模光纤中传输,在大容量长途传输时可以大量节约光纤。另外,对于早期安装的芯数不多的电缆,芯数较少,利用波分复用不必对原有系统作较大的改动即可比较方便的进行扩容。

(3)由于同一光纤中传输的信号波长彼此独立,因而可以传输特性完全不同的信号,完成各种电信业务信号的综合和分离,以及PDH信号和SDH信号的综合与分离。

(4)波分复用通道对数据格式是透明的,即与信号速率及电调制方式无关。一个WDM系统可以承载多种格式的“业务”信号,ATM、IP或者将来有可能出现的信号。WDM系统完成的是透明传输,对于“业务”层信号来说,WDM的每个波长就像“虚拟”的光纤一样。

(5)在网络扩充和发展中,是理想的扩容手段,也是引入宽带新业务的方便手段,增加一个附加波长即可引入任意想要的新业务或新容量。

(6)利用WDM技术选路来实现网络交换和恢复,从而可能实现未来透明的、具有高度生存性的光网络。

(7)在国家骨干网的传输中,EDFA的应用可以大大减少长途干线系统SDH中继器的数目,从而减少成本。距离越长,节省成本就越多。

5、光频分复用系统和光波分复用系统的区别是什么?

答:在波分复用系统中,合波器与分波器实质上是一个光波的滤波器,它们是在光波波段上将各信道的光波分隔出来。但是,这种光波的滤波器实际上做出来的通带较宽,因而两个光源间的波长间隔不能靠的太近,所以光波的频带利用率较差。

光频分复用系统在方案上恰恰避开了上述弱点,不在光波波段上将各信道分开,而在较低的波段上用电的滤波器将各信道分开。显然,这个频段上电的滤波器的选择性能要较光波器件好得多。因而,在这种复用系统中相邻信道的间隔就可取得小。所以,同样带宽的光纤就可容纳更多的信道。

第八章

1、简述什么是光交换?

答:光交换机中交换的信息是光信息,速率高,能抗电干扰,提供大的带宽,能够实现透明技术,便于扩展业务。很适合于高速、宽带系统。

2、光交换系统分类有几种?分别是哪些?

答:3种。空分光交换、时分光交换和波分光交换。

3、在全光网络的中间节点中,为什么要进行波长转换?

答:为了适应相应波长的信息传输模式,需要把携带有信息的一定波长信号通过处理,转载到另外一个波长上去。

4、波长转换技术主要有哪几种?

答:光/电/光波长转换技术、全光波长转换技术。

5、什么是光孤子通信?

答:光孤子通信是一种全光非线性通信方案,其基本原理是光纤折射率的非线性效应导致对光脉冲的压缩,可以与群速色散引起的光脉冲展宽相平衡,在一定条件下,光孤子能够长距离不变形地在光纤中传输。它完全摆脱了光纤色散对传输速率和通信容量的限制,其传输容量比当今最好的通信系统高出1~2个数量级,中继距离可达几百公里,它被认为是下一代最有发展前途的传输方式之一。

6、什么是相干光通信技术?

答:在发送端,采用外光调制方式将信号以调幅、调相或调频的方式调制到光载波上,再经光匹配器送入光纤中传输。当信号光传输到达接收端时,首先与一本振光信号进行相干混合,然后由探测器进行探测。

第三篇:光纤通信作业

2-1光纤由哪几部分组成?

答:光纤由纤芯、包层和涂覆层3部分组成。

2-2在光脉冲信号的传播过程中,光纤的损耗和色散对其有何影响?

2-3单模光纤有哪几种类型?各有何特点?

答:单模有G.652、G.653、G.654、G.655四种类型。

G.652光纤的特点是当工作波长在1310nm时,光纤色散很小,系统的传输距离只受光纤损耗的限制。

G.653光纤的特点是色散零点在1550nm附近。

G.654光纤的特点是降低1550nm波段的衰减,一般为0.15~0.19dB/km,典型值为0.185dB/km,其零色散点仍然在1310nm附近,但在1550窗口的色散较高,课达18ps/(nm·km)。

G.655光纤的特点是色散点在1550nm附近,WDM系统在零色散波长处工作很容易引起四波混频效应,导致信道间发生串扰,不利于WDM系统工作。

2-4光纤的归一化频率和各模式的归一化截止频率的关系是什么?光纤单模传输的条件是什么?

2-5光纤的特性有哪些?

答:几何特性、传输特性、机械特性、温度特性四种。

2-6光缆的结构有哪些?

答:光缆一般由缆芯、护层和加强芯组成。

2-7常用的光缆有哪几种类型?

答:层绞式结构光缆、骨架式结构光缆、束管式结构光缆、带状结构光缆、单芯结构光缆、特殊结构光缆。

第四篇:光纤通信作业1

一、填空题

1、光纤通信中常用的三个低损耗窗口的中心波长为、。

2、光源的作用是将变换为光检测器的作用是将

3、在光波系统中得到广泛应用的两种光检测器是。

4、光传输设备包括

5、光纤通信是以为载频,以

6、光发送机主要由、和组成。

7、被称为“光纤之父”的是

8、中国第一条海底光缆建成于

二、简答题

1、光纤通信主要有哪些优点?

2、简述未来光网络的发展趋势及关键技术。

3、全光网络的优点是什么?

第五篇:光纤通信系统的发展与现状

光纤通信系统的发展与现状

通信科学的发展历史悠久。近代通信技术分为电通信和光通信两类。电通信又分为有线通信和无线通信,是两种相当成熟的技术。通信技术发展过程中,围绕着增加信息传输的速率和距离,提高通信系统的有效性、可靠性和经济性方面进行了许多工作,取得了卓越的成就。光通信技术则是当代通信技术发展的最新成就,已成为现代通信系统的基石。

从广义的概念上说,凡是用光作为通信手段的都可称为光通信,则光通信的历史可追溯到远古时代,那时大部分文明社会已经用烟火信号传递单个信息,至18世纪末通过信号灯、旗帜和其他信号装置进行通信的类似方法已基本走到尽头。1792年,根据克劳特查普的建议,采用中继器使机械代码信号传送很长距离(约100km)。这种光通信系统速度很慢,其有效速率B<1b/s。

19世纪30年代电报的出现用电取代了光,开始了电信时代,利用新的代码技术,速率增加到3~10 b/s,采用中继站后允许进行长距离(约1000km)通信,1866年,第一条越洋电报电缆系统投入运营。电报也基本上使用数字法。1876年电话的发明引起了本质的变化,电信号通过连续变化电流的模拟形式传送,这种模拟电通信技术支配了通信系统达100年左右。

20世纪全球电话网的发展导致了电通信系统许多改进,使用同轴电缆代替双绞线大大提高了系统容量。第一代同轴电缆系统在1940年投入使用,是一个3MHz的系统,能够传输300路音频信号或1路视频信号,这种系统的带宽受到与频率相关的电缆损耗的影响,频率超过100MHz时,损耗迅速增加,这种限制导致了微波通信系统的发展。在微波系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。最早的微波系统中,利用1~10GHz的电磁波及合适的调制技术传递信号。最早的微波系统工作于4GHz,1948年投入运营,从此以后,同轴和微波系统都得到了很大的发展,并都能工作于约100Mb/s。最先进的同轴系统于1975年投入运营,其速率达274Mb/s,但中继距离短(约1km),系统成本高。微波通通信系统速率亦受到载波频率的限制。

紧随研究与发展的步伐,经过许多现场试验后,于1978年工作于0.8μm的第一代光波系统正式投入商业应用,其比特率在20~100 Mb/s之间,最大中继距离约10km,最大通信容量(BL)约500(Mb/s)·km。与同轴电缆相比,中继间距长,投资和维护费用低,是工程和商业运营的追求目标。

在1970年时人们就认识到,使光波系统工作于1.3μm时,损耗<1.0dB/km,且有最低色散,可大大增加中继距离,这推动了全世界努力发展1.3μm的InGaAs半导体激光器和检测器。1977年研制成功这种激光器。接着在80年代初,早期的采用多模光纤的第二代光波通信系统问世,其中继距离超过了20km,但由于多模光纤的模间色散,早期的系统的比特率限制在100Mb/s以下。采用单模光纤能克服这种限制,一个实验室于1981年演示了比特率为2Gb/s,传输距离为44km的单模光波实验系统,并很快引入商业系统,至1987年1.3μm单模第二代光波系统开始投入商业运营,其比特率高达1.7Gb/s,中继距离约50km。第二代光波系统中继距离受到1.3μm附近光纤损耗(典型值为0.5dB/km)限制。理论研究发现,石英光纤最低损耗在1.55μm附近,实验技术上于1979年就达到了0.2dB/km的低损耗。然而由于1.55μm处高的光纤色散,而当时多纵模同时振荡的常规InGnAsP半导体激光器的谱展宽问题尚未解决,这两个因素,推迟了第三代光波系统的问世。后来的研究发现,色散问题可以通过使用设计在1.55μm附近,具有最小色散的色散位移光纤(DSF)与采用单纵模激光器来克服。在80年代这两种技术都得到了发展,1985年的传输试验显示,其比

特率达到4Gb/s,中继距离超过100km。至1990年,工作于2.4 Gb/s,1.55μm的第三代光波系统已能提供通信商业业务。这样的第三代光波系统,通过精心设计激光器和光接收机,其比特率能超过10Gb/s。后来,10Gb/s的光波系统在一些国家得到了重点发展。

第四代光波系统以采用光放大器(OA)增加中继距离和采用频分与波分复用(FDM与WDM)增加比特率为特征,这种系统有时采用零差或外差方案,称为相干广播通信系统,在80年代在全世界得到了发展。在一次试验中利用星型耦合器实现100路622Mb/s数据复用,传输距离50km,其信道间串扰可以忽略。在另一次试验中,单信道速率2.5Gb/s,不用再生器,光纤损耗用光纤放大器(EDFA)补偿,放大器间距为80km,传输距离达2232km。光波系统采用相干检测技术并不是使用EDFA的先决条件。有的实验室曾使用常规非相干技术,实现了2.5Gb/s,4500km和10Gb/s,1500km的数据传输。另一实验曾使用循环回路实现了

2.4Gb/s,2100km和5Gb/s,14000km数据传输。90年代初期光纤放大器的问世引起了光纤通信领域的重大变革。

第五代光波通信系统的研究与发展经历了近20年历程,已取得突破性进展。它基于光纤非线性压缩抵消光纤色散展宽的新概念产生光孤子,实现光脉冲信号保形传输,虽然这种基本思想1973年就已提出,但直到1988年才由贝尔实验室采用受激喇曼散射增益补充光纤损耗,将数据传输了4000km,次年又将传输距离延长到6000km。EDFA用于光孤子放大开始于1989年,它在工程实际中有更大的优点,自那以后,国际上一些著名实验室纷纷开始验证通信作为高速长距离通信的巨大潜力。1990——1992年在美国与英国的实验室,采用循环回路曾将2.5与5Gb/s的数据传输 km。1995年,法国的实验室则将20Gb/s的数据 km,中继距离达140km。1995年线形试验也将20Gb/s的数据传输8100km,40Gb/s传输5000km。线形光孤子系统的现场试验也在日本东京周围的城域网中进行,分别将10Gb/s与20Gb/s的数据传输了2500km与1000km。1994年和1995年80Gb/s和160Gb/s的高速数据也分别传输500km和200km。

光波通信技术得到巨大发展,现在世界通信业务的60%需经光纤传输,至本世纪末将达85%。随着光波通信系统技术的发展,光波通信系统在通信网中的应用得到了相应的发展。现在世界上许多国家都将光波系统引入了公用电信网、中继网和接入网中。但是目前这种奇特媒质的真正应用还仅仅是在现有电信网络的骨架结构内用光纤代替铜线,是通信网的性能得到了某种改善,降低了成本,而网络的拓扑骨架结构基本上还是光波通信出现之前的模式,光波通信的潜力尚未完全发挥。在目前的通信网中光纤通信技术应用尚属于一种经典应用,在通信网的发展中属于第二代通信网(第一代为纯电信网)。进入90年代后,随着光纤与光波电子技术的发展,光放大器,波分复用器,光子开关,光逻辑门,路由器等许多新颖光纤与半导体功能光器件相继问世,在全世界范围内掀起了发展第三代通信网——全光通信网的潮流。这种通信网中,不仅用光波系统传输信号,交换、复用、控制与路由选择等亦全部在光域完成,由此构建真正的光波通信网。

光波通信发展至今不到30年,但其进展之快,对通信技术影响之大,始所未料,目前大量新的理论与技术研究和发展工作正在继续进行。

光纤通信的特点与应用

光纤通信技术的现状及发展趋势

http://.cn/20080308/ca464325.htm

(2008-05-12 15:54:56)

摘要 简要介绍了光纤通信的现状,总结了目前正在使用的波分复用技术和光纤接入技术的基本原理和发展状况,从超大容量、超长距离传输技术和光弧子通信技术,以及全光网络3个方面论述了光纤通信技术的发展趋势。

光纤通信自从问世以来,给整个通信领域带来了一场革命,它使高速率、大容量的通信成为可能。光纤通信由于具有损耗低、传输频带宽容量大、体积小、重量轻、抗电磁干扰、不易串音等优点而备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年到2000年这20年间增加了近一万倍,传输速度在过去的10年中大约提高了100倍。目前,我国长途传输网的光纤化比例已超过80%,预计到2010午,全国光缆建设长度将再增加约105km,并且将有11个大城市铺设10G以上的大容量光纤通信网络[1]。

一、光纤通信技术的现状

光纤通信的发展依赖于光纤通信技术的进步。目前,光纤通信技术已有了长足的发展,新技术也不断涌现,进而大幅度提高了通信能力,并不断扩大了光纤通信的应用范围。

1.波分复用技术

波分复用WDM(Wavelength Division Multiplexing)技术可以充分利用单模光纤低损耗区带来的巨大带宽资源。根据每一信道光波的频率(或波长)不同,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,在发送端采用波分复用器(合波器),将不同规定波长的信号光载波合并起来送入一根光纤进行传输。在接收端,再由一波分复用器(分波器)将这些不同波长承载不同信号的光载波分开。由于不同波长的光载波信号可以看作互相独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。自从上个世纪末,波分复用技术出现以来,由于它能极大地提高光纤传输系统的传输容量,迅速得到了广泛的应用。

1995年以来,为了解决超大容量、超高速率和超长中继距离传输问题,密集波分复用DWDM(Dens Wavelength Division Multiplexing)技术成为国际上的主要研究对象。DWDM光纤通信系统极大地增加了每对光纤的传输容量,经济有效地解决了通信网的瓶颈问题。据统计,截止到2002年,商用的DWDM系统传输容量已达400Gbit/s。以10Gbit/s为基础的DWDM系统已逐渐成为核心网的主流。DWDM系统除了波长数和传输容量不断增加外,光传输距离也从600km左右大幅度扩展到2000km以上[2]。

与此同时,随着波分复用技术从长途网向城域网扩展,粗波分复用CWDM(Coarse Wavelength Division Multiplexing)技术应运而生。CWDM的信道间隔一般为20nm,通过降低对波长的窗口要求而实现全波长范围内(1260nm~1620nm)的波分复用,并大大降低光器件的成本,可实现在0km~80km内较高的性能价格比,因而受到运营商的欢迎。

2.光纤接入技术

光纤接入网是信息高速公路的“最后一公里”。实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达位置的不同,有FTTB、FTTC、FTTCab和FTTH等不同的应用,统称FTTx。

FTTH(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了FTTH的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制订了FTTH的技术标准和建设标准,有的城市还制订了相应的优惠政策,这些都为FTTH在我国的发展创造了良好的条件。

在FTTH应用中,主要采用两种技术,即点到点的P2P技术和点到多点的xPON技术,亦可称为光纤有源接入技术和光纤无源接入技术。P2P技术主要采用通常所说的MC(媒介转换器)实现用户和局端的直接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供FE或GE的带宽,对大中型企业用户来说,是比较理想的接入方式。

xPON意味着包括多种PON的技术,例如APON(也称为BPON)、EPON(具有GE能力的称为GEPON)以及GPON。APON出现最早,我国的“863”项目也成功研发出了APON,但由于诸多原因,APON在我国基本上没有应用。目前用得比较多的是EPON中的GEPON,我国的GEPON依然属于“863”计划的成果,而且得到广泛的应用,还出口到日本、独联体、欧洲、东南亚等海外一些国家和地区。GPON由于芯片开发出来比较晚,相对不是很成熟。成本还偏高,所以,起步较晚,但在我国已经开始有所应用。由于其效率高、提供TDM业务比较方便,有较好的QoS保证,所以,很有发展前景。EPON和GPON各有优缺点,EPON更适合于居民用户的需求,而GPON更适合于企业用户的接入[3]。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

1.超大容量、超长距离传输技术

波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有很大的应用前景,这几年波分复用系统发展也确实十分迅猛。目前,1.6Tbit/s的WDM系统已经大量商用,同时,全光传输距离也在大幅度扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分

复用,从而大大提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此,现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。欧共体的RACE计划和美国正在执行的ARPA计划在发展宽带全光网中都部署了WDM和OTDM混合传输方式,以提高通信网络的带宽和容量。WDM/OTDM系统已成为未来高速、大容量光纤通信系统的一种发展趋势,两者的适当结合应该是实现Tbit/s以上传输的最佳方式。实际上,最近大多数超过3Tbit/s的实验都采用了时分复用(TDM、OTDM、ETDM)和WDM相结合的传输方式[4]。

2.光弧子通信

光弧子是一种特殊的ps数量级上的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而,经过光纤长距离传输后,波形和速度都保持不变。光弧子通信就是利用光弧子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

在光弧子通信领域内,由于其具有高容量、长距离、误码率低、抗噪声能力强等优点,光弧子通信备受国内外的关注,并大力开展研究工作。美国和日本处于世界领先水平。美国贝尔实验室已经成功实现了将激光脉冲信号传输5 920km,还利用光纤环实现了5Gbit/s、传输15 000km的单信道孤子通信系统和10Gbit/s、传输11 000km的双信道波分复用孤子通信系统;日本利用普通光缆线路成功地进行了超高20Tbit/s、远距离1 000km的孤立波通信,日本电报电话公司推出了速率为10 Gbit/s、传输12 000km的直通光弧子通信实验系统。在我国,光弧子通信技术的研究也有一定的成果,国家“863”研究项目成功地进行了OTDM光弧子通信关键技术的研究,实现了20Gbit/s、105km的传输。近年来,时域上的亮孤子、正色散区的暗孤子、空域上展开的三维光弧子等,由于它们完全由非线性效应决定,不需要任何静态介质波导而备受国内外研究人员的重视[5]。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使?a href=“http://.cn/cnii_zte/index.htm” class=“yt” >中兴俾?0~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000公里以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然,实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使我们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

3.全光网络

未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此,真正的全光网成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

全光网络具有良好的透明性、开放性、兼容性、可靠性、可扩展性,并能提供巨大的带宽、超大容量、极高的处理速度、较低的误码率,网络结构简单,组网非常灵活,可以随时增加新节点而不必安装信号的交换和处理设备。当然,全光网络的发展并不可能独立于众多通信技术之中,它必须要与因特网、ATM网、移动通信网等相融合[6]。

目前全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结束语

目前,光纤通信已成为一种最主要的信息传输技术,迄今尚未发现可以取代它的更好的技术。即使是在全球通信行业处于低迷时期,光纤通信的发展也从未停滞过,就我国而言,2002年的光通信市场相比2001年仍处增长状态。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来如愿到来。

下载光纤通信与系统设计(第一次作业)(共5则范文)word格式文档
下载光纤通信与系统设计(第一次作业)(共5则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    光纤通信系统的构成

    光纤通信系统的构成 作者:unknown 更新时间: 2005-05-14 光纤通信系统的构成 ---- 目前,实用光纤通信系统组成框图如图 8-1 所示。 图 8-1 光纤通信系统的组成 ---- 如图......

    光纤通信系统试题一

    试卷一一、单项选择题(在每小题的备选答案中选出一个正确的答案,并将正确答案的序号填在题干的括号内。每小题1分,共10分) 1.目前普遍采用的实用光纤通信系统是( ) A.相位调制直接检......

    光纤通信系统及网络练习题

    光纤通信系统及网络一、单项选择题(11题,每题2分,共22分)3.光纤柔软,可弯成直径( B )左右的圆形也不会断裂,但不能进行锐角弯曲。 A.1mmB.2mm C.3mmD.4mm 4.根据纤芯折射率在横截面......

    光纤通信系统试题二

    试卷二一、单项选择题(在每小题的备选答案中选出一个正确的答案,并将正确答案的序号填在题干的括号内。每小题1分,共10分) 1.单模光纤的直径约为() A.4~10μmB.10~20μmC.15~20μmD.50......

    光纤通信系统发展综述

    光纤通信系统发展综述 摘要: 光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为......

    光纤通信_结课作业

    光纤通信学院:学号:姓名:电子信息工程学院 1xxxxxxxxx 摘要:光纤通信是利用光波在光导纤维中传输信息的通信方式。本文探讨了光纤通信技术的原理、技术发展,发展趋势、及应用。......

    教学设计第一次作业

    教学设计的理论基础包括哪些理论?请简要说明。 (1)系统理论 系统理论是作为一种科学的方法论对教学设计产生举足轻重的影响。任何系统都包括五个要素:人、物、过程、外部限制因......

    会计制度设计第一次作业

    请上网查阅在2007年国家颁布实施了那些会计准则和审计准则(说明具体准则名称)?并简要介绍其中两项准则(会计准则和审计准则各一)的具体内容。 答:2007年国家颁布实施的会计准则(共......