第一篇:Z元件特性研究论文
文章
来源莲山
课 件 w w w.5y K J.Co m 5
摘要:Z-元件具有进一步的开发潜力,扩充其特性和应用可形成一些新型电子器件。本文在温、光、磁敏Z-元件的基础上,依据对Z-元件工作机理的深入探讨,开发出一些新型的半导体敏感元件,如掺金γ-硅热敏电阻、力敏Z-元件以及新型V/F转换器。本文着重介绍了这些新型敏感元件的电路结构与工作原理。这些新型敏感元件都具有生产工艺简单、体积小、成本低等特点。
关键词:热敏电阻,掺金γ-硅热敏电阻,Z-元件,力敏Z-元件,V/F转换器
一、前言
Z-半导体敏感元件﹙简称Z-元件﹚性能奇特,应用电路简单而且规范,使用组态灵活,应用开发潜力大。它包括Z-元件在内仅用两个﹙或3个﹚元器件,就可构成电路最简单的三端传感器,实现多种用途。特别是其中的三端数字传感器,已引起许多用户的关注。
Z-元件现有温、光、磁,以及正在开发中的力敏四个品种,都能以不同的电路组态,分别输出开关、模拟或脉冲频率信号,相应构成不同品种的三端传感器。其中,仅以温敏Z-元件为例,就可以组合出12种电路结构,输出12种波形,实现6种基本应用[3]。再考虑到其它光、磁或力敏Z-元件几个品种,其可供开发的扩展空间将十分可观。为了拓宽Z-元件的应用领域,很有从深度上和广度上进一步研究的价值。
本文在前述温、光、磁敏Z-元件的基础上,结合生产工艺和应用开发实践,在半导体工作机理上和电路应用组态上进行了深入的扩展研究,形成了一些新型的敏感元件。作为其中的部分实例,本文重点介绍了掺金g-硅新型热敏电阻、力敏Z-元件以及新型V/F转换器,供用户分析研究与应用开发参考。这些新型敏感元件都具有体积小、生产工艺简单、成本低、使用方便等特点。
二、掺金g-硅新型热敏电阻
1.概述
用g-硅单晶制造半导体器件是不多见的,特别是用原本制造Z-元件这样的高阻g-硅单晶来制造Z-元件以外的半导体器件,目前尚未见到报导。Z-元件的特殊性能,主要是由掺金高阻g-硅区﹙也就是n-i区﹚的特性所决定的,对掺金高阻g-硅的性能进行深入地研究希望引起半导体器件工作者的高度重视。
本部分从对掺金g-硅的特性深入研究入手,开发出一种新型的热敏元件,即掺金g-硅热敏电阻。介绍了该新型热敏电阻的工作原理、技术特性和应用特点。
2.掺金g-硅热敏电阻的工作机理
“掺金g-硅热敏电阻”简称掺金硅热敏电阻,它是在深入研究Z-元件微观工作机理的基础上,按新的结构和新的生产工艺设计制造的,在温度检测与控制领域提供了一种新型的温敏元件。
为了熟悉并正确使用这种新型温敏元件,必须首先了解它的工作机理。Z-元件是其N区被重掺杂补偿的改性pN结,即在高阻硅材料上形成的pN结,又经过重金属补偿,因而它具有特殊的半导体结构和特殊的伏安特性。图1为Z-元件的正向伏安特性曲线,图2为Z-元件的半导体结构示意图。
由图1可知,Z-元件具有一条“L”型伏安特性[1],该特性可分成三个工作区:M1高阻区,M2负阻区,M3低阻区。其中,高阻的M1区对温度具有较高的灵敏度,自然成为研制掺金g-硅热敏电阻的主要着眼点。
从图2可知,Z-元件的结构依次是:金属电极层—p+欧姆接触区—p型扩散区—p-N结结面—低掺杂高补偿N区,即n-.i区—n+欧姆接触区—金层电极层。可见Z-元件是一种改性pN结,它具有由p+-p-n-.i-n+构成的四层结构,其中核心部位是N型高阻硅区n-.i,特称为掺金g-硅区。掺金g-硅区的建立为掺金g-硅热敏电阻奠定了物理基础。
Z-元件在正偏下的导电机理是基于一种“管道击穿”和“管道雪崩击穿”的模型[2]。Z-元件是一种pN结,对图2所示的Z-元件结构可按p-N结经典理论加以分析,因而在p-n-.i两区中也应存在一个自建电场区。该电场区因在p区很薄,自建电场区主要体现在n-.i区,且几乎占据了全部n-.i型区,这样宽的电场区其场强是很弱的,使得Z-元件呈现了高阻特性。如果给Z-元件施加正向偏压,这时因正向偏压的电场方向同Z-元件内部自建电场方向是相反的,很小的正向偏压便抵消了自建电场。这时按经典的pN结理论分析,本应进入正向导通状态,但由于Z-元件又是一种改性的pN结,其n-.i型区是经重金属掺杂的高补偿区,由于载流子被重金属陷阱所束缚,其电阻值在兆欧量级,其正向电流很小,表现在“L”曲线是线性电阻区即“M1”区。这时,如果存在温度场,由于热激发的作用使重金属陷阱中释放的载流子不断增加,并参与导电,必然具有较高的温度灵敏度。在M1区尚末形成导电管道,如果施加的正向偏压过大,将产生“管道击穿”,甚至“管道雪崩击穿”,将破坏了掺金g-硅新型热敏电阻的热阻特性,这是该热敏电阻的特殊问题。
在这一理论模型的指导下,不难想到,如果将Z-元件的n-.i区单独制造出来,肯定是一个高灵敏度的热敏电阻(由于半导体伴生着光效应,当然也是一个光敏感电阻),由此可构造出掺金g-硅新型热敏电阻的基本结构,如图3所示。由于掺金g-硅新型热敏电阻不存在pN结,其中n-.i层就是掺金g-硅,它并不是Z-元件的n-.i区。测试结果表明,该结构的电特性就是一个热敏电阻。该热敏电阻具有NTC特性,它与现行NTC热敏电阻相比,具有较高的温度灵敏度。
3.掺金g-硅热敏电阻的生产工艺
掺金g-硅热敏电阻的生产工艺流程如图4工艺框图所示。可以看出,该生产工艺过程与Z-元件生产工艺的最大区别,就是不做p区扩散,所以它不是改性pN结,又与现行NTC热敏电阻的生产工艺完全不同,这种掺金g-硅新型热敏电阻使用的特殊材料和特殊工艺决定了它的性能与现行NTC热敏感电阻相比具有很大区别,其性能各有优缺点。
4.掺金g-硅热敏电阻与NTC热敏电阻的性能对比
从上述结构模型和工艺过程分析可知,掺金g-硅层是由金扩入而形成的高补偿的N型半导体,不存在pN结的结区。它的导电机理就是在外电场作用下未被重金属补偿的剩余的施主电子参与导电以及在外部热作用下使金陷阱中的电子又被激活而参与导电,而呈现的电阻特性。由于原材料是高阻g-硅,原本施主浓度就很低,又被陷阱捕获一些,剩余电子也就很少很少。参与导电的电子主要是陷阱中被热激活的电子占绝对份额。也就是说,掺金g-硅热敏电阻在一定的温度下的电阻值,是决定于工艺流程中金扩的浓度。研制实践中也证明了这一理论分析。不同的金扩浓度可以得到几千欧姆到几兆欧姆的电阻值。金扩散成为产品质量与性能控制的关健工序。
我们认为,由于掺金g-硅热敏电阻的导电机理与现行的NTC热敏电阻的导电机理完全不同,所以特性差别很大,也存在各自不同的优缺点。掺金g-硅热敏电阻的优点是:生产工艺简单,成本低,易于大批量生产,阻值范围宽(从几千欧姆到几兆欧姆),灵敏度高,特别是低于室温的低温区段比NTC热敏电阻要高近一个量级。其缺点是:一批产品中电阻值的一致性较差、线性度不如NTC,使用电压有阈值限制,超过阈值时会出现负阻。
掺金g-硅新型热敏电阻与NTC热敏电阻的电阻温度灵敏度特性对比如图5所示。
在不同温度下,温度灵敏度的实测值对比如表1所示。
掺金g-硅热敏电阻是一种新型温敏元件。本文虽作了较详细的工作机理分析,但现在工艺尚未完全成熟,愿与用户合作,共同探讨,通过工艺改进与提高,使这一新型元件早日成熟,推向市场,为用户服务。
三、力敏Z-元件
1.概述 “力”参数的检测与控制在国民经济中占有重要地位。力敏元件及其相应的力传感器可直接测力,通过力也可间接检测许多其它物理参数,如重量,压力、气压、差压、流量、位移、速度、加速度、角位移、角速度、角加速度、扭矩、振动等,在机械制造、机器人、工业控制、农业气象、医疗卫生、工程地质、机电一体化产品以及其它国民经济装备领域中,具有广泛的用途。
在力参数的检测与控制领域中,现行的各种力敏元件或力传感器,包括电阻应变片、扩散硅应变片、扩散硅力传感器等,严格说,应称为模拟力传感器。它只能输出模拟信号,输出幅值小,灵敏度低是它的严重不足。这三种力敏元件或力传感器,为了与数字计算机相适应,用户不得不采取附加的数字化方法(即加以放大和A/D转换)才能与数字计算机相连接,使用极其不便,也增加了系统的成本。
Z-元件能以极其简单的电路结构直接输出数字信号,非常适合研制新型数字传感器[1],其中也包括力数字传感器。这种力数字传感器输出的数字信号(包括开关信号和脉冲频率信号),不需A/D转换,就可与计算机直接通讯,为传感器进一步智能化和网络化提供了方便。
我们在深入研究Z-元件工作机理的基础上,初步研制成功力敏Z-元件,但目前尚不成熟,欢迎试用与合作开发这一新器件,实现力检测与控制领域的技术创新。
2.力敏Z-元件的伏安特性
如前所述,力敏Z-元件也是一种其N区被重掺杂补偿的改性pN结。力敏Z-元件的半导体结构如图6(a)所示。按本企业标准电路符号如图6(b)所示,图中“+”号表示pN结p区,即在正偏使用时接电源正极。图6(c)为正向“L”型伏安特性,与其它Z-元件一样该特性也分成三个工作区:M1高阻区,M2负阻区,M3低阻区。描述这个特性有四个特征参数:Vth为阈值电压,Ith为阈值电流,Vf为导通电压,If为导通电流。
M1区动态电阻很大,M3区动态电阻很小(近于零),从M1区到M3区的转换时间很短(微秒级),Z-元件具有两个稳定的工作状态:“高阻态”和“低阻态”,工作的初始状态可按需要设定。若静态工作点设定在M1区,Z-元件处于稳定的高阻状态,作为开关元件在电路中相当于“阻断”。若静态工作点设定在M3区,Z-元件将处于稳定的低阻状态,作为开关元件在电路中相当于“导通”。在正向伏安特性上p点是一个特别值得关注的点,特称为阀值点,其坐标为:p(Vth,Ith)。p点对外部力作用十分敏感,其灵敏度要比伏安特性上其它诸点要高许多。利用这一性质,可通过力作用,促成工作状态的一次性转换或周而复始地转换,就可分别输出开关信号或脉冲频率信号。
3.力敏Z-元件的电路结构
力敏Z-元件的应用电路十分简单,利用其“L”型伏安特性,在力载荷的作用下,很容易获得开关量输出或脉冲频率输出。力敏Z-元件的基本应用电路如图7所示。其中,图7(a)为开关量输出,图7(b)为脉冲频率输出。其输出波形分别如图8和图9所示。
在图7所示的应用电路中,电路的结构特征是:力敏Z-元件与负载电阻相串联,负载电阻RL用于限制工作电流,并取出输出信号。Z-元件应用开发的基本工作原理就在于通过半导体结构内部导电管道的力调变效应,使工作电流发生变化,从而改变Z-元件与负载电阻RL之间的压降分配,获得不同波形的输出信号。
(1)力敏Z-元件的开关量输出
在图7(a)所示的电路中,通过E和RL设定工作点Q,如图6﹙c﹚所示。若工作点选择在M1区时,力敏Z-元件处于小电流的高阻工作状态,输出电压为低电平。由于力敏Z-元件的阈值电压Vth对力载荷F具有很高的灵敏度,当力载荷F增加时,阈值点p向左推移,使Vth减小,当力载荷F增加到某一阈值Fth时,力敏Z-元件上的电压VZ恰好满足状态转换条件[1],即VZ=Vth,力敏Z-元件将从M1区跳变到M3区,处于大电流的低阻工作状态,输出电压为高电平。在RL上可得到从低电平到高电平的上跳变开关量输出,如图8(a)所示。如果在图7(a)所示电路中,把力敏Z-元件与负载电阻RL互换位置,则可得到由高电平到低电平的下跳变开关量输出,如图8(b)所示。无论是上跳变或下跳变开关量输出,VO的跳变幅值均可达到电源电压E的40~50%。
开关量输出的力敏Z-元件可用作力敏开关、力报警器或力控制器。
(2)力敏Z-元件的脉冲频率输出
由于力敏Z-元件的伏安特性随外部激励改变而改变,只要满足状态转换条件,就可实现力敏Z-元件工作状态的转换。如果满足状态转换条件,实现Z-元件工作状态的一次性转换,负载电阻RL上可输出开关信号;同理,如果满足状态转换条件,设法实现力敏Z-元件工作状态的周期性转换,则负载电阻RL上就可输出脉冲频率信号。
脉冲频率输出电路如图7(b)所示。在图7(b)电路中,力敏 Z-元件与电容器C并联。由于力敏Z-元件具有负阻效应,且有两个工作状态,当并联以电容后,通过RC充放电作用,构成RC振荡回路,因此在输出端可得到与力载荷成比例变化的脉冲频率信号输出。其输出波形如图9(a)所示。输出频率的大小与E、RL、C取值有关,也与力敏Z-元件的阈值电压Vth值有关。当E、RL、C参数确定后,输出频率仅与Vth有关,而Vth对力作用很敏感,可得到较高的力灵敏度。初步测试结果表明:电容器C选择范围在0.01~1.0mF,负载电阻在5~20kW,较为合适。
同理,若把力敏Z-元件(连同辅助电容器C)与负载电阻RL互换位置,其输出频率仍与力载荷成比例,波形虽为锯齿波,但与图9﹙a﹚完全不同,如图9(b)所示。
4.力敏Z-元件的机械结构与施力方式
力敏Z-元件芯片体积很小,施加外力载荷时,必须通过某种弹性体作为依托。当力载荷作用于弹性体时,使芯片内部产生内应力,此内应力可改变力敏Z-元件的工作状态(从低阻态到高阻态,或者从高阻态到低阻态),从而使输出端产生开关量输出或脉冲频率输出。作为弹性体可以采用条形或园形膜片,材质可以是磷铜、合金钢或其它弹性材料。无论采用哪种弹性体,力敏Z-元件的受力方式目前理论上可归结为两种基本结构:即悬臂式结构和简支式结构,其示意图如图10所示。为便于研究力敏Z-元件受力后的应力应变特征,结构放大示意如图11所示。
如前所述,Z-元件在外加电场作用下,在N区可产生“导电管道”,该导电管道在外部激励作用下,可产生“管道调变效应[2],由图11可知,对力敏Z-元件来说,其p区很薄,N区相对较厚,焊接层的厚度可忽略不计,因而,在力载荷作用下的管道调变效应必将发生在N区。当力载荷作为一种外部激励作用于弹性体时,使弹性体产生一定的挠度,在半导体晶格内部产生内应力,导电管道受到力调变作用,使N区电阻发生变化,改变了力敏Z-元件的伏安特性,使阈值点p产生偏移,阈值电压Vth将发生变化。
实验表明,由于封装结构和受力方式的不同,可产生如图12和图13所示两种方式的应力应变。若静态工作点Q设置在M3区,施加的力载荷使N区产生“压”应力,N区晶格被压缩,导电管道变“细”,正偏使用时电阻值将增加,因伏安特性的改变使阈值点p右移,Vth增加。当力载荷F增加到某一特定阈值Fth时,阈值点p向右移至负载线的右侧,力敏Z-元件将从低阻M3区跳变到高阻M1区,如图12所示。
同理,若静态工作点Q设置在M1区,施加的力载荷使N区产生“拉”应力,N区晶格被拉伸,导电管道变“粗”,正偏使用时电阻值将减小,因伏安特性的变化使阈值点p左移,Vth减小。当力载荷F增加到某一特定阈值Fth时,阈值点p左移至负载线上,力敏Z-元件将从高阻M1区跳变到低阻M3区,如图13所示。
上述分析可知,力敏Z-元件在不同封装结构和不同受力方式下,可产生工作状态的转换,可按设计需要输出不同的跳变信号,可用作力敏开关、力报警器或力控制器。在实际应用中,可通过电源电压E或负载电阻RL来设定力载荷的阈值Fth,但由于跳变阈值与力敏Z-元件的制造工艺、芯片尺寸、封装结构、弹性体材质与厚度、受力点的位置等诸多因素有关,许多问题尚需进一步研究与探讨。
力敏Z-元件具有M2区的负阻特性,并具有两个稳定的工作状态是脉冲频率输出的基础。借助辅助电容器C,按图7(b)所示电路,通过RC的充放电作用,可实现力敏Z-元件工作状态的周而复始的转换,采用图12﹙a﹚、﹙b﹚或图13﹙a﹚、﹙b﹚的结构和受力方式,都可输出脉冲频率信号,输出频率与力载荷成比例,其输出波形如图9(a)或图9(b)所示,分析从略。
作为设计实例,力敏Z-元件样件1#与样件2#,经加载与卸载实验,其脉冲频率输出的测试结果如下,供分析研究参考: 力敏Z-元件特征参数: Vth=10V, Ith=1mA, Vf=4.5V(测试条件: T=25℃, RL=5kW)
芯片尺寸:2′5′0.3mm,采用简支式结构,两支点距离为10mm;中间受力,应力应变方式为N区受压应力;条状p铜弹性体,厚度为0.2mm;试验环境温度为25.4℃。测试数据如表2所示。,样件2#﹙加载﹚所测数据,经计算机绘图可得回归线如图14所示。由于封装结构尚未定型测试数据有一定误差,但初步实验表明,在这种施力方式下,输出频率f与力载荷成正比,在一定施力范围内近似呈线性关系,且回差较小。随力载荷量程加大,非线性度要增加。回归处理后,力的平均频率灵敏度SF为:
Hz/g
约每10g 改变1Hz。力灵敏度和回差是力敏Z-元件的重要技术指标。需要指出的是:灵敏度和回差与力敏Z-元件的特征参数、形状与尺寸、弹性体材质与厚度、封装结构以及受力方式等诸多因素有关。许多问题也需进一步研究与探讨。需按用户需求进行结构定型与标准化生产。
四、新型V/F转换器
1.概述
目前正在研制或在线使用的各种传统传感器,因只能输出模拟电压或模拟电流信号,应称为模拟传感器。模拟传感器是模拟仪表或模拟信讯时代的产物,主要缺点是输出幅值小,灵敏度低,不能与数字计算机直接通讯。人类进入数字信息化时代后,以数字技术支撑的数字计算机已十分普及,现代数字计算机要求处理数字信号,而模拟传感器因受材料、器件的限制,仍只能输出低幅值的模拟信号,不能与计算机直接通讯,已成为制约信息产业发展的瓶颈问题。为了使模拟传感器能与计算机实现通讯,目前是采取把输出信号进行放大再加以A/D转换,即把现行的模拟传感器加以数字化的方法来与数字计算机相适应。虽然在信息采集与处理过程中电路复杂,硬件成本增加,但由于目前能直接输出数字信号的数字传感器为数不多,这种模拟传感器数字化的方法仍发挥着巨大的作用。
本部分利用Z-元件构成一种新型的V/F转换器,它能把模拟传感器输出的电压信号变成能被数字计算机识别的频率信号,提供了一种模拟传感器数字化的新方法。该方法与采用A/D转换器方案相比,具有电路简单、成本低、体积小、输出幅值大、灵敏度高、输出线性度好、能与计算机直接通讯等一系列优点,可做为模拟传感器与计算机之间的重要接口,在信息产业中具有广泛的应用前景。
2.电路组成与工作原理
Z-元件是一种新型的半导体开关元件,当其两端电压达到一定阈值(即阈值电压Vth)时,可从高阻状态跳变到低阻状态;而当其两端电压小于一定阈值(即导通电压Vf)时,又可从低阻状态跳变到高阻状态。利用这一特性可方便地开发V/F转换器。
由Z-元件构成的V/F转换器如图15(a)所示,图15(b)为其中Z-元件的电路符号。在图15(a)所示电路中以电压E为输入,由于RL、C和Z-元件之间的充、放电作用,使电路始终处于自激振荡状态,其振荡频率f与输入电压E成正比,波形为锯齿波,其输出幅值可以很大,由选定的Z-元件参数而定。实现了模拟信号(电压E)到数字信号(频率f)的转换,可用于数字系统的触发。由于输出幅值大,它不需放大就可实现与计算机的直接通讯。
3.V/F转换器的传输特性
当基准温度TS=20℃时,输入电压E与输出频率f之间的传输特性如图16所示。由图16可知该传输特性具有良好的线性关系,其中Emin~Emax(相应于MN区间)是工作电压的极限范围,AB区间为可靠的工作量程范围,它决定于模拟传感器的输出和V/F转换电路的参数设计。
由于Z-元件是半导体开关元件,构成V/F转换器时,对温度也具有一定的灵敏度,即温度漂移。该温度漂移具有正温度系数,一般小于10Hz∕°C,当环境温度变化较大时,将引起检测误差。
如果该误差在允许范围内,可不做温度补偿。如果要求检测精度较高,特别是在高精度计量使用时,应考虑温度补偿技术。
由温漂引起的相对误差与输出频率范围(即量程)有关。若输出频率较高,相对误差较小,若输出频率较低,则相对误差较大。如果假定环境温度有±10℃的变化,引起输出频率变化的绝对误差为Df=100Hz,按全量程输出频率的平均值为f=2000Hz设计,这时由温漂引起的相对误差d=±0.5%/℃,可满足一般计量精度要求。为进一步提高计量精度,必须采取温度补偿技术[4]。
参考文献:
[1].傅云鹏等,Z-半导体敏感元件原理与应用-(1)Z-元件及其应用开发综述,传感器世界,2001.2
[2].周长恩等,Z-半导体敏感元件原理与应用-(2)Z-元件的研制实践与工作机理的定性分析,传感器世界,2001.4
[3].王健林等,Z-半导体敏感元件原理与应用-(3)温敏Z-元件及其应用,传感器世界,2001.6
[4].傅云鹏等,Z-半导体敏感元件原理与应用-(5)Z-元件的温度补偿技术,传感器世界,2001.10
The Review of Z-element-(6)
Extension of Z-element’s Characteristics and Applications
Abstract:The Z-elements possess potential ability for further development.By researching the characteristics deeply, some new application can be developed.In this paper , some new type sensitive semiconductor are introduced such as impure gold g-Si thermistor, force-Z-sensor and V/F converter, which are developed by researching the work mechanism of Z-element deeply on the basis of Z-thermistor, photo-Z-element and magnito-Z-element.These elements possess many advantages such as simpler manufacturing technique, smaller volume and lower cost.In this paper, the characteristics, typical circuits and work principles of these new products are thoroughly introduced too.Keywords:Thermistor, Impure gold g-Si thermistor, Z-element, Force-Z-sensor, V/F converter..文章
来源莲山
课 件 w w w.5y K J.Co m 5
第二篇:植物茎秆力学特性研究论文
摘要:从压缩、剪切、弯曲等不同力学试验类型入手,对目前农作物茎秆力学性能研究进程进行探究,在今后研究中,应注重试验方法的探究,不断加大对农作物茎秆力学性能研究力度,建立植物茎秆力学模型,注重实现茎秆力学特性测定的标准化。
关键词:农作物;茎秆;力学实验
随着科技的发展,农作物机械化生产已经成为一种趋势,通过力学实验获取农作物茎秆的力学参数,为农业机械设备的研制提供理论支撑。李玉道等[1]通过对不同含水率、不同时期内棉花茎秆剪切强度与剪切功的变化规律探进行探究,获取了棉花茎秆收获的最佳时期,晏科满等[2]通过对苎麻茎秆的冲击断裂能进行探究,得知冲击断裂能在茎秆下部达到最大值,为后期苎麻茎秆分离机械的研制提供理论支撑。陈燕等[3]指出峰值切割力和切割强度与刀片切割速度以及切割角度存在密切关系,凹刃和凸刃的峰值切割力和切割强度都比平刃小。为后期荔枝采摘机器人切割机构的优化设计提供了理论依据。薛忠等[4]通过对木薯茎秆力学性能进行探究,获取了木薯茎杆轴向以及径向力学性能的变化规律,为后期设计木薯收获机械提供理论支撑;X.Mou等[5]采用WDE-500N精密型电子万能试验机对甘蔗叶鞘力学性能进行探究。获取叶鞘最大纵向抗拉强度、最大横向抗拉强度和最大剪切强度等力学参数,并给出了甘蔗叶鞘破坏准则,提出合理有效的甘蔗叶鞘破坏形式,研制出甘蔗叶鞘剥离机械,剥叶效果良好。
1力学实验的研究进展
1.1压缩实验
压缩实验对于农作物机械化收割过程中降低作物破损率和研究农作物的抗倒伏性能具有重要意义。目前,在对植物茎秆进行压缩性能探究时,主要分为不同方向压缩实验和不同部位压缩实验两种形式。
1.1.1不同方向的压缩实验薛忠等[6]和杨望[7]分别对木薯做了轴向和径向的压缩实验,得知茎秆轴向抗压强度大于径向;吴良军等[8]在荔枝树枝压缩性能试验探究中得知,荔枝树枝顺纹抗压强度明显高于横纹抗压强度。陈燕等[9]通过对荔枝整果压缩性能进行试验探究,得出水平方向所能承受的压力和变形均低于垂直方向。
1.1.2不同部位压缩实验茎秆不同部位材料的木质化程度、直径、含水率不同,导致力学性能存在差异。王伟等[10]通过对不同部位木薯茎秆进行压缩试验得知:生长部位对木薯轴向压缩性能有极显著影响,对木薯茎秆径向力学性能无显著影响;何晓丽等[11]研究发现,大豆茎秆的最大承载能力随着高度的增加而不断的减少,抗压强度沿高度变化趋势总体不大。杜先军[12]等通过顺纹压缩实验,得知棉花茎秆底部压缩功最大。Heidari等[13]研究发现,百合属茎秆上部单位压缩能量和压缩强度最小,茎秆底部最大。通过对茎秆轴向和径向,顺纹和横纹进行压缩试验,可为后期茎秆采摘装置的设计,本构关系建立以及动力学仿真提供依据。而通过对茎秆不同部位力学性能的研究,对于茎秆整体力学性能的探究将起到积极的促进作用。
1.2剪切试验
农作物的机械化采摘一般通过茎秆的剪切实现。剪切实验的建立对于农作物在收割过程中剪切功的降低具有重要的意义,目前双面剪切和单面剪切是两种较为常用的剪切实验形式。
1.2.1双面剪切实验作物茎秆剪切特性受成熟期、茎秆直径、品种、含水率和微观结构等多种因素的影响[14]。李玉道等[1]通过对棉花秸秆剪切实验发现,含水率是引起棉花秸秆剪切强度变化的重要因素。薛忠等[6]对木薯茎秆不同部位、不同方向的力学性能进行探究,指出木薯茎秆同一部位轴向剪切强度值明显低于径向剪切强度值;木薯茎秆同一方向下部剪切强度值高于中部与上部;王军等[15]在豌豆茎秆力学性能探究中得知茎秆抗剪强度较强的部位为茎秆中部。吴良军等[16]通过对龙眼树枝进行切割实验,得出在切割力最小时,切割速度、切割间隙、动刀刃角的具体数值。李小城等[17]通过对不同品种小麦茎秆进行剪切试验,探究出小麦茎秆受剪切载荷时力值变化趋势。
1.2.2单面剪切实验Johnson等[18]通过对奇岗茎秆的剪切性能进行研究,发现60°斜角时单位剪切能较低。邓玲黎等[19]通过自制的圆盘式玉米茎秆切割试验台,对影响切割过程的切割角度以及切割速度等参数进行调节,通过单因素和组合设计试验,探寻了最优的切割组合。赵春花等[20]通过对不同品种豆禾牧草进行砍切、斜切、滑切等探究性试验,得出切割速度一定时,砍切的切割阻力高于斜切。为后期牧草收获机械的设计提供了理论支撑。在对植物茎秆剪切性能的分析量化层面,双面剪切优于单面剪切,但是通过对植物茎秆进行单面剪切力学试验,可以根据茎秆实际的受力情况,对现有的切割形式、刀具形式进行优化。
1.3弯曲试验
弯曲试验包含三点弯曲与四点弯曲。三点弯曲有一个加载点,加载方式简单,但弯矩分布不均匀。四点弯曲实验与三点弯曲实验相比,结果较为准确,但是存在两个加载点,装夹复杂。
1.3.1三点弯曲试验姚珺等[21]通过对不同品种芒草茎秆弯曲性能进行探究,指出在收割机械研制的进程中,应以湘杂芒2号第1茎秆部位的最大应力平均值作为设计参数。杨望[7]通过对木薯块根、茎秆进行弯曲试验,测定了抗弯强度、弹性模量等力学特性参数;李小城等[22]通过对不同部位小麦茎秆弯曲性能进行探究,指出小麦茎秆抗弯刚度与加载速率、茎秆含水率等因素间存在密切联系。刘兆朋[23]等通过对苎麻茎秆进行三点弯曲力试验,获取了茎秆剪切模量数值。
1.3.2四点弯曲试验Obataya等[24]通过对楠竹弯曲性能进行探究,获得楠竹柔韧性是由于内层木质部能允许较大压缩变形与外层竹纤维能承受拉应力的共同作用。胡婷等[25-26]通过四点弯曲试验,获得小麦茎秆弯曲强度等力学参数。罗燕等[27]通过对小麦茎秆力学性能进行探究,指出外径、壁厚、机械组织厚、维管束等在小麦不同生长时期,对小麦茎秆抗倒伏能力的影响效果不同;孙露露等[28]在玉米茎秆力学试验中指出,在对不同样本纵向弹性模量的差异进行分析时,通常采用四点弯曲实验。
2结论
(1)目前在对茎秆的力学性能进行研究时,主要仍以工程材料中的力学参数为主,由于茎秆材料自身的特殊性,其自身的材料特性并不能得到良好的反映。
(2)在对茎秆力学性能进行探究时,试验方法、试样处理方式等还缺乏有效的参考依据,对实验数据的准确性造成不利影响。因此后期应注重试验方法的研究,逐渐实现茎秆力学测定的分类标准化。
(3)目前,茎秆力学实验的测定仍以基本力学参数测定为主,需进一步对茎秆材料的结构特征进行深入研究,更好的满足建立茎秆材料力学模型以及仿真量化计算的需要,以便于后期运用仿真技术减少农作物收获机械研发周期。
第三篇:关于风力发电机组元件的研究
关于风力发电机组元件的研究、应用及改进 因为环保问题的日益突出,能源供应的渐趋紧张,而且风力发电是新能源中技术最成熟的、最具规模开发条件和商业化发展前景的发电方式,目前其发电成本已接近常规发电方式。所以风力发电作为一种清洁的可再生能源的发电方式,已越来越受到世界各国人民的欢迎和重视。中国的风能资源十分丰富。目前,我国的并网型风机主要由国外厂家提供的,大型风机也只能依赖进口或者与外商合作生产。在风机制造水平上,我国生产的最大风电机组功率为千瓦级别,国际主流机型兆瓦级风电设备在我国还处于研发阶段。但可以预计,随着兆瓦级风电设备的国产化和成功应用推广,中国即将成为世界风电发展最令人瞩目的国家之一。
现在风力发电机组使用的大部分都是双馈异步发电机,此发电机的转子电气系统是由集电环与碳刷组成的换向器而实现的,由于接地碳刷的磨损没有监控或报警系统而使得接地碳刷的过渡磨损而导致集电环损坏。经过现场观察和研究发现:磨损的集电环基本都是ABC三相集电环轻微磨损,但接地侧集电环已经磨损严重不得不更换整个集电环装置,导致集电环的过渡报废,增大了风电机的检修维护费用和风电机的可利用率。如果能有效监控或者控制接地碳刷的过渡磨损而损坏集电环装置,现在行业内的解决办法是:研究更耐磨更好性能的接地碳刷,经过大量研究发现,虽然接地碳刷的性能有了很大的提高,但是不能解决集电环过渡磨损的根本性问题,由于接地碳刷在磨损范围内时对集电环的磨损程度是很小的,但是如果接地碳刷过渡磨
损,导致碳刷连接导线的铜丝暴露出来后与集电环产生摩擦,这样就会使得集电环快速磨损,这样会在短时间内使得集电环磨损严重。为了控制接地碳刷连接导线铜丝不摩擦集电环,应该在碳刷未磨损到连接铜丝高度时产生接地保护信号,提示维护人员更换接地碳刷。为此特研究这种带有磨损极限保护报警的接地碳刷,原理图如下:
同时,风力发电又是新能源发电技术中最成熟和最具规模开发条件的发电方式之
一。因此,近几年来,中国的风力发电事业也得到了很快的发展。
1中国的风能资源
风能资源是由于地球表面大气流动形成的一种动能资源,因此一般说来,其特点是靠近地面的风速越低,风能就越小;而离地面越高风速越大,其风能也越大,因而在估算风能资源时,离地高度是关键因素之一。本文以离地10m高的风
能估算。
由于中国幅员辽阔,海岸线长,拥有丰富的风能资源,但地形条件复杂,因此风能资源的分布并不均匀。据中国气象科学研究院对全国900多个气象站测算,陆地风能资源的理论储量为32.26亿kw,可开发的风能资源储量为2.53亿kw,主要集中在北部地区,包括内蒙古、甘肃、新疆、黑龙江、吉林、辽宁、青海、西藏,以及河北等省、区。风能资源丰富的沿海及其岛屿,其可开发量约为10亿kw,主要分布在辽宁、河北、山东、江苏、上海、浙江、福建、广东、广西和海南等省、市、区。但北部地区这些省、区,由于地势平坦、交通便利,因此有利于建设连成一片的大规模风电场,例如新疆的达坂城风电场和内蒙古的辉
腾锡勒风电场等。
2风电的发展过程和现状
中国的风力发电是于20世纪50年代后期开始进行研究和试点工作的,当时在吉林、辽宁、新疆等省、区建设了容量在10kw以下的小型风力发电场,但其
后就处于停滞状态。到了20世纪70年代中期以后,在世界能源危机的影响下,特别是在农村、牧区、海岛等地方对电力迫切需求的推动下,中国的一些地区和部门对风力发电的研究、试点和推广应用又给予了重视与支持,但在这一阶段,其风电设备都是独立运行的。直到1986年,在山东荣城建成了中国第一座并网运行的风电场后,从此并网运行的风电场建设进入了探索和示范阶段,但其特点是规模和单机容量均较小。到1990年已建成4座并网型风电场,总装机容量为
4.215mw,其最大单机容量为200kw。在此基础上,风力发电从1991年起开始步入了逐步推广阶段,到1995年,全国共建成了5座并网型风电场,装机总容量为36.1mw,最大单机容量为500kw。1996年后,风力发电进入了扩大建设规模的阶段,其特点是风电场规模和装机容量均较大,最大单机容量为1300kw。从1996~2002年末,中国风电装机总容量已达470mw。而一些省份风电装机容量见
表1。
表1一些省份2002年末风电装机容量
省、区容量(mw)省、区容量(mw)
辽宁102.51吉林30.06
新疆89.65甘肃16.20
广东79.29河北13.45
内蒙古75.84福建12.00
浙江33.05海南8.70
3风电场投资成本和风电机组的制造技术
(1)风电场投资成本:
风电场投资成本(单位千瓦造价)是衡量风电场建设经济性的主要因素,归纳
起来有以下三个方面:
①风电机组的制造成本,由于风电机组是风电场的主要设备,因此风电机组的制造成本将直接关系到风电场的总投资。但随着风电机组制造技术的不断提高和机组性能的不断改进,其单机容量的不断扩大,这将使风电机组单位千瓦的造
价会明显下降,因此也随之使风电场的造价下降。
②风电场的规模,亦即风电场的装机容量。一般说来,风电场的规模越大,其造价越低,这就是所谓规模效应。这种规模效应将使风电场单位千瓦的配套设
施相对地下降,如与电网配套设施的建设费用等。
③风电场选址,这也直接关系到风电场的经济效益。风电场选址、风电机组定位都选得适当,那么风电场就可以多发电量,风电场的经济性就好,若风电场选在交通便利的地方,运输成本就可下降等,这些也将使风电场的建设成本下降。
从中国目前风电场单位千瓦的造价看,其总趋势在不断地下降之中,例如,20世纪90年代中期,中国风电场的单位千瓦造价,还高达10000多元/kw,但到了21世纪初,单位kw的造价已降到8000多元/kw,这说明中国风电事业在近12年中,有了长足的进步,也为今后的大发展打下了基础。当然中国的风电场建设成本比起发达国家来,还有一定的差距,不过随着中国风电机组制造水平的不断提高和风电场建设经验的不断积累,其造价将进一步地下降。
(2)风电机组的制造技术:
风电机组是风电场的发电设备,也是风电场的主要设备,其投资约占风电场总投资的60%~80%,因此风电机组的制造水平将直接反映一个国家风电的发展
水平。
自20世纪70年代中、后期开始,中国真正进入了现代风力发电技术的研究和开发阶段。在这一阶段中,经过单机分散研制、重点攻关、实用推广,以及系列化和标准化等工作之后,使中国的风力发电技术无论在科学研究方面,还是在设计制造方面均有了不小的进步和提高,同时也取得了明显的社会效益和经济效益,主要解决了边远无电地区的农、牧、渔民的用电问题。但其风电机组的单机
容量仅为几百瓦到10kw,也均属独立运行的风电机组。
到了20世纪80年代,主要集中在研制并网型的风电机组上,并且陆续制造出从几十kw到200kw的机组。但由于这些风电机组自行研制周期长,又赶不上市场对更大容量风电机组的需求,因此大部分样机均来不及改进和完善并转化为商业性机组。在这种情况下,为了尽快提高中国风电机组的制造水平和满足市场的需求,国家采取了以下两条措施:①引进国外成熟技术,吸收消化,以提高国产化机组的制造技术。例如,已通过支付技术转让费的方式,从国外引进了600kw机组全套制造技术。目前,国内有关的风电机组制造厂家的风电主机生产企业,已研制出600kw机组的关键部件,如发电机、齿轮箱和叶片等,并且600kw的机组其本地化率已可达90%。②采用与国外公司合作生产的方式引进技术,并允许国外风电机组制造厂商在中国投资设厂。如国际著名的叶片制造商丹麦的lm公司就在天津独资设厂生产。而中国风力发电的大发展将为这些企业提供良好的机
遇。
4中国风电的发展前景
(1)发展风电的必要性:
前面已经提到,中国有丰富的风能资源,这为发展中国的风电事业创造了十分有利的条件。但就中国目前电力事业而言,火力发电仍是中国的主力电源。以燃煤为主的火电厂,正在大量排放co2和so2等污染气体,这对中国的环保极为不利。而发展风电,一方面有利于中国电源结构的调整;另一方面又有利于减少污染气体的排放而缓解全球变暖的威胁。同时,又有利于减少能源进口方面的压
力,对提高中国能源供应的多样性和安全性将作出积极的贡献。
(2)国家对发展风电的政策支持:
由于风电场建设成本较高,加之风能的不稳定性,因而导致风电电价较高,而无法与常规的火电相竞争。在这种情况下,为了支持发展风力发电,国家曾给
予多方面政策支持。
例如,1994年原电力工业部决定将风电作为电力工业的新清洁能源,制定了关于风电并网的规定。规定指出,风电场可以就近上网,而电力部门应全部收购其电量,同时指出其电价可按“发电成本加还本付息加合理利润”原则确定,高于电网平均电价部分在网内摊消。为了搞好风电场项目的规范化管理,又陆续发布了一些行业标准,如风电场项目可行性研究报告编制规程和风电场运行规程
等。有了上述的政策支持,从此风电的发展便进入了产业化发展阶段。与此同时,国家为了支持和鼓励发展风电产业,原国家计委和国家经贸委曾
提供补贴或贴息贷款,给建立采用国产机组的示范风电场业主。
(3)发展风电的展望:
据不完全统计,2003年年初在建项目的装机容量约为60多万kw,其中正在施工的约有10万kw,可研批复的有22万kw,项目建议书批复的有32万kw,包括两个特许权项目。如果这些项目能够如期完成,那么到2005年底合计装机
可超过100万kw。
预计“十一五”计划期间(2006~2010年),全国新增风电装机容量可达280
万kw,因而累计装机总容量约可达400万kw。
5结束语
风力发电是一个集计算机技术、空气动力学、结构力学和材料科学等综合性学科的技术。中国有丰富的风能资源,因此风力发电在中国有着广阔的发展前景,而风能利用必将为中国的环保事业、能源结构的调整,减少对进口能源依赖作出巨大的贡献。展望未来随着风电机组制造成本的不断降低,化石燃料的逐步减少及其开采成本的增加,将使风电渐具市场竞争力,因此其发展前景将是十分巨大的。
第四篇:论文的特性
论文是研究人员在进行科学研究之后,为表述科学研究成果而撰写的理论性文体,又称科学论文,简称论文。科学研究是人类社会实践的一项重要内容,是人类认识世界、改造世界、推动社会发展的有效手段。随着科学的空前发展,新的见解、新的发明创造层出不穷,旧的观点不断得以更新,论文就是这些新观点、新见解、新发明的研究结晶。它通过科学的分析、论证,阐述各个专业领域最新的研究结论,探讨客观事物的发展规律。论文的撰写过程是一个不断地接近真理、认识真理的过程。论文一方面可以作为一种精神力量渗透到整个社会意识形态领域中,另一方面又可以作为一种物质力量运用到生产实践中去。论文可以说是人类智慧的集中反映。论文属于应用文体,有非常鲜明的特点和严格的规范。无论哪类学科,哪门专业,哪种类型的论文一般都具备以下六点共性:
一、科学性论文的这一特点是由其本身性质决定的。科学研究的任务是正确认识客观规律,揭示客观事物的发展规律,探求客观真理,推动人类社会向更文明的阶段发展。因此,学术论文是以科学性为前提的,这一精神贯穿着论文写作的始终。首先,论文的论点和结论必须科学。它必须正确反映客观事物的本质和规律,能够经得起实践的检验。论点绝对不能主观臆造,不能带有主观随意性和偏见。其次,论文的论证和论据必须科学。学术论文通过科学的研究方法如观察、调查、实验等,并运用概念、判断、推理等对立论进行严密而富有逻辑性的科学论证。所引用的论据无论是实地调查来的,还是实验中来的,或是文献中摘引来的,都要求真实、典型,真正成为论点的支柱。再次,论文的论述必须科学。措辞严谨,概念准确,条理清楚,结构完整,才能体现正确的认识过程,令人信服地传达科学的学术见解。论文的科学性要求写作者从探求科学真理的目标出发,以科学的世界观和方法论为指导,坚持实事求是的精神,采取认真、严谨的治学态度来发现问题、研究问题、解决问题,并将揭示出来的客观规律形诸文字,加以科学的表述。
二、学术性论文反映的是某专业领域最新的学术研究成果,对科学事业的发展和人类文明的进步起一定的推动作用。论文的价值即体现在学术性上,而论文的学术性又突出地体现在专业性上。学术是有系统、较专门的学问,它往往以学科的形式表现出来。学科门类繁多,各学科之间虽然有许多相同、相通之处,但差别是主要的,各学科都有自己特定的研究领域,有自己专业研究的基本方法和技巧,有自己的理论体系和科学术语,形成了专门化的知识体系。比如经济学方面的论文,需要研究和解释的是经济领域的问题和现象,那就必须运用经济学的分析方法,采用经济学的分析工具;而管理学方面的问题,其分析问题的方法、工具、表述方式则必须符合管理学的学科要求。人们通常将学科分为自然科学和社会科学两大类,两类之下又可逐层划分下去。分工越细,学问也就越专门化。论文要研究和阐述的就是这些专业知识中的某一个问题。因此,只有在掌握专业知识的基础上,对本学科的研究领域、研究方法、理论体系等基本问题有了充分的了解,才能提出有价值的学术问题,从而进行学术研究。论文所论述的内容,使用的语言都必须与所论述的学科密切相关,这是论文的显著特点。
三、独创性论文不仅要进行专业化的学术研究,而且还要报告自己独到的研究成果。创造是科学的本质,独创性是论文的生命。是否有创见,是衡量学术论文价值高低的标准。论文不同于一般的教科书,它不能重复已有的知识,甚至也不同于一些学术专著。有些学术专著主要用于专业知识的传播和普及,因而比较强调知识的系统性和常规性,但论文绝不能人云亦云,必须创造性地解决某一专业领域的理论问题或实践问题。不同的研究者创造能力可以有大小,创造水平可以有高低。大到能够开创一门新学科、创立一个新学派,小到发现一条有价值的资料,但无论对于哪个层次的研究者而言,独创性这一点都必须是研究者从发现问题开始,到研究问题、解决问题,最后到撰写论文的整个过程中自始至终、坚持不懈的追求。具体说来,独创性可以体现在研究和探索前人未曾涉及的领域;可以纠正或补充前人的观点;可以综合前人的研究,揭示今后研究的方向;可以为前人的立论提供新的事实材料或采用新的研究方法等等,不一而足。
四、理论性学术论文不能停留于事实、现象的罗列,必须探究事物的本质及规律。写论文必须运用理论思维,通过对事实的抽象、概括、说理、辨析和严密的逻辑论证将一般现象上升到一定的理论高度。论文的基本框架是逻辑的,是以中心论点为核心,以分论点为支柱的严密的逻辑体系,其中充满了一般与个别、整体与部分、主要与次要、原因与结果、现象与本质等事理关系。很多作者的论文水平不高,其重要原因就在于论文缺乏理论性。没有理论支持的论文,只能囿于事实材料的堆积,不能从一般的现象中看到问题的本质,由表及里,由此及彼,从而达到对研究对象的客观规律性的认识。论文的理论性是作者的学识水平、理论素养和实践经验的综合反映。
五、实践性论文要充分考虑到文章的实践性和现实意义。只有从社会现实需要出发,从科学进步需要出发,才能写出满足时代发展要求,真正能够体现论文价值的文章。不同学科的论文,其应用性、实践性的表现形式也不同。自然科学方面的论文,它的应用性和社会价值往往比较直观,甚至可以直接产生社会效益,对生产技术的发展及其所研究的学科本身都具有较明显的现实意义;社会科学方面论文的应用性和社会价值虽然常常不如自然科学方面论文那么直接和明显,但社会科学方面论文提出的新观点、新发现、新理论,对本学科的发展和社会的进步同样具有指导和推动作用,因而也同样具有实践性和现实意义。
六、规范性论文具有统一的书写格式和语言规范。科技报告、学位论文等的编写格式已由国家制定了统一的标准。为了便于交流和应用,论文必须运用规范的语言文字系统和符号系统进行表述。这也是论文不同于其他文体的特征之一。来源:中华秘书
第五篇:Z元件温度补偿技术论文
摘要:本文详细地介绍了光敏Z-元件、磁敏Z-元件以及力敏Z-元件的温度补偿原理与补偿方法,供用户利用光、磁、力敏Z-元件进行应用开发时参考。
关键词:Z-元件、敏感元件、温度补偿、光敏、磁敏、力敏
一、前言
半导体敏感元件对温度都有一定的灵敏度。抑制温度漂移是半导体敏感元件的常见问题,Z-元件也不例外。本文在前述文章的基础上,详细介绍Z-元件的温度补偿原理与温度补偿方法,供光、磁、力敏Z-元件应用开发参考。
不同品种的Z-元件均能以简单的电路,分别对温、光、磁、力等外部激励作用输出模拟、开关或脉冲频率信号[1][2][3],其中后两种为数字信号,可构成三端数字传感器。这种三端数字传感器不需放大和A/D转换就可与计算机直接通讯,直接用于多种物理参数的监控、报警、检测和计量,在数字信息时代具有广泛的应用前景,这是Z-元件的技术优势。但由于Z-元件是半导体敏感元件,对环境温度影响必然也有一定的灵敏度,这将在有效输出中因产生温度漂移而严重影响检测精度。因而,在高精度检测计量中,除在生产工艺上、电路参数设计上应尽可能降低光、磁、力敏Z-元件的温度灵敏度外,还必须研究Z-元件所特有的温度补偿技术。
Z-元件的工作原理本身很便于进行温度补偿,补偿方法也很多。同一品种的Z-元件,因应用电路组态不同,其补偿原理与补偿方法也不同,特就模拟、开关和脉冲频率三种不同的输出组态分别叙述如下。
二、模拟量输出的温度补偿
对Z-元件的模拟量输出,温度补偿的目的是克服温度变化的干扰,调整静态工作点,使输出电压稳定。
1.应用电路
Z-元件的模拟量输出有正向(M1区)应用和反向应用两种方式,应用电路如图1所示,其中图1(a)为正向应用,图1(b)为反向应用,图2为温度补偿原理解析图。
2.温度补偿原理和补偿方法
在图2中,温度补偿时应以标准温度20℃为温度补偿的工作基准,其中令:
TS:标准温度
T:工作温度
QS:标准温度时的静态工作点
Q:工作温度时的静态工作点
QS¢:温度补偿后的静态工作点
VOS:标准温度时的输出电压
VO:工作温度时的输出电压
在标准温度TS时,由电源电压E、负载电阻RL决定的负载线与TS时的M1区伏安特性(或反向特性)相交,确定静态工作点QS,输出电压为VOS。当环境温度从TS升高到T时,静态工作点QS沿负载线移动到Q,相应使输出电压由VOS增加到VO,且VO=VOS+DVO,产生输出漂移DVO。若采用补偿措施在环境温度T时使工作点由Q移动到QS¢,使输出电压恢复为VO,则可抑制输出漂移,使DVO=0,达到全补偿。
(1)利用NTC热敏电阻
基于温度补偿原理,在图1(a)、(b)中,利用NTC热敏电阻Rt取代负载电阻RL,如图3(a)、(b)所示,温度补偿过程解析如图2所示。
在图3电路中,标准温度TS时负载电阻为Rt,当温度升高到工作温度T时,使其阻值为Rt¢,可使静态工作点由Q推移到QS¢,由于Rt.