公证处探索人脸识别防欺诈

时间:2019-05-12 17:56:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《公证处探索人脸识别防欺诈》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《公证处探索人脸识别防欺诈》。

第一篇:公证处探索人脸识别防欺诈

公证处探索人脸识别防欺诈

北京日报讯(实习记者 王维维)昨天是我国《公证法》颁布实施六周年。记者从周末召开的首都公证事业发展论坛上获悉,为应对日益增加的骗取公证书谋取利益案件,避免欺诈公证的风险,有公证处准备探索引入人脸识别系统帮助识别身份。

据北京市方圆公证处副主任吴凤友介绍,随着《公证法》的颁布实施,公众办理公证的意识逐年提高,目前全市公证机构年办理60余万件公证事项。其中,民事公证增长最快。目前,首都公证事业已走过了六十年,公证机构也由原来的行政机关变成了一个独立执业的、具有民事主体地位的法人单位,在执业过程当中所产生的责任也要独立承担。尤其是在房产等迅速升值的同时,巨大的财产利益考验着社会诚信系统,欺诈公证、骗取公证书谋取利益的情况层出不穷,成了公证机构最大的困扰。

记者了解到,在婚姻法司法解释

(三)正式实施后,夫妻间婚前婚后公证房产的案件也有所增加,导致欺诈公证、骗取公证书谋取利益的案件也有所增多。如在办理银行的抵押贷款时,房产可能属于夫妻一方,也可能是共同财产,这时,公证机构在审查婚姻状况时要求配偶进行表态,就会遭遇通过造假结婚证,雇人客串配偶等欺诈公证。甚至有些不法分子公然就在公证处的门前,当场培训如何作假对付公证人员的技巧。据介绍,市司法局和市公安局已经联合发文,对于在办理公证过程中提供假证件或者是身份造假骗取公证书的行为,要予以严厉的制裁和打击。目前为防假,公证机构都安装了二代身份证识别系统,实时录像刻录系统,对于办理财产公证,当事人必须现场拍照。但是,公安系统的个人相关信息,比如身份证件的核对,公证部门都必须付费才能查询。这在某种程度上,延长了公证办理的时间,也使得公证的程序将安全防范欺诈当成第一要求,快速服务则退居其次。

吴凤友副主任说,目前全市公证机构都设置了现场录音、拍照系统,并借鉴法院的庭审刻录系统,全程对公证过程进行同步录制。虽然不能杜绝不法人员欺诈公证的欲望,但至少可以用声画影像证明公证过程和认定事实,一定程度上规避被欺诈的风险。他透露,作为本市成立最早、规模最大的公证机构,方圆公证处正准备探索引入人脸识别系统,改变以往只靠肉眼对照身份证进行识别的不足。

据悉,市司法局和市公证协会举办的首都公证事业六十年成果巡回展也正式拉开帷幕,真实记录、反映首都公证工作60年来发展情况的展览将在全市25家公证处巡展。此外,从昨日起,全市25家公证机构也根据市司法局的统一部署,深入各企业、社区、村庄,以组织专题讲座、发放宣传材料、现场解答群众咨询等形式,开展公证法律咨询和宣传活动,讲解、宣传公证法律知识,解答群众关心的婚姻、继承、房产转让等法律问题。

第二篇:人脸识别技术是什么原理

人脸识别技术是什么原理

1面像识别原理2、1、1面像识别技术概述

面像识别是近年来随着计算机技术、图象处理技术、模式识别技术等技术的快速进步而出现的一种崭新的生物特征识别技术。生物识别技术是依靠人体的身体特征来进行身份验证的一种高科技识别技术,如同人的指纹、掌纹、眼虹膜、DNA以及相貌等人体特征具有人体所固有的不可复制的唯一性、稳定性、无法复制一样,不易失窃或被遗忘。由于每个人的这些特征都不相同,因此利用人体的这些独特的生理特征可以准确地识别每个人的身份。

随着计算机技术的迅速发展,人们开发了指纹识别、声音识别、掌形识别、签名识别、眼纹(视网膜)识别等多种生物识别技术,目前许多技术都己经成熟并得以应用。而面像识别技术则是生物识别技术的新秀,与其他识别技术相比较,面像识别具有简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面。

面像识别技术包含面像检测、面像跟踪与面像比对等课题。面像检测是指在动态的场景与复杂的背景中判断是否存在面像并分离出面像,面像跟踪指对被检测到的面像进行动态目标跟踪,面像比对则是对被检测到的面像进行身份确认或在面像库中进行目标搜索。

面像检测分为参考模板、人脸规则、样本学习、肤色模型与特征子脸等方法。参考模板方法首先设计一个或数个标准人脸模板,然后计算测试样本与标准模板之间的匹配程度,通过阀值来判断是否存在人脸;人脸具有一定的结构分布特征,人脸规则即提取这些特征生成相应的规则以判断测试样本是否包含人脸;样本学习则采用模式识别中人工神经网络方法,通过对面像样本集和非面像样本集的学习产生分类器;肤色模型依据面像肤色在色彩空间中分布相对集中的规律来进行检测;特征子脸将所有面像集合视为一个面像子空间,基于检测样本与其在子空间的投影之间的距离判断是否存在面像。

上述方法在实际系统中也可综合采用。

面像跟踪一般采用基于模型的方法或基于运动与模型相结合的方法,另外,肤色模型跟

踪也不失为一种简单有效的手段。

面像比对从本质上讲是采样面像与库存面像的依次比对并找出最佳匹配对象。因此,面像的描述决定了面像识别的具体方法与性能。目前主要有特征向量与面纹模板两种描述方

法,特征向量法先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离、角度等等

属性,然后计算出它们的几何特征量,这些特征量形成一描述该面像的特征向量;面纹模板

法则在库中存储若干标准面像模板或面像器官模板,在比对时,采样面像所有象素与库中所

有模板采用归一化相关量度量进行匹配。另外,还有模式识别的自相关网络或特征与模板结

合的方法。

面像识别技术的最新进展是可以通过摄象机来搜索捕捉识别活动的人像,而不仅仅

识别照片。例如,最近由美国新泽西州Visionics公司开发的面像局部特征分析法识别

系统,仅用一部摄象机和一台计算机,即可在人群中识别出某个人来。

该系统利用摄象机扫描拍摄的某一区域,搜索有可能是人脸的形状。然后在存储器

中搜索已事先存入的与之类似的面部特征。为了确认扫描到的眼睛、鼻子和嘴等特征就是一

个活人而不是人体模型或图片,系统还对眨眼或其他可以提供信息的面部动作进行搜索。

然后系统对组成面部图像的像素进行分析。它将每个像素点的明暗度与相邻点进行比较,查找明暗度向周围呈放射突变的区域。在眉骨、眼睛、或者其他突起的特征,比如颧骨和鼻子等处,都会出现这种突变。系统将勾勒出每一个这种像素点的位置,这些点称为“参照点”然后在点之间连线,形成一个由三角形构成的网络。

系统将测量每个三角形的角度,生成由672个1和0组成的数来描述一张面孔。之后程

序尝试从它的数据库中找出与该数据相匹配的类似记录。这种匹配不可能绝对理想,因此软

件会将相似程度分为不同的等级。软件是根据骨络结构描绘参考点的,因此胡须、化妆和眼

睛等伪装都不可能骗过它。

用于扑捉面部图像的除了为标准视频外,近来的发展趋势是热成像技术。热成像技术通

过分析由面部的毛细血管的血液产生的热线来形成面部图像,与视频摄像头不同,热成像技

术并不需要在较好的光源条件下,因此即使在黑暗情况下也可以使用。并可更好地排除胡须、头发以及化妆引起的面部变化的干扰。2、1、2面像识别过程

1.建立面像档案:可以从摄像头采集面像文件或取照片文件,生成面纹(Faceprint)编码;

2.获取当前面像,可以从摄像头捕捉面像或取照片输入,生成其面纹;

3.将当前面像的面纹编码与档案中的面纹编码进行检索比对。

“面纹”编码方式是根据脸部的本质特征和开头来工作的,它可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,使得它可以从百万人中精确地辨认出一个人。

上述整个过程都自动、连续、实时地完成,而且系统只需要普通的处理设备。几乎所有的生物测量过程对人们来说都是一种干扰。指纹和掌纹的测定需要人们将手放在玻璃表面。虹膜扫描需要用激光照射你的眼睛。面部识别最大的优越性在于它的方便性, 快速性,而且是非侵扰的。面部识别无需干扰人们行为而达到识别效果,无需为是否愿意将手放在指纹采集设备上,或对着麦克风讲话,或是将他们的眼睛对准激光扫描装置而进行争辩。你只要很快从一架摄像机前走过,你就已经被快速的检验。2、1、3面像识别技术应用范围

面像识别技术作为生物识别技术体系的后起之秀,将有着十分广泛的应用前景。可应用于诸多领域,如出入口控制、银行金融系统、公安追辑嫌疑犯、反恐怖斗争以及互联网中等等。在我国开展的“追逃”斗争,如果能利用面像识别技术,则可大大提高工作效率,并能对犯罪分子产生极大的威慑力量。使用面像识别系统只要在重要的车站、码头、机场、海关出入口附近架设摄像机,系统即可在无人职守的状态下,自动捕捉进、出上述场所的人员的头像,并通过计算机网络将面像特征数据传送到计算机中心数据库,自动与面像数据库中的逃犯面像比较,迅速准确地作出身份判断。一旦发现吻合的头像,可以自动报警并记录。

我国银行金融系统对安全控制有着极高的要求,如电子商务信息系统、金库的安全设施、保险柜、自动柜员机的使用等。由于近年来金融诈骗、抢劫发生率有所增高,对传统安全措施提出了新的挑战。面像识别技术不需要携带任何电子、机械“钥匙”,可以杜绝丢失钥匙、密码的现象,如果配合IC卡、指纹识别等技术可以使安全系数成倍增长。同时,在ATM自动取款机上应用面像识别技术,可以免除用户忘记密码的苦恼,还可以有效防止冒领、盗取的事件发生。

目前,在我国,面部识别技术的研究和应用还刚刚开始,但在欧美等发达国家这一技术已被应用在许多场所。特别是“9.11”恐怖事件之后,美国警方率先在冰岛国际机场、美国波士顿机场、美国奥克兰机场、美国亚特兰大机场、美国休斯敦机场等开始应用这一先进技术,借助闭路监视系统监控扫描人群自动搜寻警方所需要的恐怖分子目标。

蒋遂平:人脸识别技术及应用简介人脸识别的分类

1.1 鉴别、验证和监控

(1)鉴别(identification):鉴别回答“这是谁?” 将给定的人脸图象与计算机中存储的N个人的图象逐个比较,输出M幅图象,这些按与给定图象的相似度从大到小排列,再由人来确定这是谁。通常,一个人在计算机中只存储一幅正面图象。

(2)验证(verification):验证回答“这是否为某人?” 将给定的人脸图象与与计算机中存储的某人的图象比较,回答给定的图象是否为某人的图象。通常,一个人在计算机中存储多幅不同角度的图象。

(3)监控(watch list):监控同时具有鉴别和验证,回?quot;这是否为要找的人?"(Are you looking for me?)。将未知身份的人的图象输入计算机,计算机决定这个人是否在监控名单中,如果在,还必须确定这个人的身份。

1.2 人脸识别和人头识别

(1)人脸识别:输入给计算机识别的人脸图象,只包括人的脸部部分,没有背景、头发、衣服等。这时,计算机在进行真正的人脸识别。

(2)人头识别:输入给计算机识别的人脸图象,除了包括人的脸部有皮肤的部分外,还有部分背景、头发、衣服。这时,人脸的五官特征是次要的,头发、背景、人脸轮廓等是主要特征,一旦头发、背景等变化,识别率下降。

1.3 自动与半自动人脸识别

(1)自动人脸识别:输入到计算机的图象可以是包含人脸的图象,由计算机自动检测人脸部分进行分割后,进行识别。最初人们认为人脸检测是件容易的事,后来发现人脸检测可能比人脸识别更困难(特别是在灰度图象情况下,这时没有运动信息和肤色信息可利用),人脸检测已经是一个独立的研究课题。

(2)半自动人脸识别:采用人工确定人脸图象中两眼各自的中心位置,计算机根据这两个位置分割人脸图象,进行识别。常用于人脸鉴别。人脸识别的性能

2.1主要性能指标

测量人脸识别的主要性能指标有:(1)误识率(False Accept Rate, FAR):这是将其他人误作指定人员的概率;(2)拒识率(False Reject Rate, FRR):这是将指定人员误作其它人员的概率。

计算机在判别时采用的阈值不同,这两个指标也不同。一般情况下,误识率FAR 随阈值的增大(放宽条件)而增大,拒识率FRR 随阈值的增大而减小。因此,可以采用错误率(Equal Error Rate, ERR)作为性能指标,这是调节阈值,使这FAR和FRR两个指标相等时的FAR 或 FRR。

2.2 影响人脸识别性能的因素及解决方法

(1)背景和头发:消除背景和头发,只识别脸部图象部分。

(2)人脸在图象平面内的平移、缩放、旋转:采用几何规范化,人脸图象经过旋转、平移、缩放后,最后得到的脸部图象为指定大小,两眼水平,两眼距离一定。

(3)人脸在图象平面外的偏转和俯仰:可以建立人脸的三维模型,或进行三维融合(morphing),将人脸图象恢复为正面图象。

(4)光源位置和强度的变化:采用直方图规范化,可以消除部分光照的影响。采用对称的从阴影恢复形状(symmteric shape from shading)技术,可以得到一个与光源位置无关的图象。

(5)年龄的变化:建立人脸图象的老化模型。

(6)表情的变化:提取对表情变化不敏感的特征,或者将人脸图象分割为各个器官的图象,分别识别后再综合判断。

(7)附着物(眼镜、胡须)的影响。

(8)照相机的变化:同一人使用不同的照相机拍摄的图象是不同的。应用情况

在无数影视或新闻中出现过这样的场景:警方利用人脸识别技术抓住了罪犯。然而,在现实生活中,人脸识别技术的效果并不令人满意。

美国陆军实验室在13周时间内,用270人的图象测试一个人脸识别系统,发现识别率只有 51%。这套系统在机场中进行测试时,存储了250人的图象,其中的15人在1个月内通过摄影机958次,只有455次被正确辨认,识别率只有47%。在美国一个机场开展的一项为期8周的公开测试中,使用一家公司的人脸识别系统,在4个星期出错率为53%。在另一个机场开展的一项为期90天的测试中,人脸识别系统发出的错误警报也太多。

人脸识别技术效果不尽如人意的原因:真人的电视图像与存储在数据库中的照片在布光和角度方面有差别。目前的人脸识别技术在人处于静止状态或一小群人通过检测点时有效,因此不适合在交通流量大的机场和街道拐角处使用。人脸识别要得到广泛采用,还很有待时日。

第三篇:银行用人脸识别

银行人脸识别运用

银行是国家货币流通的主要场所,业务中涉及大量现金、有价证券及贵重物品,因而银行的安全一直以来都是国家安全防范的重点。近年来,金融行业市场发展迅猛,随着营业网点、ATM机、银行资金流动等的增多,银行安防系统所面临的挑战越来越大。为加强对银行、储蓄所、金库、贵重物品集中场所的安全防范,银行越来越重视技防的作用,作为防止犯罪发生的有效途径,双门互锁门禁系统也应运而生。目前市场上的双门互锁门禁系统大都采用读卡或者指纹的身份验证方式,由于这两种方式都存在一定的安全隐患或不足,因而人脸识别技术的应用受到用户关注。

双门互锁系统是指两道门具有互锁联动的功能,即当一道门被打开时,另一道门则打不开,只有当两道门都关上时,才能打开其中的任一道门。根据《银行营业场所风险等级和防护级别的规定》等相关银行安全管理规范,储蓄网点等现金柜台的进出口必需设置两道门,而且员工在进入第一道门后必需要按照规范锁好第一道门才能进入第二道门,如进入第一道门后没有按要求关好此道门,员工将不能进入第二道门,从而更好地防止犯罪分子尾随作案。目前,市场上的双门互锁门禁系统大都采用读卡或者指纹的身份验证方式,但是这两种身份验证方式均存在一定的安全隐患。例如:磁卡和智能IC卡均容易被复制,窃取,丢失,它们作为验证模式已经不能满足日益增长的安全需要。而指纹门禁虽然成本低,但是对某类人群的适应性很差,例如指纹不清晰,有磨损等,同时在指纹上有油渍,水渍,蜕皮等情况下,指纹识别的误差也是很大的。另外,由于多年来指纹一直被当成辨识犯罪的工具,部分人会因为指纹被采集而在心理上产生抵触情绪。而人脸识别利用人的面部特征进行身份辨识,友好,直观,不需要人的刻意配合,是目前所有生物识别技术中对使用者影响最小的,准确性也高。更为可贵的是,有人脸识别门禁摄像头采集的人脸图像,也可为事后调查提供最直观的证据,因此,用人脸识别技术取代双门互锁系统中的读卡或者指纹的验证方式,是实现银行营业厅出入控制的一种最佳的选择。

人脸识别安全性更高

人脸识别技术上划分为1:1比对和1:N比对,对于银行可采用智能卡与人脸识别1:1比对方式相结合,其优势是双重的验证机制。首先需要智能IC卡或者ID卡验证,验证通过之后,进行人脸识别验证,人脸识别验证通过之后,才能开门。与单纯的采用智能卡的门禁系统相比,安全性更高,适合银行这样的高安全性场所使用。根据目前银行营业厅等重要场所的实际情况,可以设计安全通道门,由两道带人脸识别装备的防盗门、一台两门联动控制器等组成。

其工作原理是:首先在管理系统中注册人员,注册时每人分配一张IC卡或者ID卡,将人员的注册信息和人员图像注册到联动控制器中。以从公共区进入安全区为例,正常使用时,当人脸在门1的人脸识别上验证时,首先联动控制器查询门2是否闭合,如果门2处于开启状态,则拒绝在门1处进行验证,只有当门2闭合,才允许启动验证。

验证时,先刷卡,同时人脸识别摄像头会捕获一张图像,将卡号信息和图像传输至联动控制器中,控制器根据卡号信息找到注册时的图像,与捕获的图像进行比对识别,比对通过则控制器控制电锁开启,关上门1,在门2处重复上述的验证步骤。

在一些特殊情况下,比如卡丢失,员工需要进行挂失,重新补卡才能使用该系统;如果是有入侵者胁迫开门的情况,员工会使用胁迫开门功能,同时向后台管理系统报警,监控中心的人员在管理系统的实时监控中获取警情,可以采取相关报警动作;如果是多人脸识别,系统允许一定时间内,多人相继验证通过,系统才会开门。智能化管理

通过管理电脑对进出人员的权限,进出时间以及进入方式进行管理。并同时存储相应数据,以备事后查询。多人脸识别开门功能

在重要的区域,系统可以设置同时多个人脸识别(两人以上)才能开门的方式,即打开一道门要有多人同时在规定时间内通过人脸识别验证后,门才能打开。优势

综上所述,使用本方案有以下几个方面的优点。第一,使安全防范级别得到有效提升。

在原有智能卡门禁系统上融入人脸识别技术,可有效防止盗取他人智能卡或者监守自盗现象的发生,是原有出入控制系统安全防范级别的有效提升。第二,能与CCTV系统无缝结合。随着人们安防要求的逐渐提高,CCTV系统早已成为银行安防系统中的重要环节。本系统无须另添加任何其它设备即可与银行原有的CCTV系统无缝结合。本方案所述的人脸识别门禁系统还设计有一些通讯接口,可以和视频监控系统进行通讯。比如,在发生胁迫报警时,可以通知视频监控系统,使其调整监控画面,更方便观看现场的情况等。第三,灵活的事件处理和报警联动。

本系统可以与其它报警系统联动,对各种异常事件,如非法读卡,开门超时,门锁损坏,强行进入等,可根据用户实际需求设定相应的报警处理和提示,以确保安全防范区域的安全可靠,并对犯罪分子具有极大的威慑作用。结语

近些年来,人脸识别技术虽然取得了很大的发展,但是用户担心识别精度还是会受到光照、姿态、表情、伪装等因素的影响,正缘于此,他们在选用人脸识别产品上会有一些担心与顾虑,可喜的是,人脸识别技术的算法已越来越具鲁棒性(鲁棒性,在此指人脸识别算法的健壮性,减弱外界的光照,姿态,表情等因素对人脸识别的影响),再采用红外成像等手段,可以提升识别精度,使得人脸识别产品真正应用起来。

出入口控制作为安全防范系统中的重要环节,直接影响着整个系统内部的安全。目前,较为成熟的门禁解决方案是卡片或者卡片加密码的模式,但一旦卡片丢失或者密码遗失,对整个系统的安全就构成很大威胁或者对用户的使用造成不便。而人脸识别门禁系统用人脸作为“钥匙”来开门明显安全性更高,并且具有受场地环境影响小、识别准确率高、识别速度快、结果直观等优点,已经越来越受到广大客户的重视。

第四篇:人脸识别小结

人脸识别总结

一、概述

生物特征识别技术包括人脸识别、指纹识别、语音识别、表情分析及理解、虹膜识别等 人脸识别的实质就是借助计算机工具来分析人脸面部图像,采用不同的特征表示方法提取有效地人脸特征,是可用来辨识身份的一门自动处理技术,常见重要应用案例包括银行和军事重地的自动门禁系统、智能人脸监控系统、用于公共交通体系中安检系统的嫌疑人自动识别系统、网络服务中的在线验证系统等。产生不同个体较大差异性的内在因素主要有种族、性别、年龄、心理等。外在因素主要有光照变化、角度偏转、姿态、噪声千扰、遮挡、以及化妆遮挡物等。18世纪,就有一篇依据人脸特征信息进行身份鉴别的文章发表在《Nature》上,开启了近代最早的人脸识别研宄,最早的自动人脸识别系统是由Chan和Bledsoe创于1965年 人脸识别包括四个主要步骤:图像预处理、人脸检测、面部特征提取和分类识别。

二、研究领域

1、身份验证领域:通过人脸识别技术来判断和鉴别当前用户是否合法或者具备相应的功能权限,例如2008年北京奥运所采用的人脸识别系统。

2、智能视频监控领域,例如车站安装智能监控系统,该系统中加入了人脸识别技术以捕捉人群中的可疑罪犯。

3、人机交互领,例如人脸面部为视觉系统提供了最为主要的特征信息。

三、人脸识别方法及其算法

(一)方法分类

可以分为:基于几何特征的人脸识别、基于弹性图匹配的人脸识别、基于子空间分析的人脸识别、基于神经网络的人脸识别、基于隐马尔可夫模型等。 经典的特征脸“Eigenface”就是该时期由麻省理工学院的M.Turk和A.Pentlaiid提出的,采用PCA变换对原始图像进行降维处理,然后再进行分类识别。  P.Belhumeur等提出的Fisherfaces人脸也被广泛应用在人脸识别中。

90年代中后期,出现了一种基于动态连接结构(Dynamic Link Architecture)的弹性图匹配(Elastic GraphMatching)识别方法。 90年代末支持向量机被应用到人脸识别技术中。

(二)流行算法

主要分为:等距离映射_(Isometrical Mapping,简称 ISOMAP)、局部线性嵌入(Locally LinearEmbedding,简称LLE、拉普拉斯算子特征映射(Laplacian Eigenmaps)、拉普拉斯脸(Laplacianface)方法。基于拉普拉斯Belkin M等提出局部投影(LPP)方法。近期算法包括:  基于稀疏表示的人脸识别方法(Sparserepresentation recognition, SRC)针对此识别方法还出现了较多的改进模型,典型的有

 基于Gabor的稀疏表示  基于Metaface的稀疏表示等

(三)难点

1、人脸图像的成像条件包括较大的随机性:光照变化、姿态变换、表情变化、发 型改变、化妆、以及遮挡等复杂条件

2、人脸面部图像的复杂的三维结构属性:包括线性结构和非线性结构

3、人脸图像数据的维数问题

4、不同个体间的面部特征的差异性

四、人脸特征提取研究

(一)人脸特征提取和识别算法分类

  基于统计方法 基于几何方法

(二)具体实现

 主成分分析(principal component analysis, PCA)是一种典型的数据处理和数据降维方法

 Sirovich和Kirby首先研究人脸降维过程,采用基于镜像脸的技术  M.Turk_提出了基于PCA表示的特征脸的概念

 Fisher线性判别方法也是人工智能和模式识别领域中的重要方法之一

 Foley和Sammon提出了基于Sammon最佳鉴别平面的技术

 Duchene和Leclercq提 出了针对多类问题的Foley-Sammon最佳鉴别矢量集的求解公式

 Turk和Pentland提出了基于特征脸的特征提取方法  Kittler又提出了基于Fisher鉴别准则的提取面部特征方法  Hong和Yang提出了采用SVD进行特征提取方法  Cheng等改进并提出了一种新的相似性鉴别准则

 Liu等提出了基于最佳鉴别广义平面和最佳鉴别广义矢量集的一系列特征提取方法  郭等在此基础上提出了改进的最佳鉴别矢量方法  吴等又改进了广义最佳鉴别矢量方法  基于模型的特征提取方法

 Kass等首次提出了主动轮廊线模型(Active Contour Model,ACM), ACM也被称为Snake模型

 Lee等提出了一种改进Snake模型的方法,改进方法是由正面和侧面结构化特征来对面部进行特征点定位

 基于统计参数化模型的主动形状模型(Active Shape Model, ASM) 优势在于它不仅能有效地定位和提取目标物体的外部轮廓信息,而且能提取目标物体的内部轮廓和形状特征

 Cootes等在ASM基础上提出了主动表观模型(Active AppearanceModel,AAM)

(三)需要解决的问题

1、根据奇异值分解原理可以得到人脸图像的奇异值向量所在的基空间(矩阵)是由 人脸图像本身决定的。

2、当光照、姿态、表情变化以及遮挡等复杂条件下,人脸的表象会产生较大变化, 从而造成人脸识别系统的性能下降。

3、需要构造一种能有效描述目标纹理特性的局部纹理轮廓模型,进一步提高模型的 特征点定位精度。

第五篇:看守所人脸识别应用解决方案

看守所人脸识别应用解决方案

近几年,我国 发生的越狱事件频发,有些犯人越狱手段极其恶劣,不仅将狱警杀害,甚至砍下手指进行指纹识别开锁,看守所的安全防范刻不容缓。传统的钥匙控制出入也存在遗失、盗用的风险,相关专家认为,更安全可靠防范的还是使用智能的看守所人脸识别更加可行。利用看守所人脸识别,精确分析每个人的面貌特征进行识别,从而得到有效的管理制度。

众所周知,人脸识别系统是一款通过人脸的特征进行认证的生物识别认证系统。其主要原理为:利用计算机图像处理技术从图片中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值,通过这个值即可确定是否为同一人。系统具有如下特点:

(1)安装简单,可以直接在现有高清系统改造完成(2)非接触性,人与设备无需接触

(3)认证速度快,一般情况在1秒内完成认证

(4)具有并发认证能力,能同时对多个人物进行识别。

正因为以上特性,其在哈尔滨延寿县看守所两个技防漏洞方面具有天然的优势解决方案。笔者通过北京众智益华公司的人脸识别-“陌生人”防范系统,人脸识别门禁系统两个热销产品来详细的讲解如何自动实现防范弥补以上两个漏洞的出现。

一,从曝光的视频可以看出案犯是尾随狱警到了值班室内,并杀害了民警,化妆成民警出现到了出入口,大门口等不该出现的地方。北京众智益华的人脸识别-“陌生人”防范系统可以有效的解决此问题。其具体实现原理为:通过把可以在本地方(通道,大门口,值班室等)出现的人照片加入到白名单图库里,人脸识别系统会自动识别出现在摄像机镜头里的是白名单里的人,还是非白名单里的人,一旦发现非白名单的人系统会自动进行报警提示。报警内容主要通过:(1)声音提示,比如在发现非白名单人出现的现场(通道,大门口,值班室等),或其他有武警值班的室内进行语音报警提示,一方面对违规人员进行威慑警告,另一方面提示有关人员进行人工干预。(2)手机报警,一旦发现非白名单人员出现在敏感区域(出入口,大门口,某些门禁口),系统会自动通知安装手机客户端的用户(看守所领导等),让不在现场的人员也可以第一时间知道,并及时做出预案。通过以上布防,即使出现人为违规也同样能起到防范的作用,杜绝哈尔滨看守所的重大事故发生。

二,关于门禁,央视曝光视频可以看到,其实一般看守所里是有AB门的,但是案犯照样可以进出,从曝光视频看到案犯翻屉子和柜子可以联想看出,也许案犯是通过杀害民警后找到了钥匙进行了出入。北京众智益华的人脸识别门禁系统可以很好的解决这个问题。北京众智益华人脸识别门禁是通过2.4G无线卡+人脸的认证方式进行开门认证的,即使找到了无线卡而非本人(本系统同时具有活体验证功能)也不可能打开门禁。同时通过和称重系统相结合,即使案犯夹持民警尾随出入也照样无法打开门禁,反而会引发报警,及时让其他民警进行预案处理。通过哈尔滨延寿县看守所事件以及一些国内外其他越狱事件可以看出,凡是越狱分子都是危害极大的犯罪分子,他们在犯罪后不自我反省以及自我改造,而是穷凶极恶的进行越狱,这样的人一旦逃脱对社会的危害极大。而传统的监控系统以及安防系统有极大的缺陷需要人防补充,但人毕竟不是机器,有所疏漏不可避免。自动化智能的识别系统能很好的防范这些人防漏洞的存在,特别是以人脸识别系统为代表的生物智能识别更应该早日应用在这些敏感单位,杜绝为社会造成极大伤害的事件发生,同时也保障民警,武警等个人的生命财产安全。

看守所推出了一套全新人脸识别比对访客管理系统,其主要功能为通过人脸辨识系统,可以自动捕捉访客人的人脸,并对人脸进行分析,自动辨识陌生到访客人或是内部员工,系统连接到看守所内网,与会客系统交互数据,可联动控制人脸识别和门禁出入系统。

系统组成方式

本监狱访客管理系统主要由ca2身份信息安全管理系统和动态人脸抓拍比对系统组成。ca2身份信息安全管理系统,内置身份证验核系统,由以下4个子系统组成 ①身份登记验核系统:该系统可以连接到全国公民身份证号码查询服务中心,对探访人的身份信息进行核查。

②证件扫描录入系统:支持身份证等不同证件的扫描及信息的录入。

③身份信息管理系统:存储,管理探访者的身份信息,对访客探访时间点,探访时间长度等重要信息的查询。

④电脑通讯模块组成:可以连接到对接的网络,实时网络数据查询。人脸识别身份验证系统是监狱探访管理系统重要组成部分,主要由动态人脸抓拍系统,人脸比对系统,比对服务器,人等其他辅助设备组成。人脸识别访客管理系统主要由3部分组成,如下:

(1)摄像机:在探访区的各个楼层入口处安装专用人脸抓拍摄像机,正对着门口,拍摄每个进入该区域的访客的人脸。专用摄像机采用双镜头,一个镜头用来抓拍彩色照片,用于显示画面交互使用;另外一个镜头用于抓拍黑白照片,可以屏蔽照片背景,用于人脸照片比对过程中使用,从而达到提高比对的准确性。

(2)人脸抓拍主机:摄像机连接到人脸识别主机,人脸识别主机将处理摄像机拍摄到的人脸图像,并将人脸数据通过网络,传输到后端的系统服务器。

(3)人脸比对服务器:接收前端的人脸抓拍主机获取的人脸照片,并对人脸照片进行特征分析,获取人脸特征值,并通过人脸比对系统,进行比对,从中抽取近似值最高的若干张照片,并输出比对结果,联动看守所门禁控制器,控制探访区门禁出入系统。

方案概述

监狱大门及AB门是看守所与外界交接的重要部位。为严格控制监舍区,生产区人员出入,防范罪犯逃脱,实现有效的统一指挥,确保看守所的安全,在监狱大门及AB门安装智能人脸识别管理系统。

监狱人脸识别门禁管理系统由6个子系统组成:看守所外大门门禁管理系统;干警信道门禁管理系统;会见家属信道门禁管理系统;考勤系统;在押罪犯面像管理系统。

人脸产品、电锁、出门开关、报警装置等,全部链接至控制器上,由控制器进行出门权限控制。人脸产品、控制器、监控视频等都通过网络和控制计算机链接在一个网络中。

人脸识别型智能看守所门禁及访客综合管理系统解决方案将介绍一个全新的看守所安防系统,在安全防尾随系统的基础上结合先进的技术,对探监人员及监狱中的人员及干警进行权限设定和验证通过,确保看守所安全。

下载公证处探索人脸识别防欺诈word格式文档
下载公证处探索人脸识别防欺诈.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人脸识别技术解读(推荐阅读)

    人脸识别,特指利用分析比较的计算机技术。人脸识别是一项热门的计算机技术研究领域,人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度;它属于生物特征识别技术,是对生......

    人脸识别监狱管理系统

    人脸识别监狱通道管理系统 一、 概述 人脸识别技术简介 随着高科技的蓬勃发展,人体特征分析技术已经作为身份快速识别及视频监控等领域的最新增值点与应用点,在身份识别、智能......

    前沿人脸识别综述解读

    人脸识别综述 王军军 (西安交通大学,西安,710086) 摘要:人脸识别已成为多个学科领域的研究热点之一,本文对人脸识别的发展历史、研究现状进行了综述,系统地对目前主流人脸识别方法......

    人脸识别上网行为管理解决方案

    人脸识别上网行为管理解决方案 一、上网行为管理产品产生的背景 在Internet飞速发展的今天,网络已成为企业、个人的重要应用,但在应用当中,儿童使用电脑时长不受控制?机密文件密......

    人脸识别技术发展及应用分析解读[推荐]

    人脸识别技术发展及应用分析 人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机采集人脸图像,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行......

    人脸识别技术应用在铁路系统

    人脸识别技术应用在铁路系统 由于铁路系统部门众多、地点分散,现场环境复杂,日常维护非常困难。随着铁路系统信息化改革的不断深入,智能人脸识别技术已经广泛的应用在铁路系统......

    人脸识别综合实践报告(全文5篇)

    人脸识别综合实践报告 一、实践背景 人脸识别技术作为生物特征识别领域中一种基于生理特征的识别,是通过计算机提取人脸特征,并根据这些特征进行身份验证的一种技术。同其它生......

    人脸识别相关技术分析报告解读

    人脸识别相关技术 分析报告 2015年10月 目 录 第一章 分析概述 .........................................................................................................