第一篇:平方差练习题
平方差公式练习
一、填空
①两个数的和与这两个数的差的积,等于它们的(),即abab()。
二、用完全平方公式计算
①x3x3
③ x1x1x21
⑤ab3
5
ab3
5
⑦x2y1x2y1
三、若m2n26且mn3,则mn?
②x33x ④ 99101 ⑥2013220122014 ⑧x2y1x2y1
第二篇:平方差公式练习题精选(含答案)教案
平方差公式
1、利用平方差公式计算:
(1)(m+2)(m-2)
(2)(1+3a)(1-3a)
(3)(x+5y)(x-5y)
(4)(y+3z)(y-3z)
2、利用平方差公式计算
(1)(5+6x)(5-6x)
(2)(x-2y)(x+2y)
(3)(-m+n)(-m-n)
3利用平方差公式计算
11(1)(1)(-x-y)(-x+y)44
(2)(ab+8)(ab-8)
(3)(m+n)(m-n)+3n2
4、利用平方差公式计算(1)(a+2)(a-2)
(2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1)
(4)(-4k+3)(-4k-3)
5、利用平方差公式计算
(1)803×797
(2)398×40
27.下列多项式的乘法中,可以用平方差公式计算的是()
A.(a+b)(b+a)
B.(-a+b)(a-b)
1C.(a+b)(b-a)
D.(a2-b)(b2+a)
338.下列计算中,错误的有()
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2; ③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.
A.1个
B.2个
C.3个
D.4个 9.若x2-y2=30,且x-y=-5,则x+y的值是()
A.5
B.6
C.-6
D.-5 10.(-2x+y)(-2x-y)=______. 11.(-3x2+2y2)(______)=9x4-4y4.
12.(a+b-1)(a-b+1)=(_____)2-(_____)2.
13.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.
14.计算:(a+2)(a2+4)(a4+16)(a-2).
完全平方公式
1利用完全平方公式计算: 12(1)(x+y)2
(2)(-2m+5n)2
(3)(2a+5b)2
2利用完全平方公式计算:
12(1)(x-y2)2
31(3)(-a+5b)2
2(4)(4p-2q)2(2)(1.2m-3n)2
(4)(-
322x-y)43(1)(3x-2y)2+(3x+2y)2
(2)4(x-1)(x+1)-(2x+3)2
(a+b)2-(a-b)2
(4)(a+b-c)2
(5)(x-y+z)(x+y+z)
(6)(mn-1)2—(mn-1)(mn+1)
4先化简,再求值:(x+y)2-4xy,其中x=12,y=9。
5已知x≠0且x+
平方差公式练习题精选(含答案)
一、基础训练
1.下列运算中,正确的是()
A.(a+3)(a-3)=a2-3
B.(3b+2)(3b-2)=3b2-C.(3m-2n)(-2n-3m)=4n2-9m2
D.(x+2)(x-3)=x2-6 2.在下列多项式的乘法中,可以用平方差公式计算的是()
1A.(x+1)(1+x)
B.(a+b)(b-a)
2C.(-a+b)(a-b)
D.(x2-y)(x+y2)
3.对于任意的正整数n,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()
A.3 B.6 C.10 D.9 4.若(x-5)2=x2+kx+25,则k=()
A.5 B.-5 C.10 D.-10 5.9.8×10.2=________;
6.a2+b2=(a+b)2+______=(a-b)2+________.
7.(x-y+z)(x+y+z)=________;8.(a+b+c)2=_______.
119.(x+3)2-(x-3)2=________.
2210.(1)(2a-3b)(2a+3b);
(2)(-p2+q)(-p2-q);
(3)(x-2y)2;
(4)(-2x-
11.(1)(2a-b)(2a+b)(4a2+b2);
1y)2. 211=5,求x44的值.xx
(2)(x+y-z)(x-y+z)-(x+y+z)(x-y-z).
12.有一块边长为m的正方形空地,想在中间位置修一条“十”字型小路,•小路的宽为n,试求剩余的空地面积;用两种方法表示出来,比较这两种表示方法,•验证了什么公式?
二、能力训练
13.如果x2+4x+k2恰好是另一个整式的平方,那么常数k的值为()A.4 B.2 C.-2 D.±2 1114.已知a+=3,则a2+2,则a+的值是()
aa
A.1
B.7
C.9
D.11 15.若a-b=2,a-c=1,则(2a-b-c)2+(c-a)2的值为()
A.10
B.9
C.2
D.1 16.│5x-2y│·│2y-5x│的结果是()
A.25x2-4y
2B.25x2-20xy+4y2
C.25x2+20xy+4y2
D.-25x2+20xy-4y2 17.若a2+2a=1,则(a+1)2=_________.
三、综合训练
18.(1)已知a+b=3,ab=2,求a2+b2;
(2)若已知a+b=10,a2+b2=4,ab的值呢?
19.解不等式(3x-4)2>(-4+3x)(3x+4).
参考答案
1.C 点拨:在运用平方差公式写结果时,要注意平方后作差,尤其当出现数与字母乘积的项,系数不要忘记平方;D项不具有平方差公式的结构,不能用平方差公式,•而应是多项式乘多项式.
2.B 点拨:(a+b)(b-a)=(b+a)(b-a)=b2-a2.
3.C 点拨:利用平方差公式化简得10(n2-1),故能被10整除. 4.D 点拨:(x-5)2=x2-2x×5+25=x2-10x+25.
5.99.96 点拨:9.8×10.2=(10-0.2)(10+0.2)=10-0.2=100-0.04=99.96. 6.(-2ab);2ab 7.x2+z2-y2+2xz
点拨:把(x+z)作为整体,先利用平方差公式,•然后运用完全平方公式. 8.a2+b2+c2+2ab+2ac+2bc
点拨:把三项中的某两项看做一个整体,•运用完全平方公式展开.
119.6x 点拨:把(x+3)和(x-3)分别看做两个整体,运用平方差公式22111111(x+3)2-(x-3)2=(x+3+x-3)[x+3-(x-3)]=x·6=6x. 22222210.(1)4a2-9b2;(2)原式=(-p2)2-q2=p4-q2.
点拨:在运用平方差公式时,要注意找准公式中的a,b.
(3)x4-4xy+4y2;
121121
2(4)解法一:(-2x-y)=(-2x)+2·(-2x)·(-y)+(-y)=4x2+2xy+y2.
222411
1解法二:(-2x-y)2=(2x+y)2=4x2+2xy+y2.
4点拨:运用完全平方公式时,要注意中间项的符号.
11.(1)原式=(4a2-b2)(4a2+b2)=(4a2)2-(b2)2=16a4-b4.
点拨:当出现三个或三个以上多项式相乘时,根据多项式的结构特征,•先进行恰当的组合.
(2)原式=[x+(y-z)][x-(y-z)]-[x+(y+z)][x-(y+z)]
=x2-(y-z)2-[x2-(y+z)2]
=x2-(y-z)2-x2+(y+z)2
=(y+z)2-(y-z)2
=(y+z+y-z)[y+z-(y-z)]
=2y·2z=4yz.
点拨:此题若用多项式乘多项式法则,会出现18项,书写会非常繁琐,认真观察此式子的特点,恰当选择公式,会使计算过程简化.
12.解法一:如图(1),剩余部分面积=m2-mn-mn+n2=m2-2mn+n2.
解法二:如图(2),剩余部分面积=(m-n)2.
∴(m-n)2=m2-2mn+n2,此即完全平方公式.
点拨:解法一:是用边长为m的正方形面积减去两条小路的面积,注意两条小路有一个重合的边长为n的正方形.
解法二:运用运动的方法把两条小路分别移到边缘,剩余面积即为边长为(m-n)•的正方形面积.做此类题要注意数形结合.
13.D 点拨:x2+4x+k2=(x+2)2=x2+4x+4,所以k2=4,k取±2.
1114.B 点拨:a2+2=(a+)2-2=32-2=7.
aa15.A 点拨:(2a-b-c)2+(c-a)2=(a+a-b-c)2+(c-a)2=[(a-b)+(a-c)] 2+(c-a)2=(2+1)2+(-1)2=9+1=10.
16.B 点拨:(5x-2y)与(2y-5x)互为相反数;│5x-2y│·│2y-5x│=(5x-•2y)2•=25x2-20xy+4y2.
17.2 点拨:(a+1)2=a2+2a+1,然后把a2+2a=1整体代入上式. 18.(1)a2+b2=(a+b)2-2ab.
∵a+b=3,ab=2,∴a2+b2=32-2×2=5.
(2)∵a+b=10,∴(a+b)2=102,a2+2ab+b2=100,∴2ab=100-(a2+b2).
又∵a2+b2=4,∴2ab=100-4,ab=48.
点拨:上述两个小题都是利用完全平方公式(a+b)2=a2+2ab+b2中(a+)、ab、(a2+b2)•三者之间的关系,只要已知其中两者利用整体代入的方法可求出第三者.
19.(3x-4)2>(-4+3x)(3x+4),(3x)2+2×3x·(-4)+(-4)2>(3x)2-42,9x2-24x+16>9x2-16,-24x>-32.
x<.
3点拨:先利用完全平方公式,平方差公式分别把不等式两边展开,然后移项,合并同类项,解一元一次不等式.
八年级数学上学期平方差公式同步检测练习题
1.(2004·青海)下列各式中,相等关系一定成立的是()A.(x-y)2=(y-x)2
B.(x+6)(x-6)=x2-6 C.(x+y)2=x2+y2
D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算正确的是()A.x2+x2=2x4
B.a2·a3= a5
C.(-2x2)4=16x6
D.(x+3y)(x-3y)=x2-3y2 3.(2003·河南)下列计算正确的是()A.(-4x)·(2x2+3x-1)=-8x3-12x2-4x B.(x+y)(x2+y2)=x3+y3 C.(-4a-1)(4a-1)=1-16a2 D.(x-2y)2=x2-2xy+4y2
4.(x+2)(x-2)(x2+4)的计算结果是()A.x4+16
B.-x4-16
C.x4-16
D.16-x4 5.19922-1991×1993的计算结果是()A.1
B.-1
C.2
D.-2 6.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是()A.4
B.3
C.5
D.2
222427.()(5a+1)=1-25a,(2x-3)=4x-9,(-2a-5b)()=4a-25b 8.99×101=()()=.9.(x-y+z)(-x+y+z)=[z+()][ ]=z2-()2.10.多项式x2+kx+25是另一个多项式的平方,则k=.11.(a+b)2=(a-b)2+,a2+b2=[(a+b)2+(a-b)2](),a2+b2=(a+b)2+,a2+b2=(a-b)2+.12.计算.(1)(a+b)2-(a-b)2;(2)(3x-4y)2-(3x+y)2;
(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;(4)1.23452+0.76552+2.469×0.7655;(5)(x+2y)(x-y)-(x+y)2.13.已知m2+n2-6m+10n+34=0,求m+n的值
11114.已知a+=4,求a2+2和a4+4的值.aaa215.已知(t+58)=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知a=1990x+1989,b=1990x+1990,c=1990x+1991,求a2+b2+c2-ab-ac-bc的值.18.(2003·郑州)如果(2a+2b+1)(2a+2b-1)=63,求a+b的值.19.已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值.参考答案
1.A
2.B
3.C
4.C
5.A
6.C
7.1-5a
2x+3-2a2+5b
18.100-1 100+1 9999 9.x-y z-(x-y)x-y 10.±10 11.4ab-2ab
22ab 12.(1)原式=4ab;(2)原式=-30xy+15y;(3)原式=-8x2+99y2;(4)提示:原式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4.(5)原式=-xy-3y2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性.∵m2+n2-6m+10n+34=0,∴(m2-6m+9)+(n2+10n+25)=0,即(m-3)2+(n+5)2=0,由平方的非负性可知,m30,m3, ∴ ∴m+n=3+(-5)=-2.n50,n5.14.提示:应用倒数的乘积为1和整式乘法的完全平方公式.11∵a+=4,∴(a+)2=42.aa111+2=16,即a2+2+2=16.aaa11∴a2+2=14.同理a4+4=194.aa15.提示:应用整体的数学思想方法,把(t2+116t)看作一个整体.∵(t+58)2=654481,∴t2+116t+582=654481.∴t2+116t=654481-582.∴(t+48)(t+68)=(t2+116t)+48×68 =654481-582+48×68 =654481-582+(58-10)(58+10)=654481-582+582-102 =654481-100 =654381.316.x<
217.解:∵a=1990x+1989,b=1990x+1990,c=1990x+1991,∴a-b=-1,b-c=-1,c-a=2.∴a2+b2+c2-ab-ac-be 1=(2a2+2b2+2c2-2ab-2bc-2ac)21=[(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)] 21=[(a-b2)+(b-c)2+(c-a)2] 21=[(-1)2+(-1)2+22] 21=(1+1+4)2=3.18.解:∵(2a+2b+1)(2a+2b-1)=63,∴[(2a+2b)+1][(2a+2b)-1]=63,∴(2a+2b)2-1=63,∴(2a+2b)2=64,∴2a+2b=8或2a+2b=-8,∴a+b=4或a+b=-4,∴a+b的值为4或一4.19.a2+b2=70,ab=-5.∴a2+2a·
第三篇:平方差公式法因式分解练习题
第1页
总2页
课
题: 9.14公式法
[教学目标] 1 掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解; 2 通过知识的迁移经历逆用乘法公式,运用平方差公式分解因式的过程; 在应用平方差公式分解因式的过程中体验换元思想,增强观察能力和归纳总结的能力。[教学重点] 掌握可用平方差公式分解因式的特点,并能使用平方差公式分解因式 [教学难点] 能把多项式转换成符合平方差公式的形式进行因式分解。
[教学过程] 1 复习:
A 因式分解的概念是什么? B 平方差公式用字母怎样表示? 计算:(1)(a+3)(a-3)(2)(4x-3y)(4x+3y)2 导入新课:
(a+3)(a-3)=a2-9(4x—3y)(4x+3y)=16x2-9y2
这是我们学习的整式的乘法运算。如果上述等式左右两边互换位置,又经历了什么样的过程呢?
a2-9=(a+3)(a-3)16x2-9y2 =(4a-3y)(4x+3y)经历了因式分解的过程。新课讲解:
我们可以发现,刚才因式分解的过程中我们是逆用平方差公式的方法,像这样逆用乘法公式将一个多项式分解因式的过程叫做公式法分解因式。今天我们主要学习使用平方差公式进行因式分解。板书:公式法。平方差公式反过来可得:a2-b2=(a+b)(a-b)这个公式叫做因式分解的平方差公式。
当一个多项式具有什么特点时可用平方差公式分解因式?结果等于什么?
如果一个多项式能写成两个数的平方差的形式,那么就可以运用平方差公式分解因式。它等于这两个数的和与这两个数的差的积。
例题1 分解因式:
(1)1-25a2;(2)-9x2+y2;
44(3)a2b2-c2;(4)a2-b2.925
练习:分解因式:m2n4q2.打印时间:2016-9-22
第2页
总2页
补充练习:
小组讨论:下列多项式能用平方差公式分解因式吗?(1)a2+b2;(2)a2-b2;(3)a2-(-b)2;(4)–a2+b2;
(5)–a2-b2.例题2 分解因式:(a+b)2-(a-c)2;
练习:分解因式:
(1)(2ab)2(2ab)2;
例题3:分解因式: x4-16;
练习:分解因式:x481y4.例题4:分解因式: 3x3-12x;
练习:分解因式:
(1)6a2b54b;(2)9(x-2y)3-(x-2y).例题5 用简便方法计算:(1)9982-10022;
(2)99.52-100.52.课堂小结: 我的收获是: 本节课我们主要学习了运用平方差公式进行因式分解,利用平方差公式时主要先判断能否使用平方差公式进行因式分解,判断的依据: 1)是一个二项式(或可看成一个二项式)2)每项可写成平方的形式 3)两项的符号相反
2、在综合运用多种方法分解因式时,多项式中有公因式的先提取公因式,后再用平方差公式分解因式。
3、分解因式,应进行到每一个多项式因式不能再分解为止。[布置作业] 练习册习题9.14/1-6
打印时间:2016-9-22
第四篇:平方差教案(范文)
《平方差公式》教案
一、内容和内容解析 内容: 北师大版《义务教育教科书·数学》七年级下 “1.5平方差公式”(第一课时)内容解析: 《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.教学重点:经历探索平方差公式的全过程,并能运用公式进行简单的运算.教学难点:通过探索规律,归纳出平方差公式,解决数学运算,培养学生观察、归纳应用能力。
二、目标和目标解析 目标
知识与技能:掌握平方差公式的结构特征,能运用公式进行简单的运算; 过程与方法:经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力; 情感与态度:会用几何图形说明公式的意义,体会数形结合的思想方法.目标解析:
1、让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.3、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.三、教学问题诊断分析
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会确定错某些项符号及漏项等问题.学生学习习近平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义学生的理解.因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解. 本节课的教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算.
四、教学过程设计
(一)复习巩固,引出课题
问题1:多项式乘多项式是怎么运算的? 问题:2:计算下列各多项式的积(1)x2x2(2)13a13a(3)x5yx5y(4)2yz2yz
【设计意图】通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习习近平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式.
(二)探索新知,尝试发现
问题3:依照以上四道题的计算回答下列问题:
①式子的左边具有什么共同特征?
②它们的结果有什么特征?
③能不能用字母表示你的发现?
师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:ababab.
22【设计意图】根据“最近发展区”理论,在学生已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,这样更加自然、合理.
(三)理解公式,发现本质
通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式。判断两个因式相乘时能否用平方差公式的关键,是看这两个因式中是否存在完全相同的项及互为相反数的项.在平方差公式(ab)(ab)ab中,其结构特征为:
①左边是两个二项式相乘,其中“a与a”是相同项,“b与b”是相反项;右边是二项式,相同项与相反项的平方差,即ab;
②让学生说明练习的几个算式中,哪些式子相当于公式中的a 和b,明确公式中a和b的广泛含义,归纳得出:a和b可能代表数或代数式。
【设计意图】通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式.在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果.
(四)数形结合,几何说明
问题4:活动探究:将长ab为,宽ab为(的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系(ab0).
222
2【设计意图】通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a、b,由学生运用多项式乘法计算:ababa2ababb2a2b2,验证了其公式的正确性.
(五)巩固运用,内化新知
问题5:判断下列算式能否运用平方差公式计算:
(1)2x3a2x3b(2)t1t1
22(3)mnmn(4)2p3x2p3x(5)abcabc(6)(22xy)xy 33
【设计意图】学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.巩固平方差公式,进一步体会字母a,b可以是数,也可以是式,加深对字母含义广泛性的理解.
问题6:计算:
(1)(2x +3)(3x-3);(2)(b+2a)(2a-b);
(3).
【设计意图】解决操作层面问题.可提议用不同方法计算,以体现学生的创造性.
问题7:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.
【设计意图】运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习了有用的数学,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解.
(六)总结概括,自我评价
问题8:这节课你有哪些收获?还有什么困惑?
【设计意图】从知识和情感态度两个方面加以小结,使学生对本节课的知识有一个系统全面的认识.
(七)课后作业
1、书P21习题1.9第1,2题
2、(1),则A的末位数是_______.
(2);(3);
(4)(5).
【设计意图】作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.
第五篇:平方差公式教案
灰太狼开了租地公司,一天他把一边长为a米的正方形土地租给懒羊羊种植.有一年,他对懒羊羊说:“我把这块地的一边增加5米,另一边减少5米,继续租给你, 你也没吃亏,你看如何?”懒羊羊一听觉得没有吃亏,就答应了.同学们,你们觉得懒羊羊有没有吃亏?
一、知识回顾:
多项式与多项式怎样相乘的? 和学生拉近距离,引起学生的兴趣。
二、自主探究:
1、计算下列多项式的积:
1、(x+1)(x-1)
2、(m+2)(m-2)=
= =
=
3、(2x+1)(2x-1)
4、(x+5y)(x-5y)=
= =
=
2、归纳: 观察算式结构,你发现了什么规律? ①算式中每个因式都有 项。
②算式都是两个数的 与 的 _____ 的积。即两个因式中,有一项 ,另一项。计算结果后,你又发现了什么规律? 计算结果都是前项的 减去后项的。
三、合作交流:
1、猜想:
2、验证:
3、得出:
(a+b)(a-b)= 两个数的和与这两个数的差的积等于这两个数的平方差。
四、例题精析
1、判断下列式子是否可用平方差公式 :(1)(-a+b)(a+b)(2)(-2a+b)(-2a-b)(3)(-a+b)(a-b)(4)(a+b)(a-c)
2、参照(a+b)(a-b)= a2-b2填空
3、运用平方差公式计算:(1)(2)
4、计算:(1)
(2)
巩固提升(根据时间的变化而定)
1、下列多项式乘法中,能用平方差公式计算的是()A.(x+1)(1+x);B.(2x-5)(2x+5)C.(-a+b)(a-b);D.(x2-y)(x+y2)
2、运用平方差公式进行计算:(1)(3x+4)(3x-4)(2)(3a+2b)(2b-3a)(3)(-4x-3y)(-4x+3y)
3、你能用简便方法计算下列各题吗?(1)51×49(2)998×1002 4.判断对错,如果有错,如何改正? ⑴;⑵;⑶;
五、小结:平方差公式的特征:(1)左边是两个二项式相乘,这两项中有一项
相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)先平方,后相减。
公式中的可以表示单项式(数字,字母), 也可以表示多项式(如x+y)。
六、作业
教科书156页-----1 小组交流、讨论
让学生通过计算,观察每个算式的特点和结果的特点,挖掘题目之间的共性,发现规律,猜想公式,从而经历从-般到特殊、从具体到抽象的过程,体会归纳这-数学思想方法准确地运用数学语言表述公式以剖析a、b为目的,对于帮助学生认清公式的结构特征起到事半功倍的作用,在接下来的公式运用中,相信学生会更加得心应手.尝试、交流、教师点拨进一步强化学生的知识对学生经常出现的错误进行预设,防微杜渐.