第一篇:冲压设备及模具的理论计算与分析
龙源期刊网 http://.cn
冲压设备及模具的理论计算与分析
作者:张立武
来源:《科技创新导报》2012年第21期
摘 要:冲压工艺应用范围十分广泛,在国民经济各个部门中,几乎都有冲压加工产品,冲压加工的特点是生产率高、质量稳定、耗费低,适用于大批量生产,易于实现机械化和自动化。关键词:冲压设备 模具 计算与分析
第二篇:冲压模具论文
引言
在目前激烈的市场竞争中,产品投入市场的迟早往往是成败的关键。模具是高质量、高效率的产品生产工具,模具开发周期占整个产品开发周期的主要部分。因此客户对模具开发周期要求越来越短,不少客户把模具的交货期放在第一位置,然后才是质量和价格。因此,如何在保证质量、控制成本的前提下缩短模具开发周期是值得认真考虑的问题。
模具开发周期包括模具设计、制造、装配与试模等阶段。所阶段出现的问题都会对整个开发周期都有直接的影响,但有些因素的作用是根本的、全局性的。笔者认为,人的因素及设计质量就是这样的因素。因此科龙模具厂采取了项目管理、并行工程及模块化设计等管理上及技术上的措施,以提高员工积极性并改善设计质量,最终目的是在保证质量、成本目标的前提下缩短模具开发周期。
1模具开发的项目管理实施方法
项目管理是一种为了在确定的时间范围内,完成一个既定的项目,通过一定的方式合理地组织有关人员,并有效地管理项目中的所有资源(人员、设备等)与数据,控制项目进度的系统管理方法。
模具之间存在着复杂的约束关系,并且每套模具的开发涉及到较多种岗位、多种设备。因此需要有负责人保证所需生产资源在模具开发过程中能及时到位,因此需要实施项目负责制。另外,项目负责制的实施还便于个人工作考核,有利于调动员工积极性。
模具厂有冲模工程部与塑模工程部。冲模工程部管辖四个项目组,塑模工程部为三个。模具任务分配方式以竞标为主,必要时协商分配。每个项目组设有一个项目经理、约两个设计员、四个工艺师和四个左右的钳工,工艺师包括模具制造工艺与数据编程人员。而其它的各种生产设备及操作员的调度由生产部的调度员统筹安排。如果项目组之间有资源需求的冲突而调度员不能解决时由厂领导仲裁。
厂内员工可通过竞职方式担任项目经理,选拔项目经理有三项标准:(1)了解模具开发的所有工序内容;(2)熟悉模具开发过程中的常见问题及解决方法;(3)有较强的判断和决策能力,善于管理和用人。
项目管理的内容之一就是要确定项目经理应担负的职责。本厂项目经理的职责有:(1)负责组织项目组在厂内竞标、承接新项目;(2)负责与客户交涉,包括确定产品细节、接受客户修改产品设计的要求、反映需要与客户协商才能解决的问题;(3)检查产品的工艺性,如果产品工艺性存在问题,则向客户反馈;(4)制定具体的项目进度计划;(5)负责对承接项目的全过程、全方位的质量控制、进度跟踪及内外协调工作;(6)负责完成组内评审及对重大方案、特殊结构、特殊用途的模具的会审;(7)负责组内成员的工作分配、培训及考核;(8)对组内成员的过失行为负责;(9)负责在组内开展 “四新”技术的应用与技术攻关项目的立项、组织、实施等各项工作;(10)及时解决新模具在维修期内的各项整改及维修。
厂领导根据项目完成的时间、质量与成本考核项目经理。然后由项目经理考核项目组内员工,使责、权、利落实到每一位员工,有效调动了员工积极性并显著减少以前反复出现的问题。模具开发的并行工程实施方案
并行工程是缩短产品开发周期、提高质量与降低成本的有效方法。实施并行工程有助于提高产品设计、制造、装配等多个环节的质量。并行工程的核心是面向制造与装配的设计(DFMA)[1]。在模具开发中实施并行工程就是要进行产品及模具的可制造性与可装配性检查。
笔者为模具厂提出并实施了如图1所示并行工程实施方案。IMAN是基于统一数据库的PDM系统,基于IMAN集成各种CAX及DFX工具,并利用IMAN的工作流模型实现了设计过程的集成。基于统一的产品三维特征模型,设计员利用CAD工具进行模具设计;工艺师利用CAM功能进行数控编程及CAPP进行工艺设计;审核者利用CAE功能进行冲压或注射成型过程模拟,利用DFX工具进行可制造性与可装配性分析。以上工作可以几乎同时进行,而且保证了产品及模具的相关尺寸的统一与安全。这就使审查时重点检查模具的方案和结构。基于统一数据库,各种职能的人可以看到感兴趣的某侧面的信息。
DFMA工具的开发是并行工程的工作重点之一。在以往的DFMA方法研究与系统实现中[2],DFMA工具被动地对CAD输出的产品特征进行评价,而不能在CAD系统产生具体产品特征前即在概念设计阶段加以指导,使CAD系统要经过多次设计―检查―再设计循环才能求得满意解。为此科龙模具厂开发了集成CAD系统的DFMA工具。DFMA的工作过程可分两个阶段。第一阶段是,DFMA输出概念设计方案到CAD,这个方案具有最少的零件数量;第二阶段是,而CAD系统输出设计特征模型,经过特征映射后将制造特征模型输入到DFMA工具进行可制造性与可装配性分析。通过这种途径使DFMA知识库得到尽早利用,为缺乏知识的CAD系统把握方向。
通过对产品与模具的可制造性与可装配性的检查,就从源头消除了后续工序可能遇到的困难,大大减少出现缺陷和返工的可能性。模具的模块化设计方法与系统研究
缩短设计周期并提高设计质量是缩短整个模具开发周期的关键之一。模块化设计就是利用产品零部件在结构及功能上的相似性,而实现产品的标准化与组合化。大量实践表明,模块化设计能有效减少产品设计时间并提高设计质量。因此本文探索在模具设计中运用模块化设计方法。
3.1模具模块化设计的特点
模具的零部件在结构或功能上具有一定的相似性,因而有采用模块化设计方法的条件,但目前模具设计中应用模块化设计方法的研究报道还很少见。与其它种类的机械产品相比,模具的模块化有几项明显特点。
3.1.1模具零件的空间交错问题
模具零件在三维空间上相互交错,因此难于保证模块组合后没有发生空间干涉;难于清晰地进行模块划分。
笔者采取以下办法来克服这个问题:(1)利用Pro/E(或UGII等三维软件)的虚拟装配功能检测干涉;(2)按结构与功能划分相结合。模块划分就是部件划分并抽取共性过程。结构相对独立的部件按结构进行划分,设计出所谓的结构模块;而在空间上离散或结构变化大的部件则按功能划分,设计出所谓的功能模块。这样划分并进行相应的程序开发后,结构模块的结构可由结构参数为主,功能参数为辅简单求得;而对于功能模块,可由功能参数为主,结构参数为辅出发进行推理,在多种多样的结构形式中做出抉择。
3.1.2 凸凹模及某些零部件外形无法预见
某些模具零件(如凸凹模)的形状和尺寸由产品决定因而无法在模块设计时预见到,所以只能按常见形状设计模块(如圆形或矩形的冲头),适用面窄;某些模具零件(如冲压模的工件定位零件)虽然互相配合执行某一功能,但它们的空间布置难寻规律与共性,因此即使按功能划分也不能产生模块。
笔者认为,模块化是部件级的标准化,而零件标准化可视为零件级的模块化。两个级别上的标准化是互相配合的。因此,要开发零件库并纳入模块库,以弥补模块覆盖不全的缺憾。当零件必须逐个构造时,一个齐全的便于使用的零件库对提高效率很有帮助。
3.1.3 模具类型与结构变化多
模具可有不同的工序性质,如落料、冲孔等;有不同的组合方式,如简单模、连续模等;还有不同的结构形式,种类极其繁多。因此,必须找到适当途径,使较少的模块能组合出多种多样模具。
为此,笔者提出了以下方法:(1)在Pro/E(或UGII等三维软件)的参数化设计功能及用户自定义特征功能的基础上进行二次开发,使模块具有较大“可塑性”,能根据不同的输入参数可产生较大的结构变化;(2)分层次设计模块。用户可调用任一层次上的模块,达到了灵活与效率两个目标。使用小模块有灵活多变的优点,但效率低,使用大模块则相反。
3.2 模具模块化设计的实施
为了实施模块化设计,并证明以上方法的可行性,笔者基于Pro/E二次开发,开发出一套模具模块化CAD系统。系统分两大部分:模块库与模块库管理系统。
3.2.1 模块库的建立
模块库的建立有三个步骤:模块划分、构造特征模型和用户自定义特征的生成。标准零件是模块的特例,存在于模块库中。标准零件的定义只需进行后两步骤。
模块划分是模块化设计的第一步。模块划分是否合理,直接影响模块化系统的功能、性能和成本[3]。每一类产品的模块划分都必须经过技术调研并反复论证才能得出划分结果。对于模具而言,功能模块与结构模块是互相包容的。结构模块的在局部范围内可有较大的结构变化,因而它可以包含功能模块;而功能模块的局部结构可能较固定,因而它可以包含结构模块。
模块设计完成后,在Pro/E的零件/装配(Part/Assembly)空间中手工建构所需模块的特征模型,运用Pro/E的用户自定义特征功能,定义模块的两项可变参数:可变尺寸与装配关系,形成用户自定义特征(User-Defined Features,UDFs)。生成用户自定义特征文件(以gph为后缀的文件)后按分组技术取名存储,即完成模块库的建立。
3.2.2 模块库管理系统开发
系统通过两次推理,结构选择推理与模块的自动建模,实现模块的确定。第一次推理得到模块的大致结构,第二次推理最终确定模块的所有参数。通过这种途径实现模块“可塑性”目标。
在结构选择推理中,系统接受用户输入的模块名称、模块的功能参数和结构参数,进行推理,在模块库中求得适用模块的名称。如果不满意该结果,用户可指定模块名称。在这一步所得到的模块仍是不确定的,它缺少尺寸参数、精度、材料特征及装配关系的定义。
在自动建模推理中,系统利用输入的尺寸参数、精度特征、材料特征与装配关系定义,驱动用户自定义特征模型,动态地、自动地将模块特征模型构造出来并自动装配。自动建模函数运用C语言与Pro/E的二次开发工具Pro/TOOLKIT开发而成。UDFs的生成方法及参数驱动实现自动建模的程序见参考文献[4]。
通过模块的调用可迅速完成模具设计。这个系统在本厂应用后了模具设计周期明显缩短。由于在模块设计时认真考虑了模块的质量,因而对模具的质量起基础保证作用。模块库中存放的是相互独立的UDFs文件,因此本系统具有可扩充性。总结
由于采取了上述措施,科龙集团某一新品种空调的模具从设计到验收只需三个月就完成了,按可比工作量计算,开发周期比以前缩短了约1/4,而且模具质量和成本都有所改善,明显增强企业竞争力。
第三篇:冲压模具课程设计
前言
冲压是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。冲压模具在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备,称为冷冲压模具(俗称冷冲模)。冲压模具是冲压生产必不可少的工艺装备,是技术密集型产品。冲压件的质量、生产效率以及生产成本等,与模具设计和制造有直接关系。模具设计与制造技术水平的高低,是衡量一个国家产品制造水平高低的重要标志之一,在很大程度上决定着产品的质量、效益和新产品的开发能力。
我国的冲压模具设计制造能力与市场需要和国际先进水平相比仍有较大差距。这些主要表现在飞行器钣金件、高档轿车和大中型汽车覆盖件模具及高精度冲模方面,无论在设计还是加工工艺和能力方面,都有较大差距。覆盖件模具,具有设计和制造难度大,质量和精度要求高的特点,可代表覆盖件模具的水平。虽然在设计制造方法和手段方面已基本达到了国际水平,模具结构功能方面也接近国际水平,在模具国产化进程中前进了一大步,但在制造质量、精度、制造周期等方面,与国外相比还存在一定的差距。标志冲模技术先进水平的多工位级进模和多功能模具,是我国重点发展的精密模具品种。有代表性的是集机电一体化的铁芯精密自动阀片多功能模具,已基本达到国际水平。
因此我们在学习完《飞机钣金成形原理和工艺》等模具相关基础课程后,安排了模具设计课程设计,以帮助我们掌握模具设计的过程,为以后参加工作打下基础。
设计内容
一、零件的工艺性分析
图1 零件图
1)零件的尺寸精度分析 如图1所示零件图,该零件外形尺寸为R11,19;内孔尺寸为R3,6,均未标注公差,公差等级选用IT14级,则用一般精度的模具即可满足制件的精度要求。
2)零件结构工艺性分析 零件形状简单,适合冲裁成形。
3)制件材料分析 制件材料为45钢,抗剪强度为432~549Mpa,抗拉强度为540~685Mpa,伸长率为16%。适合冲压成形。
综合以上分析,得到最终结论:该制件可以用冲压生产的方式进行生产。但有几点应注意:
1)孔与零件左边缘最近处仅为2mm,在设计模具是应加以注意。2)制件较小,从安全方面考虑,要采取适当的取件方式。
3)有一定批量,应重视模具材料和结构的选择,保证一定的模具寿命。
二、工艺方案的确定
由零件图可知,该制件需落料和冲孔两种冲压工艺,设计模具时可有以下三种方案:
方案一:先落料,再冲孔,采用单工序模生产。方案二:冲孔、落料连续冲压,采用级进模生产。方案三:落料和冲孔复合冲压,采用复合模生产。方案一采用单工序模生产,模具结构简单,但需要两道工序、两套模具才能完成零件的加工,生产效率较低,难以满足零件年产20万件的需求,而且要考虑第二套模具中工序件的定位问题,操作不便。
方案二采用级进模生产,可有效地提高生产效率,但连续模制造和设计难度大,费用高,用于生产该制件达不到经济性要求。
方案三采用复合模生产,亦有很高的生产效率,复合模能在压力机一次行程内,完成落料、冲孔两道工序,所冲压的工件精度较高,不受送料误差影响,能较好的满足该制件内孔与外形同心的要求。
通过对比,故采用方案三,比较适合该零件。
三、模具结构形式的确定
(一)模具类型及卸料方式分析
因制件材料较薄,为了保证制件的平整度,所以采用正装式复合模,即凸凹模安装在上模,这样,从模柄中穿入导杆可以直接把嵌在凸凹模里的废料从刃口中打下,卡在凸凹模凸模刃口上的材料可以用弹性卸料板卸料;冲孔凸模与落料凹模安装于下模,用顶件器带动卸料板顶出制件。
(二)模具定位方式分析
在模具设计中,抛弃了传统的销钉定位,而是把凸凹模和凹模分别在上、下模座定位,上、下模座的定位沉台在制造时是和导柱、导套固定在一起加工完成的,这样保证了上、下模工作零件的同轴度,从而达到保证零件尺寸精度的目的。同时没有使用销钉,也使模具的维修方便了很多,即使多次拆卸也能保证零件的精度不变。
四、工艺设计与计算
(一)制件排样与材料利用率计算
采用单排直排有废料排样,如图2所示。
由文献【1】表3-17查得制件间搭边值a=0.8mm,侧搭边值a1=1mm,则送料步距L=19+0.8=19.8;条料宽度B=22+1+1=24;经计算制件面积S=284.73mm2,一个步距的材料利用率为:
η=S/(BL)×100%=284.73/(24 ×19.8)×100%=59.92%
图2 排样图
由文献【2】表4-1冷轧钢板的尺寸,选板料规格为1200mm×600mm×1mm,剪裁条料时采用横裁法,于是条料尺寸为24mm×600mm。
每板条料数n1=1200/24=50(条);
每条制件数n2=(600-0.8×2)/19.8=30(件); 每块板制件数n3= n1×n2=50×30=1500(件)材料总利用率η=1500×284.73/(1200×600)=59.3﹪
(二)冲压力的计算
冲裁力可按以下公式[1]计算:
F=KLtτ
kp,式中:t—材料厚度(mm); L—冲裁件周长(mm);τ已知K=1.3, t=1 mm;查文献【2】表4-12得τ
kp
kp
--材料抗剪强度(Mpa)。
kp
=432~549,取τ=500;经计算得外形周长L1=67.57mm,内孔周长L2=30.85mm。所以
落料冲裁力 F1= KL1tτ冲孔冲裁力 F2= KL2tτ
kp
=1.3×67.57×500×1=43.92kN =1.3×30.85×500×1=20.05 kN
kp推件力和卸料力可用以下经验公式[ 1]进行估算:
F推件=nK推F F卸料=K卸F 式中:F—冲裁力;n为同时卡塞在凹模内的零件数,一般为3~5;K推—推件力系数;K卸—卸料力系数。查文献【1】表3-15得,K推=0.055,K卸=0.04~0.05,所以
F卸料=K卸F1=0.04×43.92=1.7568 kN F推件=nK推F2=5×0.055×20.05=5.51 kN 由于该制件模具采用弹性卸料装置,所以总冲压力的计算公式为: F总= F1+F2+F卸料+F推件=43.92+20.05+1.7568+5.51=71.24 kN(三)初选压力机
根据总压力71.24 kN,查文献【2】表4-33开式压力机的主要技术参数,初选压力机型号规格为J23-10,其主要参数如下:
公称压力:100 kN 滑块行程:45mm 最大闭合高度:180mm 最大装模高度:145mm 工作台尺寸:370mm×240mm 模柄孔尺寸:∅30mm×55mm(四)计算压力中心
该制件图形较规则,上下对称,故采用解析法求压力中心较为方便。建立如下图所示坐标系。
1x
设压力中心为(x0,y0),因为上下对称,所以y0=0,只需求x0,又因为内孔为轴对称图形,所以只需考虑外形。经计算得L1=15.1mm,L2=52.47mm,x2=3.165, x1=-8。根据合力矩定理得
所以,压力中心为(0.72,0)。
(五)计算凸凹模刃口尺寸
本制件形状简单,可按分别加工方法制造凸、凹模,凸、凹模的制造公差 δp和δp必须满足不等式[ 1]:
δp+δd≤Zmax-Zmin。
根据制件的材料和厚度,由文献【3】表2-14 汽车、拖拉机等行业冲裁模初始双边间隙值,查得 :
Zmax=0.140mm,Zmin=0.100mm;
根据制件的基本尺寸和厚度,由文献【3】表2-19 汽车、拖拉机等行业简单形状制件凸、凹模的制造偏差,查得:
落料部分:凸模-0.020mm,凹模+0.020 冲孔部分:凸模-0.020mm,凹模+0.020 验证制造偏差是否合格:
δp+δd =0.02+0.02=0.04 Zmax-Zmin=0.140-0.100=0.04 所以,δp+δd=Zmax-Zmin=0.04,合格,可以采用该公差值。
由于零件图未注公差,为了降低工作难度,所以在实际生产中按照IT14等级确定制件各尺寸公差,查文献【3】附录一 标准公差数值和表2-17 磨损系数x得:
落料部分:尺寸R11,公差为0.43mm,取x=0.5;
尺寸19,公差为0.52mm,取x=0.5;
冲孔部分:尺寸R3 ,公差为0.25mm,取x=0.5;
尺寸6,公差为0.3mm,取x=0.75。
1)落料 尺寸R
Dd=(Dmax-xΔ
=(11.215-0.5×0.43=
Dp=(Dd-Zmin=(11-0.100= 尺寸 Dd=(Dmax-xΔ=(19.26-0.5×0.52=
Dp=(Dd-Zmin=(19-0.100=
2)冲孔 尺寸R dp=(dmin+xΔ=(2.875+0.5×0.25=
dd=(dp+ Zmin=(3+0.100=
尺寸 dp=(dmin+xΔ=(5.85+0.75×0.3=
dd=(dp+ Zmin
五、模具结构设计
(一)凹模设计
=(6.075+0.100=
因制件形状简单,轮廓近似圆形,且总体尺寸不大,选用整体式圆形凹模较为合理。因制件精度较低,厚度较小,由文献【2】表3-5 冷冲模工作零件的材料及热处理要求,选用9Mn2V为凹模材料。
1)确定凹模厚度H值:由凹模厚度经验公式[4]估算:
H=K1K
2式中,F—冲裁力,N;K1—凹模材料修正系数,合金钢取1,碳素钢取1.3;K2—凹模刃口周边长度修正系数。
本例中冲裁力F=43.92kN;凹模材料为合金钢,故K1取1;凹模刃口周边长度为67.57mm,查文献【4】表3-34凹模刃口周边长度修正系数,得K2=1.12,所以
H=K1K2
=1×1.12×
=19.06mm 2)确定凹模周界尺寸D:根据条料宽度B=24mm,材料厚度t=1mm,由文献【4】表3-33,查得凹模孔壁厚c=22mm。所以 D=2R+2c=22+266mm 由文献【2】表5-45 圆形凹模板尺寸,可查到较为靠近凹模周界尺寸为63mm×20mm,故凹模周界尺寸取为63mm×20mm。其结构图如图3所示。
图3 凹模
(二)其他冲模零件设计
据以上确定的凹模周界尺寸,查文献【2】表5-5 复合模圆形厚凹模典型组合尺寸,可得其他冲模零件的数量、尺寸及主要参数。
1)卸料板 标准编号JB/T7643.5-1994,周界尺寸63mm×8mm,结构图如图4所示。
图4卸料板
2)凸凹模固定板 标准编号JB/T7643.5-1994,周界尺寸63mm×12mm,结构图如图5所示。
图5凸凹模固定板
3)顶件块 非标准件,尺寸根据凸、凹模尺寸确定,结构图如图6所示。
图6顶件块
4)凸凹模
凸凹模采用直通式结构,固定部分简化为圆形,因采用弹压卸料,所以凸凹 模长度按下式[6]计算
L=h1+h2+t+h 式中,h1—凸凹模固定板厚度,mm;h2—卸料板厚度,mm;t—材料厚度,mm;h—增加长度。它包括凸凹模修磨量、凸凹模进入凹模的深度(0.5~1mm)、凸凹模固定板与卸料板之间的安全距离等,一般取10~20mm。
本例中,h1=12mm,h2=8mm,t=1mm,h取14mm,所以凸凹模长度 L=h1+h2+t+h=12+8+1+14=35mm
凸凹模结构图如图7所示。
图7 凸凹模 5)凸模
凸模亦采用直通式,固定部分简化成圆形,长度L=19.5mm,其结构图如图8所示。
图8 凸模
(三)选择模架
由凹模周界尺寸63mm×20mm及模架闭合高度110mm,查文献【2】表5-8滑动导向后侧导柱模架规格,选用后侧导柱模座,其主要参数如下:
上模座 63mm×63mm×25mm(GB/T2855.5-1990); 下模座 63 mm×63mm×30mm(GB/T2855.6-1990); 导柱 16mm×110mm×30mm(GB/T2861.2-1990); 导套 16mm×50mm×23mm(GB/T2861.6-1990)。模架具体结构尺寸,参照文献【5】表4-6后侧导向模柱、表3-38导柱和表3-39导套设计。
(四)模柄设计
本例采用凸缘模柄,尺寸与模柄孔配做。
六、校核压力机安装尺寸
模座外形尺寸为63mm×63mm,闭合高度为110mm,J23-10型压力机工作台尺寸为370mm×240mm,最大闭合高度为180mm,故此压力机能满足要求。
七、绘制装配图
图9 装配图
结束语
钣金冲压成形课程设计是我们在大学期间的一门重要课程,是对我们将理论应用于实践能力的考核。通过这次课程设计我加深了对冲压成形的理解,掌握了模具设计的基本方法,很好地巩固了以前所学的知识,相信对我将来从事工作将有很大帮助。在本设计过程中,各位老师和同学们给予我大量的指导和帮助,在此表示衷心的感谢。
由于个人水平有限,在设计中难免出现错误和不足,还请老师批评指正。
致谢
经过两周的忙碌和工作,本次课程设计终于完成了,作为一个本科生的课程设计,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的督促指导,以及一起工作的同学们的帮助,想要完成这个设计是很难的。
在这里首先要感谢郭拉凤和张春元老师。他们平日里工作繁多,但在我做课程设计的整个过程中都给予了我悉心的指导。我的装配图较为复杂,但是郭老师仍然细心地纠正图纸中的错误。除了敬佩老师的专业水平外,他们严谨的治学态度和科学的研究精神也是我学习的榜样,并将对我今后的学习和工作产生积极影响。
其次要感谢和我一起作课程设计的谢现龙同学,在本次设计中他给了我极大的帮助。
然后还要感谢大学四年来所有的老师,为我们打下机械专业知识的基础;同时还要感谢所有的同学们,正是因为有了你们的支持和鼓励。此次课程设计才会顺利完成。
参考文献
【1】翟平.飞机钣金成形原理与工艺.西安:西北工业大学出版社,1995 【2】史铁梁.模具设计指导.北京: 机械工业出版社,2006 【3】孙京杰.冲压模具设计与制造实训教程.北京:化学工业出版社,2009 【4】康俊远.冲压成型技术.北京:北京理工大学出版社.2008 【5】王立人.冲压模设计指导.北京:北京理工大学出版社.2009 【6】李奇涵.冲压成形工艺与模具设计.北京:科学出版社,2007
第四篇:模具产品冲压技术理论培训
模具产品冲压技术理论培训
(模具性能测试,调压,试模技术)
一:冲压工艺知识介绍
学习对象:新进技术员工,模具制造员工
1.冲压模具
A.模具:模具是一种专用工具,用于装在各种压力机上,通过压力把金属或非金属材料制出所需要的形状产品,这种专用工具统称为模具。
B.模具的分类:常用的有单工序模,复合冲模,覆盖件冲压模,电机铸件模,硬质合金模,拉伸模,锻模,液压成型模,液体膨胀模,翻边模等。
C.模具的使用结构:凡是模具,无论它的结构如何,一般都是有两大部分组成,比如上下或左右,比如铸件模具是组合压好后加工,拉伸模具是上下部分固定在机器后加工,液压模具是放在压制机台上后加工等,冲压工艺就是直上直下的冲压制加工。
2.基本的冲压工艺
A.冲压:冲压是通过模具对金属材质施加压力或拉力,使金属材质成型,或对金属材料施加剪切力使金属材料断裂分离而获得所需的尺寸和形状的一种加工方法。
B.冲压工艺的分类:冲压工艺一般可分为分离加工工序和成型加工工序两大类。分离工序就是在冲压过程中使冲压件和金属板料沿一定的轮廓线互相分离,同时冲压件分离断面的质量也要满足一定的要求。成型加工工序就是使冲压金属材料在不破坏的条件下发生造型改变,并转换成所要求的成品形状,同时也要满足尺寸公差等工艺要求。
冲压温度有两种,分为冷冲和热冲。这要考虑材料的硬度,厚度,属性,变形形状和机器设备的能力,同时还要考虑冲压件的最终使用情况。
C.冲压机器分类:
冲压工序一般分为三种机器加工:主缸压力机加工(我们普通的液压机),液压垫压机加工(拉延压力即拉伸机),瞬间冲力加工(冲床类)
主缸压力机:作用是使模具闭合,材料成型到位,依靠产品的不同性质使得判断成型是否到位,看细节压力点是否清晰。
液压垫压机:作用是控制金属材料进入模具的速度,防止材料起皱或破裂。瞬间冲力加工:作用是依靠不同吨位的直接上下冲力使得材料分离而得到形状。
D.冲压生产的注意事项:
(1)操作者必须要求带绝缘用品
(2)生产前应认真检查好工装,不得有不扣衣扣或袖扣等。
(3)检查和确保设备和模具是否完好。
(4)开机后要用普通材质试加工,调整冲压高度,液压压力,拉伸高度等。
(5)生产前必须开启和调好光电保护装置(红外线等)。
(6)上模具前要擦拭工作台面,确认模具上下是否有废料,杂质或沙粒颗粒等。
(7)按照冲压工艺的标准,确定压力等加工条件,不得乱调压力和行程。
(8)生产前,模具工作表面要擦拭干净。
(9)操作人员每回首次进行冲压生产时,一般冲制5件左右送至质检员检查,得到确认合格后才能加工。
(10)每次修模后,试压的产品必须交质检合格后才能生产。
(11)上下模具加工时必须确定导柱,定位销下好后才能压制。
(12)必须及时清除刀口边料。
(13)模具使用后必须第一时间清理和归还。
3.产品质量
冲压件的质量直接关系到后期产品的整体品质,所以要想做好最终的品质,必须在生产加工过程中对产品的质量进行严格控制。
A.冲压件常见缺陷的判断以及处理方法,预防措施
对于冲压件,要求比较高,不能有明显的表面缺陷,比如出现开裂,暗裂,漏洞破裂,要用强光目视,特殊面检查等来自检。
(1)凸凹不平
判断方法:手摸,目视,平尺测量
原因:检查模具内部结构是否不平,是否有杂质颗粒等异物
处理方法:模具维修平整和抛光,清理模具内部杂物质
(2)开裂或暗裂
判断方法:用强光目视检查和推理
原因:模具尖角过尖,拉伸不到位,润滑不到位,受力不均匀
处理方法:适当维修尖角部分,成型前的拉伸工序检查是否到位,拉伸件是否进行模具润滑和材料润滑,模具上下对照看是否有偏差并纠正
(3)起皱
判断方法:目测
原因:无压边力度,拉伸不到位
处理方法:适当增加压边力,检查拉伸模成型后上下闭合情况
(4)毛刺
判断方法:目测或测量机对照毛刺标准表
原因:上下模间隙大,刀口钝,上下模偏离不对照,导柱磨损
处理方法:重新配冲头,刀口维修平磨,上下重新装配对照,模具上下导柱重新装配和更换
(5)孔偏
判断方法:上下模具检查,冲压机器平行检查
原因:模具没装好,机器工作面上下不平行,模具导柱或定位问题
处理方法:通知机修调整机器工作台平行度,模具重新装和手动调试,模具维修重新上下对照或更换导柱和固定位置
(6)少孔
判断方法:检查产品完整性,检查模具工作孔完整性
原因:冲头断掉,下模排料孔不畅
处理方法:维修补充冲头,对排废料孔进行清理和改进
(7)孔变形
判断方法:目视
原因:下模磨损,冲头磨损
处理方法:维修重做下模,维修磨冲头
(8)成型产品模糊
判断方法:产品表面模糊,细节处不清晰
原因:成型压力不够,模具细节不清晰,模具内部粗糙
处理方法:调整压力,模具重做,抛光
(9)弯曲边不齐或不到位
判断方法:材料成型不到位,和正常使用有差别
原因:模具装置问题,受力点间隙过大或磨损
处理方法:重做装置模具和调试,受力点磨损重做和组装
(10)材料拉伤
判断方法:目视,有无裂纹或个别地方过薄或出现波浪纹
原因:拉伸模具口不够光滑,粗糙,拉伸模具工作面不够光滑和缺少润滑,模具口破损,有杂质
处理方法:模具口修理,抛光,加工过程润滑
(11)产品碰伤,刮伤
判断方法:目视,产品表面细节有明显的碰撞痕迹
原因:操作不当,产品材质软和模具相碰撞
处理方法:产品不回火,轻拿轻放操作,必要时调整模具闭合高度
B.如何保证冲压件产品的质量
要有高度的责任心,树立良好的质量品质,要养成检查机器设备和模具的习惯,确定正确操作规范和方法,按要求和工艺制定生产,主动和质检部门人员沟通和及时解决。
4.调试及维修模具技术要点
新产品模具的首次调试,是比较复杂的一个重点,要认真仔细的关注和记录每个环节的技术要点,有利于后期生产车间的生产技术要点的控制。
所谓机器类和模具类产品都有一定的磨合期,也就是时间过渡期,才能达到一个很好使用的安全周期和使用性能,针对这些细节问题,克分为以下几点:
(1)新模具的各个纹理层次分界线和交点是否尖锐,是否不影响产品
特性的情况下进行适当的修理。
(2)切边模上下刀口是否中心,不偏离,是否上下移动顺,但是不会
有晃动现象。
(3)模具抛光后是否进行模具清洗和内部的干净程度。
(4)模具各个部位的固定螺丝和固定销是否牢固,无晃动现象。
(5)成型后是否起模较容易,产品不粘模
(6)产品清晰度好,无出现坑洼现象,无变形
(7)配合质检产品要点进行维修
(8)维修人员进行维修要点记录,和疑难问题的及时上报和解决
5.压力型模具的一些方法计算方式:
A.平面型腔模压力计算:
{模具直径*(模具材料高度/拉力值)*模具材料硬度值*加工材料厚度}/压力系数=压力吨位
例子:a.直径40MM的纪念币,加工产品厚度是3MM
{40*(50/10)*0.6*3}/3.2=112吨
例子:b.直径80MM的纪念币,加工产品厚度是2MM
{80*(65/10)*0.6*2}/3.2=195吨
注:CR12材料拉力值8---10高碳高洛刚压力系数值2---3.2
B.凹型成型模压力计算:
公式和上面的是一样的,上面如果是用铅块压制,就不用算除材料拉力值 例子:直径70MM的锁模具,加工产品厚度0.25MM
(70*50*0.6*0.25)/2=26吨
(80*50*0.6*0.26)/2=31吨
C.冲压切边模具压力计算:
(产品长度*产品厚度*材料硬度值)/压力系数=吨位
例子:200MM长的手镯,压制后产品厚度0.8MM
(200*0.8*0.6)/3.2=30吨以上冲床
例子:宽度50MM锁产品,产品材料厚度0.25MM
(50*0.25*0.6)/2.5=3吨
二.冲压技术经验及发展
技术是在不断的制作当中,根据不同的工艺需求和发展的,所以很多专注于一个工种后会很清楚和了解工序的利与弊,这就是经验,但是长期都是摸索发展,没有规律性和实用记录,所以很多的经验是没有文字性的说明,也不能用数据来说明,所以这也是技术行业发展的一个现实问题或者说是瓶颈。在当今社会,为什么后来出现很多的关于工业机器化培训机构和学院,很多的学者和技术人员处了很多的书籍,变成了教科材料,但是由于制造行业性质的不同,很多的都只能称为理论知识,不能完全的切合实际。所以当今技术类人才所要做的重点就是结合理论知识的同时,根据以往的经验做不同的测试,才能做出适合于不同行业的技术要点和实用性能。
部门:模具厂
拟稿人:林国庭
日期:2012年3月19日
第五篇:冲压模具的失效形式分析与思考
摘 要:本文简单介绍了冲压模具失效的几种形式,并针对每种失效形式产生 的原因进行了具体分析,提出了相应的预防及解决措施。
关键词:冲压模具;失效形式;分析;措施
前言
随着我国现代工业技术的不断发展,冲压模具在工业生产中起到了越来越广泛的应用。冲压模具质量的好坏直接决定了所冲产品质量的优劣。然而,冲压模具在使用过程中,常常出现各种形式的失效情况,应对这些失效,往往需要耗费一定的时间、人力、物力以及财力资源,严重影响到了工业生产的进度,不利于企业经济效益的提高。因此,如何有效地预防冲压模具的失效,最大限度的提高其使用寿命,是很多企业共同面临的一个技术难题。只有对冲压模具的失效形式做出正确分析,归属其失效类型,才能精准地找出其失效的原因,采取相应的技术措施对其修复或预防,延长其使用寿命。
冲压模具失效形式概述
2.1 冲压模具失效的涵义
冲压模具在使用过程中,因各种原因如结构形状、尺寸的变化以及零部件组织与性能的变化等,使得冲压模具冲不出合格的冲压件,同时也无法再修复的情形就叫做冲压模具的失效。鉴定模具是否失效的判据有三种:一是模具已经完全丧失工作能力;二是模具虽然可以工作,但无法完成设定的功能;三是模具因结构受到严重损害,使用时存在安全隐患。
2.2 冲压模具失效的形式
冲压模具在使用过程中,因模具本身类型、结构、材料的不同以及实际工作条件的不同,会表现出不同的失效形式,主要可分为以下四种。
(1)磨损失效。冲压模具在正常工作过程中,往往会与加工的成形坯料直接接触,二者之间因相对运动而产生摩擦,造成冲压模具表面磨损。当磨损程度达到一定限度时,模具表面失去原来的状态,使之无法冲出合格的冲压件,这就是磨损失效。磨损在任何机械的使用过程中是不可避免的,因此是一种正常的失效形式,也是冲压模具失效形式中最为主要的一种。根据磨损机理,可将磨损失效细分为四种:①磨粒磨损失效。当坯料与模具接触的表面间存在硬质颗粒,亦或坯料加工前未打磨完全,其表面存在坚硬的突出物时,会摩擦并刮划模具的表面,严重时就会使模具表面材料脱落,造成磨粒磨损失效。②黏着磨损失效。冲压模具作用于坯料时,彼此之间存在相互作用力,有时黏着部分会因受力不均而发生断裂,造成模具表面物质脱落或转移,这种失效形式就是黏着磨损失效。③疲劳磨损失效。模具的有些部位经过长时间的使用,在与坯料摩擦力的循环作用下,难免会产生一些细小的裂纹,随着使用时间的推移,细纹逐渐加深,加深到一定尺度时,造成模具表面物质发生脱落,甚至模具因承载力不足而断裂。④腐蚀磨损失效。冲压模具在使用过程中,模具表面物质很容易与周围介质(如空气、水等)发生化学腐蚀或电化学腐蚀,加上摩擦力的作用,时间久了,就会造成模具表面物质侵蚀变质,发生脱落。
实际上,磨具与坯料作用时,磨具表面受到的磨损是极其复杂并且难以预测的,不可能仅仅只受某种磨损方式的影响,因此,实际生产加工中反映出来的磨损失效形式可能是多种形式相互作用的结果。
(2)断裂失效。所谓的断裂失效是指冲压模具因产生较大裂纹或者断裂为两部分(数部分)。断裂可分为两种:早期断裂(一次性断裂)以及疲劳断裂。早期断裂指的是冲压模具表面受到冲击载荷的压力过大,超出其负荷能力,造成迅速断裂。相反,造成疲劳断裂的应力通常较低,在模具的承受范围之内,但由于这种应力的频繁作用,细小裂纹开始逐渐扩展,最后引发断裂。
(3)变形失效。冲压模具在工作过程当中,若是零件所受到的应力超出其弯曲极限,就会发生塑性变形。当塑性形变形达到一定程度时,会造成模具内零件的尺寸和形状发生显著变化,模具无法再正常使用,也就是变形失效。变形失效的外表现为弯曲、塌陷、镦粗等。
(4)啃伤失效。冲压模具因一些客观原因致使其凸、凹模互相啃刃,造成冲压模具崩裂。
3失效原因及措施
冲压模具失效后,应及时对其进行检查分析,找准失效的原因,并对症下药,采取相应的解决措施,延长冲压模具的使用寿命,提高其经济效益。以下分析了造成以上几种失效形式的主要原因,并针对每种失效形式提出了相应的改善措施。
3.1 磨损失效的原因及措施
造成冲压模具因过度磨损而失效的原因很多,归结起来可以从三方面来考虑:一是冲压模具本身的原因,如模具自身的耐磨性能不好;其工作零件的硬度太低;模架的精度偏低等。二是被冲材料的原因,包括坯料硬度太大,对模具表面产生过的摩擦力;被冲材料表面发生氧化作用,造成摩擦力增大等。三是其他因素的影响。如所添加润滑剂润滑效果不好等。
针对以上原因造成的磨损失效,可以从以下几个方面加以改善:
(1)选择合适的模具材料。模具材料的选择会因模具用途的不同、生产冲压件的数量不同而有所差异。表1给出的是不同用途的模具对材料的选择。
表1 不同用途的模具对材料的选择
模具用途 生产量 使用模具材料
生产低薄板以及有色金属 小批量 t10a或t8a等较为低廉的碳素工具钢
生产厚度≤2nm的钢材 小批量 9gcr15、9mn2v、9sicr等合金工具钢
生产厚度≥2nm的钢材 大批量 gr12mov、gr12工具钢以及集体钢、高速钢、钢结硬质合金等
(2)对冲压模具表面进行强化处理。可以在加热淬火以前,向模具表面进行渗杂处理,包括渗硼、渗碳、渗硫、渗氮或碳氮共渗,或在淬火后采用离子渗氮或者气体软氮化的技术对磨具表面进行改性处理,以此来提高冲压模具刃口的各种性能,比如耐热性、耐磨性、抗腐蚀性等。通过对冲压模具表面进行化学或物理气相沉淀、电火花强化以及激光强化等工艺技术处理,可以大大提高模具表面的硬度,获得更好的耐磨性质及抗腐蚀、抗粘黏性质,从而很大程度地改善磨具的整体性能,极大地提高模具的使用寿命。
除以上措施外,还应该对模具表面适时进行润滑处理,减小模具与被冲器件的摩擦;时刻关注生产中容易发热的部位,并采取必要的冷却措施;生产加工前,应认真检查坯料的状态,对表面不良的坯料应进行及时清理或其他预先处理;调整模具凸凹模的合理间隙。
3.2 断裂失效的原因及措施
造成断裂失效的原因主要有两种:一种是过载断裂,另一种是扩展断裂。
当凸凹模同轴度相差较大,间隙分布不均匀,模架精度偏低时,会造成凸模在冲压过程中因受到过大的侧向力而发生断裂;凸模表面各个截面的过渡部位圆角过于尖锐,产生高于平均应力十倍之上的集中应力,造成模具承载后发生断裂。对于这种因过载而产生的断裂失效,可采取以下措施加以解决:
(1)改进设计结构。对于冲孔直径在2.5mm以下,断面积在52mm2,长度在12.5mm以上的异型孔凸模,应对杆部进行适当加粗处理,可用导向圈等工具进行加固,加大圆角半径,确保凸模各部位的过渡平滑,同时可采用其他结构如镶拼或预应力结构来减少模具应力集中的情况。
(2)在冲压模具设计过程中,应对模具强度进行校核,然后选择高一级强度的模具材料,确保模具具有足够的承载力;对热处理件要进行抽样检查,确保其强度,韧性符合标准。
冲压模具在生产工作中,造成模具扩展断裂的裂纹有很多种,包括淬火裂纹、回火裂纹、磨削裂纹、自发裂纹、脱碳裂纹、电加工裂纹等。针对不同的裂纹有不同的预防措施。
对于淬火裂纹的预防,主要是要对零件的形状进行合理设计。要将壁厚设计得尽可能相等,壁厚相差较远的两部分不能设计成一体,采用镶拼结构时应确保各模块强度尽量一致;转角部分圆角应该有较大的半径,杜绝尖角的情况;对于热处理工艺,应根据制件的实际情况包括其形状、大小以及材质等,选择适宜的工艺。
对于回火裂纹的预防,应做到零件在加热至300℃以前,采取缓慢加热的方式进行,不能加热过急,否则会因热应力过大而造成开裂;回火时也不能急剧冷却,应进行空冷处理,因为急冷会产生马氏体相变应力,造成开裂。
对于自发裂纹的预防,采用的措施是:淬火后马上进行回火,若是在常温下放置时间过长,零件会因受到相变应力而造成开裂。通常淬火到回火的间隔时间不能超过3小时,如果因某些原因不能马上回火,可以先置于100℃介质中进行保温处理,以此来延长间隔时间。
对于磨削裂纹的预防,若是淬火零件较多,磨削量较大,可以先进行低温回火(150℃)或中温回火(300℃);砂轮整修时,应确保砂轮足够锋利并且粒度合适,以此来降低磨削热,减小磨削烧伤。
对于脱碳开裂的预防,可采取的措施是用真空加热或保护气加热的方法控制加热温度,防止工件因受热温度过高而发生开裂。
对于电火花加工裂纹的预防,应在加工过程中,尽量采用较小的电规准,防止电火花产生的瞬时高温在淬火件表面产生裂纹;加工后应对变质表面层进行抛光操作。
3.3 变形失效的原因及措施
造成模具变形失效的原因主要是模具表面的负荷过大。对于这种失效形式,可以从材料选择或强化处理等方面提高受力部位的强度。
3.4 啃伤失效的原因及措施
造成啃伤失效的原因主要有装配质量不过关、安装不当、压力机的导向精度不高、送料出现误差等。对啃伤失效可用高导向精度装置的模具进行生产加工,确保零件位置的精度,减小侧向力,避免凹凸模相互啃伤。
4结语
冲压模具失效与其结构、使用材料、工作条件等都有关系。实际生产中,模具失效是一个普遍又复杂的综合性问题,受到很多因素的共同影响。因此,必须根据具体实际情况,进行具体分析,找出造成模具失效的原因,并采取相应行之有效的措施来加以预防或解决。只有这样,才能使冲压模具的使用寿命得到最大限度地延长,经济效益得到显著增加。