解析2014北京高考文科数学

时间:2019-05-12 20:35:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《解析2014北京高考文科数学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《解析2014北京高考文科数学》。

第一篇:解析2014北京高考文科数学

一、(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

二、(1)

(2)

(3)

(4)

(5)

(6)

三、解答题部分

(1)数列计算 选择题部分 集合求交补余运算 函数单调性判断(函数图象问题)向量和、差、点积运算求解 程序循环求解 简单逻辑(不等式运算判断)函数零点问题(零点定理)由题意等价转化为直线、园、曲线两者之间的图象及数形结合运用(重点:等价转化思想)新题型应用(依据初等基本函数:二次函数)填空题部分 复数的简单运算 椭圆、双曲线和抛物线的定义、性质计算 简单几何体的三视图计算边、面积和体积 三角形中正弦、余弦定理及内角和、面积公式的运用 简单的线性规划(直线的数形结合):三交点比较法 应用理解题

特点:关于数列an的多项式或由an与bn组成的新数列为等差或等比数列——还原思想

(2)三角函数

特点:求最小正周期和特定坐标点以及求给定定义域内求值域

(3)立体几何

特点:证明线线、线面、面面平行和垂直以及计算四、三棱锥或棱柱的体积

(4)统计直方图

特点:由直方图求出个方格对应的概率

(5)椭圆或双曲线与直线的综合计算

(6)函数极值、最值、零点问题的导数应用

第二篇:2011年北京高考数学答案(文科)[定稿]

10金融大班综合测评成绩辅导员评分标准(补充说明)

一、分值构成:

由基础分、加分、减分三部分组成,其中基础分为2分,加分上限为5分,减分下限为总分值为0止。一共7分,保留小数点后两位,计入各人的综合测评总成绩。

二、加分项目:

2.1 担任学生干部(含团干),统一加0.3分(不分担任的干部级别),一个学期加0.15分,不累加(中途辞职或撤职的不予加分);

2.2 担任宿舍长或组织干事,统一加0.1分,一个学期加0.05;(该项与学生干部不累加,中途辞职或退部门不予加分)

2.3 获得荣誉称号,含优秀学生干部、优秀团干、优秀党员、优秀团员等(不分级别,但必须有证书),每一项荣誉加0.1分,可以累加,上限1分;

2.4 获得荣誉称号,含优秀干事、优秀成员等,每一项荣誉加0.05分,可以累加,上限1分;

2.5文明宿舍,该宿舍同学每人加0.1分;

2.6 卫生宿舍,宿舍每人成员加0.05分,必须获得最佳或优秀累计六次以上

2.7参加校、院组织的集体捐款、公益活动等,每次加0.1分,可以累加,上限0.5分;

2.8 在精神文明建设方面表现突出(如见义勇为、助人为乐、好人好事等)受学校表彰者加1分(目前我们大班貌似还没有,如有,需出具证书);

2.9参加党校学习,并顺利通过考核每人获得0.1分,获得优秀学员另加0.05分,优秀论文另加0.05;

2.10 参加升旗加0.1分,不累加;

2.11 参加学院团代会、学代会,担任代表0.1分,作为委员候选人代表0.15分;

2.12参加大班、小班组织的集体活动,团总支、团支部团日活动,每次加0.1分;

2.13 全学期全勤(包括大班会)加0.5分,两个学期单独计算;

2.14 参加省市级及以上学科竞赛、活动,获奖加0.2分,未获奖加0.05分;

2.15 参加学校内的各项比赛、活动(含学科竞赛、文体竞赛、朗诵比赛、征文、辩论赛、调查报告等),获奖加0.1分(集体奖加0.08分),未获奖加0.05分;

2.16 10年9月-11年8月期间,通过英语六级者加0.4分,通过英语四级者加0.2分;参加计算机等级考试通过三级者加0.4分,通过二级者加0.2分;取得其他资格证书、等级证、技能证书加0.1分(此项可累加,上限为0.6分);

2.17 获得优秀班级、优秀团支部、优秀团日活动(不分级别,每位成员加0.1分,上限1分);

2.18 其他可加分原因,以班为单位统一申请,通过后加分。

三、减分项目:

3.1 考试有违纪、作弊情况的,减2分;

3.2 受到通报批评以上纪律处分的,减1分一次;

3.3 旷课减0.1分/次;请假减0.05分/次;辅导员抽查发现缺课的减0.2分/次;

3.4 大班会缺勤扣0.3分/次,请假扣0.1分/次;

3.5 学习成绩挂科减0.2分/门次,补考通过了少减0.1分/门次;

3.6 其他可减分的原因。

第三篇:高考文科数学考点

高考数学高频考点梳理

一、高考数学高频考点

考点一:集合与常用逻辑用语

集合与简易逻辑是高考的必考内容,主要是选择题、填空题,以集合为载体的新定义试题是近几年高考的热点;而简易逻辑一般会与三角函数、数列、不等式等知识结合在一起考察

考点1:集合的概念与运算

考点2:常用逻辑用语

考点二:函数与导数

高考数学函数的影子几乎出现在每到题中。考生要牢记基本函数的图像与性质,重视函数与不等式、方程、数形结合、转化与划归、分类讨论等数学思想与方法在解题中的应用。导数属于新增内容,是高中数学的一个重要的交汇点,命题范围非常广泛。

考点1:函数的概念及性质

考点2:导数及其应用

考点三:数列

数列是高中数学的重要内容,高考对等差数列、等比数列的考查每年都不会遗漏,命题主要有以下三个方面:(1)等差数列与等比数列的概念、性质、通项公式及求和公式;(2)数列与其他知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合;(3)数列的应用问题,其中主要是以增长率问题。试题的难度有下降趋势。

考点1:等差、等比数列的定义、通项公式和前n项和公式

考点2:数列的递推关系与综合应用

考点四:三角函数

三角函数是高考必考内容,一般情况下会有1—2道小题和一道解答题,解答题可能会与平面向量、解三角形综合考查,三角函数在高考中主要考查三角函数公式、三角函数的图像与性质、解三角形等,一般为容易题或中档题,尤其是三角函数的解答题,今年或回到高考试卷的第一道大题,解答是否顺利对考生的心理影响很大,是复习的重中之重。建议在考查三角函数图像与性质时第一步解析式化简完毕后利用两角和与差的三角函数公式展开检验,确保万无一失。

考点1:三角函数的图像与性质

考点2:解三角形

考点五:平面向量

由于平面向量集数、形于一体,具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点和联系多项内容的媒介,平面向量的引入也拓宽了解题的思路与方法。从近几年高考对向量知识的考查来看,一般有1—2道小题和一道解答题,小题考查向量的概念和运算,一般难度不大,大题主要考查解三角形或与三角函数结合的综合题,很多解析几何高考试题也会以向量的形式出现,预计今年高考仍会以“工具”的形式,起到“点缀”的作用。

考点1:平面向量的概念及运算

考点2:平面向量的综合应用

考点六:不等式

不等式是及其重要的数学工具,在高考中以考查不等式的解法和最值方面的应用为重点,多数情况是在集合、函数、数列、几何、实际应用题等试题中考查。

考点1:不等式的解法

考点2:基本不等式及其应用

考点七:立体几何

立体几何在每年的高考中,都会有一道小题和一道解答题,难度中档,小题主要考查三视图为载体的空间几何体的面积、体积及点线面的位置关系;解答题主要考察线面的位置关系,文科考查距离和体积的运算。

考点1:有关几何体的计算

考点2:空间线面位置关系的判断和证明

考点八:平面解析几何

平面解析几何综合了代数、三角函数、几何、向量等知识,所涉及的知识点较多,对解题能力考查的层次要求较高。解决这一类问题的关键在于:通观全局、局部入手、整体思维,即在掌握通性通法的同时,不应只形成一个个的解题套路,而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题中的运算难关。此类问题反应在解题上,就是“把曲线的几何特征准确的代数化、解析化(坐标化)”。最重要的是“将题目中的每一句条件都充分了解、掌握、挖掘、转化成代数形式。

考点1:直线与圆的方程

考点2:圆锥曲线的基本问题

考点3:圆锥曲线的综合问题

考点九:概率与统计

概率与统计作为考查考生应用意识的重要载体,已成为近几年新课程高考一大亮点和热点,它与其他知识融合、渗透,情景新颖。文科侧重利用枚举法完整罗列试验结果和事件结果然后求概率。

考点1:抽样方法

考点2:频率分布直方图、茎叶图

考点3:古典概型、几何概型

考点十:推理与证明

推理与证明是新课标高考的一个热点内容,其中归纳推理和类比推理多以填空的形式出现。

考点1:归纳、类比推理的应用

考点十一:算法初步与复数

复数在高考中主要是选择题,一般难度不大,以复数的运算为主。有时也会考查复数的几何意义。算法作为新课改新增内容,在高考中以算法的基本概念为基准,着重掌握程序框图及三种逻辑结构、算法语句,考查形式以选择题为主,进一步体现算法与统计、数列、三角、不等式等知识的综合。

考点1:复数的概念及运算

考点2:算法

二、高考三类题型解法

选择题占据着高考的三分之一,而且在解答题的考查区域、题型特点、解题方法逐渐明晰和套路化得情况下,选择题就变成了夺取高分势在必得的领地,应当引起我们足够的重视。怎样才能既快又准地完成选择题呢?下面为同学们呈现几种应试技巧。

1直接法

2、特例法3排除法4图解法5综合法

填空题只要求直接写出结果,不必写出计算或推理过程,其结果必须是数值准确的、形式规范的、表达式(数)最简的。结果稍有差错,便的零分。针对填空题的这些特点,我们的基本解题策略是在“准”“巧”“快”上下功夫。要做到“准”“巧”“快”,我们必须掌握一些最有效的解题方法。

1直接法2极端法3赋值法4构造法5等价转化法6数形结合法7正难则反法

高考解答题的结构相对稳定,其考查内容一般为三角(向量)、数列、概率、立体几何、解析几何、函数与导数等,其命题趋势是试题灵活多样、得分易但得满分难。

1、突破中档题,稳扎稳打

解答题的中档题包括三角函数、数列、概率、立体几何题。

三角题一般用平面向量做扣,讲究知识的交汇性,或将三角函数与解三角函数“纵连横托”,讲究知识的系统性。解题策略是(1)寻求角度、函数名、结构形式的联系与差异,确定三角函数变换的方向;(2)利用向量的数量积公式进行等价转化;(3)解三角形要灵活运用正余弦定理进行边角互化。特别提醒:(1)二倍角的余弦公式的灵活运用;(2)辅助角公式不能用错;(3)注意角度的变化范围。(4)整体思想

数列题以考查特征数列为主,考查数列的通项与求和。解题策略是:(1)灵活运用等差数列、等比数列的定义、性质解题;(2)能在具体的问题情境中识别数列的等差、等比关系;(3)运用累加法、累乘法、待定系数法求简单递推数列的通项公式,要善于观察分析递推公式的结构特征;(4)数列的求和要求掌握方法本质,用错位相减法时,要注意相减后等比数列的项数,裂项相消法一般适合于分式型、根式型数列求和。

概率题主要考查古典概型(文科)、几何概型、互斥事件的概率加法公式、运用频率分布直方图与茎叶图分析样本的数字特征。解题策略是:(1)审清题意,弄清概率模型,合理选择概率运算公式;(2)运用枚举法计算随机事件所含基本事件数;(3)图表问题的分析与数据的处理是关键。特别提醒:(1)注意互斥事和对立事件的联系和区别,会运用间接法解题;(2)运用枚举法要做到不重不漏;(3)频率分布直方图的纵坐标是频率/组距;(4)茎叶图的中位数概念。

立体几何题大都以棱柱、棱锥等为载体来考查位置关系(垂直、平行)及度量关系(体积、面积、角度、距离)。解题策略是:(1)三种语言(数学语言、图形语言、符号语言)的灵活转化;(2)要善于借助图形的直观性,证明平行可寻找中位线(隐含的中点),证明垂直要运用条件中的线面垂直和面面垂直以及图形中隐含的垂直关系;(3)空间角一般要利用图形中的平行垂直关系,要观察、发现是否有现成的角。特别提醒:(1)一面直线所成角范围为;(2)把底面单独画出来有助于解题;(3)关注“动态”探索型问题,通过直观图形先做判断再证明。

2、破解把关题,步步为营

高考常用函数、导数、不等式、解析几何等知识命制把关题。

函数、导数、不等式的综合是历年高考命题的热点、重点,多以压轴题的形式出现。解题策略是:(1)熟练掌握基本初等函数函数的图像与性质;(2)以导数为工具,判断函数的单调性与求函数的最(极)值;(3)利用导数解决某些实际问题;(4)构造函数(求导)是难点,阶梯式要善于借助条件和第一问的台阶作用,要有目标意识;(5)看能否画一个草图,借助直观图形分析解题思路。

解析几何常考常新,经久不衰。直线与圆锥曲线的位置关系问题是主要内容,中点、弦长、轨迹是经常考查的问题,含参数的取值范围问题是难点,用平面向量巧妙“点缀”是亮点。解题策略是:(1)注重通性通法,灵活运用韦达定理和点差法;(2)借助图形的几何直观性,有利于解题;(3)灵活运用圆锥曲线的定义和性质解答问题(特别是与焦点弦有关的问题);(4)运算量大,需要“精打细算”和“顽强的解题意志”

“破解”把关题的关键是找到解题的突破口和解题途径,一方面从已知条件分析,看看由此能进一步求得哪些结果(能做什么);另一方面从题目最后要求计算的问题分析,看看要得到该答案需要哪些前提(需要什么)。这样从两头分析,往往能较快地理出解题思路

第四篇:19届,高考真题——文科数学(北京卷)+Word版含解析「KS5U+高考」

绝密★本科目考试启用前 2019年普通高等学校招生全国统一考试(北京卷)文科数学 本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={x|–11},则A∪B= A.(–1,1)B.(1,2)C.(–1,+∞)D.(1,+∞)【答案】C 【解析】 【分析】 根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集求法,属于基础题.2.已知复数z=2+i,则 A.B.C.3 D.5 【答案】D 【解析】 【分析】 题先求得,然后根据复数的乘法运算法则即得.【详解】∵ 故选D.【点睛】本容易题,注重了基础知识、基本计算能力的考查.3.下列函数中,在区间(0,+)上单调递增的是 A.B.y= C.D.【答案】A 【解析】 【分析】 根据函数图像性质可得出结果.【详解】函数,在区间 上单调递减,函数 在区间上单调递增,故选A.【点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.4.执行如图所示的程序框图,输出的s值为 A.1 B.2 C.3 D.4 【答案】B 【解析】 【分析】 根据程序框图中的条件逐次运算即可.【详解】运行第一次,,运行第二次,,运行第三次,,结束循环,输出,故选B.【点睛】本题考查程序框图,属于容易题,注重基础知识、基本运算能力的考查.5.已知双曲线(a>0)的离心率是 则a= A.B.4 C.2 D.【答案】D 【解析】 【分析】 本题根据根据双曲线的离心率的定义,列关于A的方程求解.【详解】分析:详解:

∵双曲线的离心率,∴,解得,故选D.【点睛】对双曲线基础知识和基本计算能力的考查.6.设函数f(x)=cosx+bsinx(b为常数),则“b=0”是“f(x)为偶函数”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【答案】C 【解析】 【分析】 根据定义域为R的函数为偶函数等价于进行判断.【详解】 时,, 为偶函数;

为偶函数时,对任意的恒成立,得对任意的恒成立,从而.从而“”是“为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为m1的星的亮度为E2(k=1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为 A.1010.1 B.10.1 C.lg10.1 D.【答案】D 【解析】 【分析】 先求出,然后将对数式换指数式求再求 【详解】两颗星的星等与亮度满足 , 令,,故选D.【点睛】考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.8.如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,是锐角,大小为β.图中阴影区域的面积的最大值为 A.4β+4cosβ B.4β+4sinβ C.2β+2cosβ D.2β+2sinβ 【答案】B 【解析】 【分析】 阴影部分的面积S=S△PAB+ S1-S△OAB.其中S1、S△OAB的值为定值.当且仅当S△PAB取最大值时阴影部分的面积S取最大值.【详解】观察图象可知,当P为弧AB的中点时,阴影部分的面积S取最大值,此时∠BOP=∠AOP=π-β, 面积S最大值为βr2+S△POB+ S△POA=4β+|OP||OB|sin(π-β)+|OP||OA|Sin(π-β)=4β+2Sinβ+2Sinβ=4β+4 Sinβ,故选B.【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

9.已知向量=(-4,3),=(6,m),且,则m=__________.【答案】8.【解析】 【分析】 利用转化得到加以计算,得到.【详解】向量 则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.10.若x,y满足 则的最小值为__________,最大值为__________.【答案】(1)..(2).1.【解析】 【分析】 作出可行域,移动目标函数表示的直线,利用图解法求解.【详解】作出可行域如图阴影部分所示.设z=y-x,则y=x+z.当直线l0:y=x+z经过点A(2,-1)时,z取最小值-3,经过点B(2,3)时,z取最大值1.【点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.11.设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为__________. 【答案】(x-1)2+y2=4.【解析】 【分析】 由抛物线方程可得焦点坐标,即圆心,焦点到准线距离即半径,进而求得结果.【详解】抛物线y2=4x中,2P=4,P=2,焦点F(1,0),准线l的方程为x=-1,以F为圆心,且与l相切的圆的方程为(x-1)2+y2=22,即为(x-1)2+y2=4.【点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.12.某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________. 【答案】40.【解析】 【分析】 画出三视图对应的几何体,应用割补法求几何体的体积.【详解】在正方体中还原该几何体,如图所示 几何体的体积V=43-(2+4)×2×4=40 【点睛】易错点有二,一是不能正确还原几何体;

二是计算体积有误.为避免出错,应注重多观察、细心算.13.已知l,m是平面外的两条不同直线.给出下列三个论断:

①l⊥m;

②m∥;

③l⊥. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l⊥α,m∥α,则l⊥m.【解析】 【分析】 将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:

(1)如果l⊥α,m∥α,则l⊥m.正确;

(2)如果l⊥α,l⊥m,则m∥α.不正确,有可能m在平面α内;

(3)如果l⊥m,m∥α,则l⊥α.不正确,有可能l与α斜交、l∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.14.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%. ①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;

②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________. 【答案】(1).130.(2).15.【解析】 【分析】(1)将购买的草莓和西瓜加钱与120进行比较,再根据促销规则可的结果;

(2)根据、分别探究.【详解】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y元,元时,李明得到的金额为y×80%,符合要求.元时,有(y-x)×80%≥y×70%成立,即8(y-x)≥7y,x≤,即x≤()min=15元.所以x的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,有一定难度.三、解答题共6小题,共80分。解答应写出文字说明,演算步骤或证明过程。

15.在△ABC中,a=3,cosB=. (Ⅰ)求b,c的值;

(Ⅱ)求sin(B+C)的值. 【答案】(Ⅰ);

(Ⅱ).【解析】 【分析】(Ⅰ)由题意列出关于a,b,c的方程组,求解方程组即可确定b,c的值;

(Ⅱ)由题意结合余弦定理、同角三角函数基本关系和诱导公式可得的值.【详解】(Ⅰ)由余弦定理可得,因为,所以;

因为,所以解得.(Ⅱ)由(Ⅰ)知,所以;

因为为的内角,所以.因为.【点睛】本题主要考查余弦定理的应用,同角三角函数基本关系、诱导公式的应用等知识,意在考查学生的转化能力和计算求解能力.16.设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;

(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值. 【答案】(Ⅰ);

(Ⅱ)当或者时,取到最小值.【解析】 【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得的通项公式;

(Ⅱ)首先求得的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列的公差为,因为成等比数列,所以,即,解得,所以.(Ⅱ)由(Ⅰ)知, 所以;

当或者时,取到最小值.【点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.17.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额 支付方式 不大于2000元 大于2000元 仅使用A 27人 3人 仅使用B 24人 1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由. 【答案】(Ⅰ)400人;

(Ⅱ);

(Ⅲ)见解析.【解析】 分析】(Ⅰ)由题意利用频率近似概率可得满足题意的人数;

(Ⅱ)利用古典概型计算公式可得上个月支付金额大于2000元的概率;

(Ⅲ)结合概率统计相关定义给出结论即可.【详解】(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,由题意知A,B两种支付方式都不使用的有5人,所以样本中两种支付方式都使用的有,所以全校学生中两种支付方式都使用的有(人).(Ⅱ)因为样本中仅使用B的学生共有25人,只有1人支付金额大于2000元,所以该学生上个月支付金额大于2000元的概率为.(Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为,因为从仅使用B的学生中随机调查1人,发现他本月的支付金额大于2000元,依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B的学生中本月支付金额大于2000元的人数有变化,且比上个月多.【点睛】本题主要考查古典概型概率公式及其应用,概率的定义与应用等知识,意在考查学生的转化能力和计算求解能力.18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(Ⅰ)见解析;

(Ⅱ)见解析;

(Ⅲ)见解析.【解析】 【分析】(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;

(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;

(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;

因为底面是菱形,所以;因为,平面, 所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以, 因为,所以;

因为平面,平面, 所以;

因为 所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;

理由如下: 分别取的中点,连接, 在三角形中,且;

在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面 【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.19.已知椭圆的右焦点为,且经过点.(Ⅰ)求椭圆C的方程;

(Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.【答案】(Ⅰ);

(Ⅱ)见解析.【解析】 【分析】(Ⅰ)由题意确定a,b的值即可确定椭圆方程;

(Ⅱ)设出直线方程,联立直线方程与椭圆方程确定OM,ON的表达式,结合韦达定理确定t的值即可证明直线恒过定点.【详解】(Ⅰ)因为椭圆的右焦点为,所以;

因为椭圆经过点,所以,所以,故椭圆的方程为.(Ⅱ)设 联立得,,.直线,令得,即;

同理可得.因为,所以;

,解之得,所以直线方程为,所以直线恒过定点.【点睛】解决直线与椭圆的综合问题时,要注意:

(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;

(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题. 20.已知函数.(Ⅰ)求曲线的斜率为1的切线方程;

(Ⅱ)当时,求证:;

(Ⅲ)设,记在区间上的最大值为M(a),当M(a)最小时,求a的值. 【答案】(Ⅰ)和.(Ⅱ)见解析;

(Ⅲ).【解析】 【分析】(Ⅰ)首先求解导函数,然后利用导函数求得切点的横坐标,据此求得切点坐标即可确定切线方程;

(Ⅱ)由题意分别证得和即可证得题中的结论;

(Ⅲ)由题意结合(Ⅱ)中的结论分类讨论即可求得a的值.【详解】(Ⅰ),令得或者.当时,此时切线方程为,即;

当时,此时切线方程为,即;

综上可得所求切线方程为和.(Ⅱ)设,令得或者,所以当时,为增函数;

当时,为减函数;

当时,为增函数;

而,所以,即;

同理令,可求其最小值为,所以,即,综上可得.(Ⅲ)由(Ⅱ)知,所以是中的较大者,若,即时,;

若,即时,;

所以当最小时,此时.【点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.

第五篇:2018高考文科数学答题技巧

2018高考文科数学答题技巧

精品文档

2018高考文科数学答题技巧 @ 答题技巧是一门学问,答题顺序、审题方式、遇到难题的处理等都大有讲究。下面学习啦小编给大家带来高考文科数学答题技巧,希望对你有帮助。

高考文科数学答题技巧 1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。

.圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。

.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!.立体几何中,求二面角B-OA-C的新方法。利用三面角余弦定理。设二面角B-OA-C是?OA,?AOB是α,?BOC是β,?AOC是γ,这个定理就是:cos?OA=(cosβ-cosαcosγ)/sinαsinγ。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了。

.数学(理)线性规划题,不用画图直接解方程更快 1 / 8 精品文档

.数学最后一大题第三问往往用第一问的结论.数学(理)选择填空图形题,按比例画图有尺子量,零基础直接秒,所以尺子真有用。

.数学选择不会时去除最大值与最小值再二选一,高考题百分之八十是这样。.超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。如果条件过多,用图像法秒杀。不等式也是特值法图像法。

高考文科数学公式 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程(x-a)2+(y-b)2=r注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 线线平行常用方法总结:(1)定义:在同一平面内没有公共点的两条直线是平行直线。(2)公理:在空间中平行于同一条直线的两只直线互相平行。(3)初中所学平面几何中判断直线平行的方法 2 / 8 精品文档

(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

(5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。(6)面面平行的性质:若两个平行平面同时与第三个平面相交,则它们的交线平行。

线面平行的判定方法: ?定义:直线和平面没有公共点.()判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行

(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面

(4)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面 判定两平面平行的方法:(1)依定义采用反证法

(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

(4)垂直于同一条直线的两个平面平行。3 / 8 精品文档

(5)平行于同一个平面的两个平面平行。证明线与线垂直的方法:(1)利用定义(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。

证明线面垂直的方法:(1)线面垂直的定义

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面。

高考文科数学复习方法 1.强化“三基”,夯实基础

所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。

考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试 / 8 精品文档

大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。

考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。

强化基本技能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。

要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。夯实解题基本功。高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。

数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。/ 8 精品文档

.全面复习,系统整理知识,查漏补缺,优化知识结构

这是第一阶段复习中应该重点解决的问题。考生在这一过程应牢牢抓住以下几点:?概念的准确理解和实质性理解;?基本技能、基本方法的熟练和初步应用;?公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。

经过全面复习这一阶段的努力,应使达到以下要求:?按大纲要求理解或掌握概念;?能理解或独立完成课本中的定理证明;?能熟练解答课本上的例题、习题;?能简要说出各单元题目类型及主要解法;?形成系统知识的合理结构和解题步骤的规范化。

这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。

这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判断,基本公式串联,基本运算选择。

.加强对知识交汇点问题的训练

课本上每章的习题往往是为巩固本章内容而设置的,所 6 / 8 精品文档

用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。

要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具操作性的解题经验。

综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。

高考文科数学答题技巧对大家有用吗,想进一步攻克高中其他课程不妨多听一些名师主讲课程,高分等你拿~ / 8 精品文档 8 / 8

下载解析2014北京高考文科数学word格式文档
下载解析2014北京高考文科数学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2011陕西高考数学及答案(文科)

    2011年普通高等学校招生全国统一考试(陕西卷)一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1. 设 是向量,命题“若 ,则∣ ∣= ∣......

    2010高考文科数学备课组总结

    2010高考文科数学备课组总结 在过去的一年里,高三文科数学备课组的全体同仁,在学校领导的大力支持下,在学生基础普遍较差的情况下,兢兢业业,不敢有丝毫的懈怠,同心同德,认真备好每......

    2014北京高考 语文试题答案解析

    2014北京高考 语文试题答案解析 一、选择题: 1、 答案:D 解析:镌(juān)刻;锒锒(琅琅)上口 2、 答案:C 解析:“万户”“千家”词性与“冬尽”不匹配,排除AB;“缕缕”平仄与上联的“......

    历年北京高考作文题目及解析

    历年北京高考作文题目及解析 高考真题 2009年 原题: 有一首歌唱道: 我有一双隐形的翅膀, 带我飞,给我希望。 我有一双隐形的翅膀, 带我飞,飞向远方。 请以"我有一双隐形的翅膀"......

    2018年高考真题——文科数学(全国卷Ⅲ)+Word版含解析

    2018年普通高等学校招生全国统一考试 (新课标 III 卷) 文 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指......

    高考卷,05高考文科数学(北京卷)试题及答案[推荐5篇]

    2005年高考文科数学北京卷试题及答案 本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分,第1卷l至2页,第Ⅱ卷3至9页.共150分考试时阃120分钟考试结束,将本试卷和答题卡—并交回 第......

    高考数学试卷(文科)(新课标)(含解析版),10级(合集)

    2010年全国统一高考数学试卷(文科)(新课标) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z}......

    湖南省高考数学试卷(文科)解析(共五篇)

    2014年湖南省高考数学试卷(文科) (扫描二维码可查看试题解析) 一、选择题(共10小题,每小题5分,共50分)2 1.(5分)(2014•湖南)设命题p:∀x∈R,x+1>0,则¬p为( ) 22 ∈R,x∈R,x A.B. ∃x+1>0 ∃x+1≤......