第一篇:构造函数
构造函数
1.设
f(x),g(x)分别为定义在R上的奇函数和偶函数,当x0时,f(x)g(x)f(x)g(x)0,且g(3)0,则不等式f(x)g(x)0的解集为______.2.设f(x)是定义在R上的奇函数,且f(2)0,当x0时,有x
f(x)f(x)0
恒成立,则不等式x2f(x)0的解集为__________.3.已知函数f(x)是定义在R上的奇函数,且当x(,0)时,有x<0成立,若a30.3
b
f(x)+f(x)1
3f(3
0.3),blog3
f(log
3),c(log
9)f(log
9),则a、、c的大小关系为__________.f(x),则当a0
4.已知可导函数f(x)满足f(x)系为__________.时,f(a)与ea
f(0)的大小关
5.若函数f(x)对任意的xR都有f(x)
A.3f(ln2)2f(ln3)
f(x)
成立,则__________.B.3f(ln2)2f(ln3)
C.3f(ln2)2f(ln3)D.3f(ln2)与2f(ln3)的大小关系不确定
6.设f(x)是R上的奇函数,且f(1)0,当x0时,(x2
1)f(x)2xf(x)0,则不等式f(x)0的解集为__________.7.已知函数f(x)是定义在(0,)的非负可导函数,且满足x对任意正数a、b,若a
f(x)+f(x)0,B.af(b)bf(a)C.af(a)f(b)
D.bf(b)f(a),8.已知f(x)与g(x)都是定义在R上的函数,g(x)0,f(x)g(x)
f(x)ag(x),x
f(x)g(x)0
f(1)g(1)
f(1)g(1)
.在有穷数列
f(n)
(n1,2,,10)中,前kg(n)
项和
为
1516,则k=__________.
第二篇:构造函数法
函数与方程数学思想方法是新课标要求的一种重要的数学思想方法,构造函数法便是其中的一种。
高等数学中两个重要极限
1.limsinx1 x0x
11x2.lim(1)e(变形lim(1x)xe)x0xx
由以上两个极限不难得出,当x0时
1.sinxx,2.ln(1x)x(当nN时,(1)ne(1)n1).
下面用构造函数法给出两个结论的证明.
(1)构造函数f(x)xsinx,则f(x)1cosx0,所以函数f(x)在(0,)上单调递增,f(x)f(0)0.所以xsinx0,即sinxx.
(2)构造函数f(x)xln(1x),则f(x)11n1n1x0.所以函数f(x)在1x1x
(0,)上单调递增,f(x)f(0)0,所以xln(1x),即ln(1x)x. 1要证1n事实上:设1n111e,两边取对数,即证ln1, nn111t,则n(t1), nt1
1因此得不等式lnt1(t1)t
1构造函数g(t)lnt1(t1),下面证明g(t)在(1,)上恒大于0. t
11g(t)20, tt
∴g(t)在(1,)上单调递增,g(t)g(1)0, 即lnt1, 1
t
111∴ ln1,∴1nnn1n1e,以上两个重要结论在高考中解答与导数有关的命题有着广泛的应用.
第三篇:拷贝构造函数剖析
拷贝构造函数剖析
在讲课过程中,我发现大部分学生对拷贝构造函数的理解不够深入,不明白自定义拷贝构造函数的必要性。因此,我将这部分内容,进行了总结。
拷贝构造函数是一种特殊的构造函数,其形参为本类的对象引用。功能:使用一个已经存在的对象始初化同类的一个新对象。这样得到对象和原来的对象具有完全相同的数据成员,即相同的属性。
拷贝构造函数的函数原型:
A(const A& other){ … … }
拷贝构造函数的应用场合:
当用类的一个对象去初始化该类的另一个对象时;若函数的形参为类对象,调用函数时,实参赋值给形参;当函数的返回值是类对象时。比如:
A a1(10);
A a2 = a1;
A a3(a1);// 构造函数 // 拷贝构造函数 // 拷贝构造函数
默认拷贝构造函数:成员变量之间的“值”拷贝
编写拷贝构造函数的必要性
class A
{
public:
A(const char* data)
{
name = new char[strlen(data)+ 1];
strcpy(name, data);
}
A(const A& other)
{
name = new char[strlen(other.name)+ 1];
strcpy(name, other.name);
}
private:
char* name;
};
考察:char* data = “abcd”;A a1(data);A a2 = a1;
如果未定义拷贝构造函数,会有何种后果?
现将a1赋给a2,缺省拷贝构造函数的“位拷贝”意味着执行a2.name = a1.name。这将造成二个错误:一是a2.name和a1.name指向同一块内存,任何一方变动都会影响另一方;二是在对象被析构时,name被释放了两次。
第四篇:构造函数证明不等式
在含有两个或两个以上字母的不等式中,若使用其它方法不能解决,可将一边整理为零,而另一边为某个字母的二次式,这时可考虑用判别式法。一般对与一元二次函数有关或能通过等价转化为一元二次方程的,都可考虑使用判别式,但使用时要注意根的取值范围和题目本身条件的限制。
例1.设:a、b、c∈R,证明:a2acc23b(abc)0成立,并指出等号何时成立。
解析:令f(a)a2(3bc)ac23b23bc
⊿=(3bc)24(c23b23bc)3(bc)2 ∵b、c∈R,∴⊿≤0 即:f(a)0,∴a2acc23b(abc)0恒成立。
当⊿=0时,bc0,此时,f(a)a2acc23ab(ac)20,∴abc时,不等式取等号。
4例2.已知:a,b,cR且abc2,a2b2c22,求证: a,b,c0,。
3abc222解析:2 消去c得:此方程恒成立,a(b2)ab2b10,22abc2∴⊿=(b2)24(b22b1)3b24b0,即:0b4同理可求得a,c0,
34。3② 构造函数逆用判别式证明不等式
对某些不等式证明,若能根据其条件和结论,结合判别式的结构特征,通过构造二项平方和函数:f(x)(a1xb1)2(a2xb2)2(anxbn)2
由f(x)0,得⊿≤0,就可以使一些用一般方法处理较繁琐的问题,获得简捷明快的证明。
例3.设a,b,c,dR且abcd1,求证:4a14b14c14d1﹤6。解析:构造函数:
f(x)(4a1x1)2(4b1x1)2(4c1x1)2(4d1x1)
2=8x22(4a14b14c14d1)x4.(abcd1)由f(x)0,得⊿≤0,即⊿=4(4a14b14c14d1)21280.∴4a14b14c14d142﹤6.例4.设a,b,c,dR且abc1,求解析:构造函数f(x)(=(1axa)2(149的最小值。abc2bxb)2(3cxc)2
1492)x12x1,(abc1)abc111由f(x)0(当且仅当a,b,c时取等号),632149得⊿≤0,即⊿=144-4()≤0
abc111149
∴当a,b,c时,()min36 632abc
构造函数证明不等式
1、利用函数的单调性
+例
5、巳知a、b、c∈R,且a bmb[分析]本题可以用比较法、分析法等多种方法证明。若采用函数思想,构造出与所证不等式密切相关的函数,利用函数的单调性来比较函数值而证之,思路则更为清新。
ax+,其中x∈R,0 bxbx证明:令 f(x)= ∵b-a>0 ba+ 在R上为减函数 bxba+从而f(x)= 在R上为增函数 bx∴y= ∵m>0 ∴f(m)> f(0) ∴ama> bmb例 6、求证:ab1ab≤ ab1ab(a、b∈R) [分析]本题若直接运用比较法或放缩法,很难寻其线索。若考虑构造函数,运用函数的单调性证明,问题将迎刃而解。 [证明]令 f(x)= x,可证得f(x)在[0,∞)上是增函数(证略)1x 而 0<∣a+b∣≤∣a∣+∣b∣ 得 f(∣a+b∣)≤ f(∣a∣+∣b∣) 即: ab1ab≤ ab1ab [说明]要证明函数f(x)是增函数还是减函数,若用定义来证明,则证明过程是用比较法证明f(x1)与f(x2)的大小关系;反过来,证明不等式又可以利用函数的单调性。 2、利用函数的值域 例 7、若x为任意实数,求证:— x11≤≤ 221x2[分析]本题可以直接使用分析法或比较法证明,但过程较繁。联想到函数的值域,于是构造函数f(x)= x11,从而只需证明f(x)的值域为[—,]即可。 1x222x2证明:设 y=,则yx-x+y=0 21x ∵x为任意实数 ∴上式中Δ≥0,即(-1)-4y≥0 1 411得:—≤y≤ 22x11 ∴—≤≤ 21x22 ∴y≤2[说明]应用判别式说明不等式,应特别注意函数的定义域。 另证:类比万能公式中的正弦公式构造三角函数更简单。 例 8、求证:必存在常数a,使得Lg(xy)≤ Lga.lg2xlg2y 对大于1的任意x与y恒成立。 [分析]此例即证a的存在性,可先分离参数,视参数为变元的函数,然后根据变元函数的值域来求解a,从而说明常数a的存在性。若s≥f(t)恒成立,则s的最小值为f(t)的最大值;若 s≤f(t)恒成立,则s的最大值为f(t)的最小值。 22证明:∵lgxlgy > 0(x>1,y>1)∴原不等式可变形为:Lga≥ lgxlgylgxlgy22 2(lgxlgy)2lgxlgy 令 f(x)= == 1222222lgxlgylgxlgylgxlgylgxlgy 而 lgx>0,lgy>0, ∴lgx+lgy ≥ 2lgxlgy > 0 ∴2lgxlgy≤1 22lgxlgy ∴ 1 从而要使原不等式对于大于1的任意x与y恒成立,只需Lga≥2即 a≥10 2即可。 故必存在常数a,使原不等式对大于1的任意x、y恒成立。 3、运用函数的奇偶性 xx<(x≠0)12x2xx 证明:设f(x)=-(x≠0)x122 例 9、证明不等式: xxx2xx ∵f(-x)=-= x+ x122212xxx [1-(1-2)]+ 12x2xx =-x+= f(x)x122 = ∴f(x)的图象关于y轴对称 x ∵当x>0时,1-2<0,故f(x)<0 当x<0时,根据图象的对称性知f(x)<0 故当 x≠0时,恒有f(x)<0 即:xx<(x≠0)x122 [小结]本题运用了比较法,实质是根据函数的奇偶性来证明的,本题也可以运用分类讨论思想。但利用偶函数的轴对称性和奇函数的中心对称性,常能使所求解的问题避免复杂的讨论。 合理构造函数解导数问题 构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。 例1:已知函数fxlnax1x3x2ax.(1)若2为yfx的极值点,求实数a的值; 3(2)若yfx在1,上增函数,求实数a的取值范围;(3)若a1时,方程f1x1x3b有实根,求实数b的取值范围。x 变量分离直接构造函数 抓住问题的实质,化简函数 1、已知fx是二次函数,不等式fx0的解集是0,5,且fx在区间1,4上的最大值12.(1)求fx的解析式; (2)是否存在自然数m,使得方程fx370在区间m,m1内有且只有两个不等的x实数根?若存在,求出所有m的值;若不存在,请说明理由。 变式练习:设函数fxx6x5,xR,求已知当x1,时,fxkx1恒 3成立,求实数k的取值范围。 抓住常规基本函数,利用函数草图分析问题 例: 已知函数fxnlnx的图像在点P(m,fm)处的切线方程为yx, 设gxmxn2lnx.x(1)求证:当x1时,gx0恒成立;(2)试讨论关于x的方程mxngxx32ex2tx根的个数。x第 1 页 共 1 页 一次函数,二次函数,指对数函数,幂函数,简单的分式根式函数,绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化明确化。 复合函数问题一定要坚持定义域优先的原则,抓住函数的复合过程能够逐层分解。例:已知函数fx单调递增。 (1)求实数a的值.(2)若关于x的方程f2xm有3个不同的实数解,求实数m的取值范围.(3)若函数ylog2fxp的图像与坐标轴无交点,求实数p的取值范围。复合函数尤其是两次复合,一定要好好掌握,构造两种函数逐层分解研究,化繁为简,导数仍然是主要工具。 1423xxax22x2在区间1,1上单调递减,在区间1,2上43 导数—构造函数 一:常规的构造函数 例一.若sin3cos3cossin,02,则角的取值范围是()(A)[0,4] (B)[5,] (C)[,] 4(D)[34,2) xyxy变式、已知3355成立,则下列正确的是() A.xy0 B.xy0 C.xy0 D.xy0 2变式.f(x)为f(x)的导函数,若对xR,2f(x)xf(x)x恒成立,则下列命题可能错误的是()A.f(0)0 B.f(1)4f(2)C.f(1)4f(2)D.4f(2)f(1) 二:构造一次函数 例 二、对于满足|a|2的所有实数a,求使不等式x2+ax+1>a+2x恒成立的x的取值范围.第 2 页 共 2 页 三:变形构造函数 例三.已知函数f(x)12xax(a1)lnx,a1. 2(Ⅰ)讨论函数f(x)的单调性; (Ⅱ)证明:若a5,则对任意x1,x2(0,),x1x2,有 例 四、已知函数f(x)(a1)lnxax21.(Ⅰ)讨论函数f(x)的单调性; (Ⅱ)设a2,证明:对任意x1,x2(0,),|f(x1)f(x2)|4|x1x2|.四:消参构造函数 例 五、设函数fxxaln1x有两个极值点x1,x2,且x1x2. 2f(x1)f(x2)1. x1x2(I)求a的取值范围,并讨论fx的单调性;(II)证明:fx2 五:消元构造函数 例 六、已知函数fxlnx,gxex. (Ⅰ)若函数xfx12ln2. 4x1,求函数x的单调区间; x1(Ⅱ)设直线l为函数的图象上一点Ax0,fx0处的切线.证明:在区间1,上存在唯一的x0,使得直线l与曲线ygx相切. 第 3 页 共 3 页 六:二元合一构造函数 12axbx(a0)且导数f'(1)0 2(1)试用含有a的式子表示b,并求f(x)的单调区间;(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2)如果在函数图象上存在点M(x0,y0)(其中x0(x1,x2))使得点M处的切线l//AB,则称AB存在“跟随切线”。 xx2特别地,当x01时,又称AB存在“中值跟随切线”。试问:在函数f(x)上是否存在2两点A、B使得它存在“中值跟随切线”,若存在,求出A、B的坐标,若不存在,说明理由。例 七、已知函数f(x)lnx 七:构造函数解不等式 例 八、设函数f(x)=x32mx2m2x1m(其中m >-2)的图像在x=2处的切线与直线y=-5x+12平行; (Ⅰ)求m的值与该切线方程; (Ⅱ)若对任意的x1,x20,1,fx1fx2M恒成立,则求M的最小值;(Ⅲ)若a0, b0, c0且a+b+c=1,试证明: 例 九、设函数f(x)lnxpx1 (Ⅰ)求函数f(x)lnxpx1的极值点 (Ⅱ)当p0时,若对任意的x0,恒有f(x)0,求p的取值范围。 abc9 1a21b21c210ln22ln32ln42lnn22n2n1(Ⅲ)证明:2222(nN,n2) 234n2(n1) 例 十、证明:对任意的正整数n,不等式ln(1) 第 4 页 共 4 页 1n113都成立.2nn1、移项法构造函数 【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有1 2、作差法构造函数证明 【例2】已知函数f(x)1ln(x1)x x112xlnx.求证:在区间(1,)上,函数f(x)的图象在函数2g(x)23x的图象的下方; 31111)23 都成立.nnn 3、换元法构造函数证明 【例3】证明:对任意的正整数n,不等式ln(4、从条件特征入手构造函数证明 【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b) 第 5 页 共 5 页第五篇:构造函数解导数