第一篇:二次函数复习
二次函数复习(1)教学反思
在二次函数复习这节课中,围绕(1)二次函数的定义(2)二次函数的图像、性质与a、b、c的关系(3)二次函数解析式的求法(4)数形结合这四个知识点进行练习。下面我要谈的是我对高老师这节课的反思:
首先,高老师在课堂上,高老师对知识的掌握很有深度,所以高老师课堂上的习题深度掌握很好,做到了面向全体。
其次,本节课体现的是分层教学,在课堂上的教学环节处处体现分层,无论是提问中得分层,还是习题中的分层做的都很好,这说明高老师对于分层教学的这种方法运用自如得当,真正的站在学生的角度来分层。
第三,课堂上的语言精辟,尤其是评价性的话语很多,很丰富。真正做到让学生为老师的一句话而振奋,因为为了争得老师的一句话而好好做题等等,这是我一直以来欠缺的一个重要点。
那么针对以上几点,我从自己的角度思考,收获了以下这些:
1.上课之前一定要反复的推敲,琢磨课本,找出本节课知识的“灵魂”,然后站在学生的角度,仔细研究,如何讲授学生们才能愿意听,才能听得明白。尤其不能把学生想像的水平很高,不是不自信,而是不能把学生逼到“危险之地”,以免打击自尊心,熄灭刚刚点燃的兴趣之光,真正做到“低起点”。
2.既然选择和实施了分层教学,就应该多下功夫去琢磨,去进行它。既然是分层就应该把它做到“顺其自然”,而不仅仅是一种形式。在分层的同时应该找到一个点,就是说,这个点上的问题是承上启下的,是应该全班都能够掌握的。对于尖子生,不能在课堂上想让他们吃饱,对于他们应该在课下,或者是采用小纸条的方法单独来测试,不能为了他们的能力把题目难度定的过高。再者,分层应该体现在一节课的所有环节,例如,在提问时,对于一个问题应该分层次来提,来回答。
3.应该及时地,迅速的提高自己的言语水平。
一堂课的精彩与否,教师的课堂语言也是很重要的一个方面,例如一节课的讲授过程,或者是对于学生的评价等等,督促自己多读书,多练习,以丰富自己的语言。
4.最后,我觉得自己真的需要多学习,多见识,这样才能提高,才能迅速的提高。对于自己的优势,我也看到了,那就是我的教学之路很长,很多方法,很多思路都有时间,有条件去尝试,所以在以后的工作中要多动脑,多为学生着想。
第二篇:二次函数复习说课稿
二次函数复习说课稿1数学课堂教学如何结合现代教育教学理论、结合学生的实际来实施素质教育,优化课堂教学,提高教学效益呢?这是每个老师在今天的课改面前都有的困惑。那么我们应如何从困惑面前走出来呢?我认为首先我们要有这样本教学观念:“学生“学会求知”比较学生掌握知识本身更重要,在教学过程中我们要从人的固有特性出发发展学生的自主性、独立性和创造性,教师的教要为学生的学服务,数学教学要注重学生思维能力的培养,联系学生的生活实际,培养学生的数学思想和数学方法,提高学生应用数学的意识和解决问题的能力。下面,我来谈谈徐老师的数学课“二次函数复习”。
整节课的学习,看得出徐教师准备的比较充分,清楚知道学生应该,理解什么,掌握什么,学会什么。徐老师是学生学习活动的组织者、指导者和合作者,而学生是一个发现者、探索者,有效的发挥他们的学习主体作用。徐老师是让学生“体会知识”,而不是“教学生知识”,学生成了学习的主人,突出学生的主体地位。以下是我的一些肯定与不同意见及一些不成熟建议。
内容1、(1)肯定意见: 徐老师在开始的时候并没有讲二次函数的有关性质而是用幻灯片给出:
“例1 请研究函数y=x2-5x+6的图象与性质,尽可能写出结论。”
让学生自己去体会二次函数的有关性质,这样的做法可以让学生自己积极的思考,使学生的思维变的更积极,更主动。体现出徐老师知道在教学过程中着重发展学生的自主性、独立性和创造性,知道教师的教是为学生的学服务的。所以说从徐老师这点的想法、做法上看是成功的。
(2)不同意见:但是,如果说这样的做法徐老师已经有这样的观念了的话,我认为徐老师的做法不够彻底,下面是徐老师操作过程的摘记:
“师:(出示例题后不到1分钟)想到3种以上的同学请举手;
师:(出示例题后不到1.5分钟)想到5种以上的同学请举手;”
我说的不够彻底就是让学生思考的时间不够,我们虽然知道让学生思考的重要性,也这样做了,我们就要收到一定的效果。所以我们要让学生有充分的时间考虑,放手让学生,促进学生发展。我们要知道我们的对象应该是大多数学生,使大多数的学生有充分的思考时间。
(3)我的建议:给出题目时让学生思考时间3—5分钟。
内容2、(1)肯定意见:上课摘录:
“师:(叫一学生)说说你的得出的结果;
生:(1)a﹥0,开口向上……;
(2)Δ﹥0,在轴上有两个交点……;
…………”
徐老师给出结论时是充分让学生说出自己的答案,让学生充分表达自己的意见,自己的想法,从而提高学生学习的积极性,这符合人的自然规律,要知道无论是谁都是对自己的东西最感兴趣的,也就是对“我的”最感兴趣,它的最里面一层是我的思想、我的爱好、我的健康、我所要表达的一切,接下去是我的父母、我的班级学校、我的国家……。一个具体的例子:“当你看到一张有你集体照,你首先会看谁呢?这是不容质疑的。”也可以用一个图去表示:
所以说徐老师抓住了学生的人的固有特性,给学生一个自由的发挥的空间,让学生表达出“我的答案、想法”,使学生的思维变的积极,使课堂气氛变的积极,使学生的思维从中得到很好的锻炼。从这点来说徐老师这节是成功的。
(2)不同意见:个上面我们谈到这样做符合人固有的本性是很成功的,但我认为在操作上可以改进一下。徐老师开始的时候都是叫学生个人来完成,后面几
个问题干脆让学生一起来回答,这样做的后果就是不能让学生感觉到这是“我的答案”,感觉不到同学、老师那肯定的眼光,长此以往课堂的气氛会低迷,学生的思维会变的懒惰。因为的思考的答案可能会得不到肯定,我思考也没用。渐渐的学习的'积极性、主动性就会削弱,与我们老师的初衷、教改的意图相违背。可以这样说,徐老师这节课有突出学生的“我的……”,但没有完全突出最里面的一层“我的思想、别人对我的看法”。
(3)我的建议:每次都让学生站来回答问题,给予他及时的肯定与鼓励,使学生在肯定中变的积极,在肯定中变的自信,在肯定中得到进步。
内容3、我的一些不成熟看法:
1、或许徐老师在内容上的量处理方面更能使学生容易接受一点,我认为可以分为两节课来完成,内容1:“二次函数的图象及有关性质”,内容2:“怎样求二次函数的解析式”。
2、或许徐老师在语言上可以简练一些,使学生感到我们的老师的语言不是罗嗦。使我们的学生在我们的语言中感觉到学习的乐趣、领受知识、训练思维。
3、或许徐老师的站位可以更恰当一点,不要遮住给学生看的题目,要知道我们的给出的题目是为学生服务的,当我们的学生看不到这些目标——题目时他的思维活动就不能开展。
二次函数复习说课稿2一、教材分析
1.地位和作用
(1)二次函数是初中数学教学的重点和难点之一。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届上海市中考试题中,二次函数都是不可缺少的内容。
(2)二次函数的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。
2.教学目标
知识目标
1、通过复习,掌握各类形式的二次函数解析式的求解方法和思路,能够一题多解,发散学生的思维,提高学生的创造思维能力;
2、能运用数学思想解决有关二次函数的综合问题,帮助学生提高解决综合题的能力。
能力目标
提高学生对知识的整合能力和分析能力
情感目标
用powerpoint制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3.教学重点与难点
学习重点:各类形式的二次函数解析式的求解方法和思路
学习难点:1、运用数学思想解决有关二次函数的综合问题
2、运用数形结合思想,选用恰当的数学关系式解决几何问题。
二、教学方法
1、师生互动探究式教学,以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知欲心理和已有的认知水平开展教学,形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2、采用表格形式,将知识点归纳,让学生通过这个表格很容易看出二次函数与一元二次方程的联系,让学生形成以清晰、系统、完整的知识网络。
3、运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
三、学法指导
授人以鱼,不如授人以渔。在教学过程中,不但要传授学生基本知识,还要培养学生主动观察、主动思考、亲自动手、自我发现等学习能力,增强学生的综合素质,从而达到教学的终极目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发与点拨,在积极的双边活动中,学生找到了解决疑问的方法,找准解决问题的关键。
二次函数复习说课稿3一、教材分析
1.地位和作用
(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一.二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届淮安市中考试题中,二次函数都是不可缺少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通.2.课标要求:
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。
④会利用二次函数的图象求一元二次方程的近似解。
3.学情分析
(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。
(2)学生的分析、理解能力较学习新课时有明显提高。
(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
(4)学生能力差异较大,两极分化明显。
4.教学目标
认知目标
(1)掌握二次函数 y=ax2+bx+c图像与系数符号之间的关系。
通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力.能力目标
提高学生对知识的整合能力和分析能力.情感目标
制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
5.教学重点与难点:
重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。
(2)各类形式的二次函数解析式的求解方法和思路.难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.二、教学方法:
1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。
三、学法指导:
1.学法引导
“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质。
2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
四、教学过程:
1、教学环节设计:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.本节课的教学设计环节:
创设情境,引入新知:复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的例题.让每一个学生都能为下一步的探究做好准备。
自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。
运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。
安排三个层次的练习。
(一)课前预习
(二)典型例题分析
通过反馈使学生掌握重点内容。
(三)综合应用能力提高
既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
【二次函数复习说课稿】相关文章:
1.二次函数的复习优秀说课稿
2.二次函数复习教学反思
3.《对二次函数系数功能的探究》说课稿
4.二次函数的概念说课稿
5.二次函数概念的说课稿
6.二次函数的图像的说课稿
7.《实际问题与二次函数》说课稿范本
8.二次函数学复习题和练习题
9.二次函数复习课教学反思范文
第三篇:二次函数复习教案
中学美术课水彩画技法教学
摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。
关键词:中学美术课;水彩画;技法教学
一、水彩画技法指导
学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。
(一)画面勾勒轮廓阶段
第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。
(二)画面着色阶段
接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。
水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。
最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。
二、重要注意事项强调
在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。
需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。
另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。
三、水彩画技法教学示例
这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。
画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。
画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。
参考文献
第四篇:二次函数复习教案
二次函数复习教案
一、备考策略:
通过研究分析近5年德州中考试题,二次函数中考命题主要有以下特点(1)二次函数的图象和性质,以选择题和填空题为主。
(2)直接考察二次函数表达式的确定的题目不是很多,大多与其他知识点相融合,以解答题居多。
(3)二次函数与方程结合考察以解答题居多,与不等式结合以选择题为主。(4)二次函数图象的平移考察以选择题和填空题为主。(5)二次函数的实际应用,以解答题为主。
二、.命题热点:
(1)二次函数的图象和性质。(2)二次函数表达式的确定。
(3)二次函数与方程和不等式的关系。
(4)抛物线型实际问题在二次函数中的应用。(5)应用二次函数的性质解决最优化问题。
三、教学目标:
1、掌握二次函数的定义、图象及性质。
2、会用待定系数法求二次函数解析式。
3、能运用二次函数解决实际问题。教学重点:
二次函数图象及其性质,并利用二次函数解决实际问题。教学难点:
二次函数性质的灵活运用,能把实际问题转化为二次函数的数学模型。
四、教学过程:
(一)基础知识之自我建构
(二)考点梳理过关
考点一、二次函数的定义 1.什么是二次函数?
2.二次函数的三种基本形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);
(2)顶点式:y=a(x-h)2+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);
(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标.
达标练习1.(2017·百色中考)经过A(4,0),B(-2,0), C(0,3)三点的抛物线解析式是__________.考点二、二次函数的图象和性质
达标练习
2、(2017·衡阳中考)已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是:y1________y2(填“<”“>”或“=”).考点三、二次函数的图象与系数a,b,c的关系
达标练习
3、(2017·烟台中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④
B.②④
C.①②③
D.①②③④ 考点四
二次函数图象的平移
达标练习
4、(2017·常德中考)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()
A.y=2(x-3)2-5 B.y=2(x+3)2+5 C.y=2(x-3)2+5 D.y=2(x+3)2-5 考点五
二次函数与方程和不等式
达标练习5、1.(2017·徐州中考)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()
A.b<1且b≠0
B.b>1
C.0
D.b<1 【答题关键指导】
二次函数与一元二次方程的关系
(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,则两个交点的横坐标是一元二次方程ax2+bx+c=0(a≠0)的两个解.(2)二次函数的图象与x轴交点的个数由相应的一元二次方程的根的判别式的符号确定.2、(2017·咸宁中考)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是____________.考点六
二次函数的实际应用 列二次函数解应用题的两种类型 1.未告知是二次函数
(如求最大利润,最大面积等最优化问题)2.已告知二次函数图象
(如涵洞、桥梁、投篮等抛物型问题)
五、堂清检测
4、六、作业
必做题:
1、选做题:
第五篇:二次函数复习教案
第教学目标
18课时 二次函数(二)
1.理解二次函数与一元二次方程之间的关系;
2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程
一、知识梳理: 1.二次函数与一元二次方程的关系:
(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.
(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;
②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;
③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△<0.2.二次函数的应用:
(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;
二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;
(3)画出此抛物线图象,利用图象回答下列问题:
①方程x2-6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;
∴抛物线的顶点坐标为(3,-1)
(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.
②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题
2、已知二次函数yx2(m2)xm1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?
分析:(1)要说明不论m取任何实数,二次函数yx2(m2)xm1的图象必与x轴有两个交点,只要说明方程x2(m2)xm10有两个不相等的实数根,即△>0.
(2)两个交点都在原点的左侧,也就是方程x2(m2)xm10有两个负实数根,因而必须符合条件①△>0,②x1x20,③x1x20.综合以上条件,可求得m的值的范围.
三、合作交流:
1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。
2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是。
四、中考压轴题赏析:(分组合作)
已知:二次函数yx2(m1)xm的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12x210。2(1)求此二次函数的解析式;
5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.
5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2移项后
合52∴xM+xN=k+4.
∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.
当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3
∴直线MN的解析式为y=x-5,2∴此时直线过一、三、四象限,与抛物线有交点;
∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得
2M、N两点关于点E对称.
点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.
五、反思与提高:
1、本节课主要复习了哪些知识,你印象最深的是什么?
2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?
六、备考训练:
初中毕业学业考试指南P64 T7 8 9