初三数学复习教案(二次函数)

时间:2019-05-13 04:10:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初三数学复习教案(二次函数)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初三数学复习教案(二次函数)》。

第一篇:初三数学复习教案(二次函数)

用人要看他的忠诚度和可靠程度、归依企业的程度,希望能够跟企业结合一起的意向有多少,如果这三样东西都是对的,我们企业会给他非常大的机会去发展。初三复习教案

教学内容:二次函数(1)

教学目的:复习巩固二次函数的图象和性质.了解二次函数的解析式的几种形式.并能根据不同条件选择不同方法求出二次函数的解析式 教学过程

一.知识回顾:

1.二次函数的定义:形如y=ax2+bx+c(a≠0 a、b、c为常数)的函数叫做二次函数.

2.二次函数解析式的形式:一般式y=ax2+bx+c(a≠0)顶点式y=a(x-h)2+k(a≠0).

3.二次函数y=ax2+bx+c(a≠0)的顶点坐标 对称轴 及增减性

4.一般的二次函数

都可以变形为y=a(x-h)2+k的形式 具有特点:

(1)a>0时 开口向上;a<0时 开口向下.

(2)对称轴是直线x=h.

(3)顶点坐标是(h k).

二、例题分析

例1. 下列函数中哪些是二次函数?哪些不是二次函数?若是 指出a、b、c.

(1)y=1-3x2;

(2)y=x(x-5);

(3)y=3x(2-x)+3x2;

(4)y=(x+2)(2-x);

(5)y=x4+2x2+1.

例2.篱笆墙长30m 靠墙围成一个矩形花坛

写出花坛面积y(m2)与长x之间的函数关系式 并指出自变量的取值范围.

例3.已知二次函数y=ax2+bx+c 当 x=0时 y=0;x=1时 y=2;x=-1时 y=1.求a、b、c 并写出函数解析式.

例4.求经过A(0-1)、B(-1 2)C(1-2)三点且对称轴平行于y轴的抛物线的解析式.

例5.已知二次函数为x=4时有最小值-3且它的图象与x轴交点的横坐标为1 求此二次函数解析式.

例6.已知抛物线经过点(-1 1)和点(2 1)且与x轴相切.

(1)求二次函数的解析式;

(2)当x在什么范围时 y随x的增大而增大;

(3)当x在什么范围时 y随x的增大而减小.

例7.已知

(1)把它配方成y=a(x-h)2+k形式;

(2)写出它的开口方向、顶点M的坐标、对称轴方程和最值;

(3)求出图象与y轴、x轴的交点坐标;

(4)作出函数图象;

(5)x取什么值时y>0 y<0;

(6)设图象交x轴于A B两点

求△AMB面积. 同步练习:

1.在长20cm 宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形 写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系 并注明自变量的取值范围.

2.已知二次函数y=4x2+5x+1 求当y=0时的x的值.

3.已知二次函数y=x2-kx-15 当x=5时 y=0 求k.

4.已知二次函数y=ax2+bx+c中 当x=0时

y=2;当x=1时 y=1;当x=2时 y=-4 试求a、b、c的值.

5.有一个半径为R的圆的内接等腰梯形 其下底是圆的直径.

(1)写出周长y与腰长x的函数关系及自变量x的范围;

(2)腰长为何值时周长最大 最大值是多少?

6.二次函数的图象经过三点: ① 求这个函数的解析式 ② 求函数图顶点的坐标

③ 求抛物线与坐标轴的交点围成的三角形的面积

7.如图

抛物线y=x2+bx+c与x轴的负半轴相交于A、B两点 与y轴的正半轴相交于C点 与双曲线y=的一个交点是(1 m)且OA=OC.求抛物线的解析式.

8.如图

在平面直角坐标系中 已知OA=12厘米

OB=6厘米.点P从点O 开始沿OA边向点A以l厘米/秒的速度移动;点Q从点B开始沿BO边向点O以l厘米

秒的速度移动.如果P、Q同时出发 用t(秒)表示移动的时间(0≤t≤6)那么(1)设△POQ的面积为y 求y关于t的函数解析式;(2)当△POQ的面积最大时

将△POQ沿直线PQ翻折后得到△PCQ 试判断点C是否落在直线AB上 并说明理由;(3)当t为何值时

△POQ与△AOB相似.

第二篇:初三复习二次函数教案(九)

(10)初三复习二次函数教案

教学目的:

1.掌握二次函数式的应用,理解并掌握二次函数 的

应用。

2、体会并理解掌握数形结合思想在解题中的作用 ;

教学分析:

重点:理解并掌握二次函数的定义以及应用。

难点: 数形结合思想在解题中的作用 ; 教学方法: 讲练结合,以练为主.

教学过程:

一、概念复习:1、2、3、二、例题分析: 例

1、选择与填空:

1、下列函数关系中,可以看作二次函数yaxbxc(a0)模型的是().(A)在一定的距离内汽车的行驶速度与行驶时间的关系

(B)我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系

(C)竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)

(D)圆的周长与圆的半径之间的关系

2、抛物线y=-1x2-x+5的顶点坐标是。

222 A:(1,3)B:(1,-3)C:(-1,3)D:(-1,-3)

3、二次函数y=-2(x+1)2+2的图像大致是。

A: B: C: D:

2、若二次函数y=x2+bx+c的图像经过点(-4,0),(2,6),则这个二次函数的解析式是________。

2、已知抛物线y2x123xm(m为常数)与x轴交于A,B两点,且线段AB的长为2(1)求m的值;(2)若该抛物线的顶点为P,(3)求APB的面积。(天津市2002考)

3、已知二次函数yxaxa2.

(1)证明:不论a取何值,抛物线yxaxa2的顶点Q总在x轴的下方;(2)设抛物线yxaxa2与y轴交于点C,如果过点C且平行于x轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:△QCD能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;

(3)在第(2)题的已知条件下,又设抛物线与x轴的交点之一为点A,2221则能使△ACD的面积等于4的抛物线有几条?请证明你的结论.

4、已知抛物线y=

14x2和直线y=ax+1(1)求证:不论a取何值,抛物线与直线必有两个不同的交点;(2)设A(x1,y1)、B(x2,y2)是抛物线与直线的两个交点,点P为线段AB的中点,且点P的横坐标为P的纵坐标;(3)函数A、B两点的距离d2x1x22,试用a表示点a表示d。

1a|x1x2|,试用

5、某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高出售价格,减少进货量的办法增加利润,已知这种商品每涨价一元,其销售量将减少10件,问他将出售价定为多少元时,才能使每天所获利润最大?并且求出最大利润是多少?

三、巩固训练:

1、如图在直角坐标系xoy中,二次函数图象的顶点坐标为C(4,3),且在x轴上截得的线段长为6。(1)二次函数的解析式。(2)x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似;如果存在,请求出Q点的坐标;如果不存在,请说明理由。

2、一座抛物线形拱桥,正常水位时桥下面宽度为20米,拱顶距离水面4米;(1)在如图所示的直角坐标系中,求出该抛物线的解析式;(2)在正常水位的基础上,当水位上升h(米)时,桥下水面的宽度为d(米)。试求出将d表示为h的函数解析式。(3)设正常水位时桥下的水深为2米,为了保证过往船只顺利航行,桥下水面的宽度不得小于18米,求水深超过多少米时就会影响过往船只在桥下顺利航行?

3、已知二次函数(1)结合函数y1的图象,确定当x取什么值时,y1>0, y1<0;

y212(y1y1)y1x2x32y1=0,(2)根据(1)的结论,确定函数关于x的解析式;(3)若一次函数y=kx+b(k0)的图象与函数y2的图象交于三个不同(7)点,试确定实数k与b应满足的条件。(天津市2002)考)

四、课后训练:

6、已知二次函数y=(m2-1)xm-2m-1+m-2,则m=。

7、函数y=x1在 时有意义。

2x-x2

2、二次函数的图象经过A4,0,B0,4,C2,4三点:

① 求这个函数的解析式 ② 求函数图顶点的坐标 ③ 求抛物线与坐标轴的交点围成的三角形的面积。

第三篇:二次函数复习教案

中学美术课水彩画技法教学

摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。

关键词:中学美术课;水彩画;技法教学

一、水彩画技法指导

学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。

(一)画面勾勒轮廓阶段

第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。

(二)画面着色阶段

接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。

水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。

最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。

二、重要注意事项强调

在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。

需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。

另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。

三、水彩画技法教学示例

这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。

画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。

画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。

参考文献

第四篇:二次函数复习教案

二次函数复习教案

一、备考策略:

通过研究分析近5年德州中考试题,二次函数中考命题主要有以下特点(1)二次函数的图象和性质,以选择题和填空题为主。

(2)直接考察二次函数表达式的确定的题目不是很多,大多与其他知识点相融合,以解答题居多。

(3)二次函数与方程结合考察以解答题居多,与不等式结合以选择题为主。(4)二次函数图象的平移考察以选择题和填空题为主。(5)二次函数的实际应用,以解答题为主。

二、.命题热点:

(1)二次函数的图象和性质。(2)二次函数表达式的确定。

(3)二次函数与方程和不等式的关系。

(4)抛物线型实际问题在二次函数中的应用。(5)应用二次函数的性质解决最优化问题。

三、教学目标:

1、掌握二次函数的定义、图象及性质。

2、会用待定系数法求二次函数解析式。

3、能运用二次函数解决实际问题。教学重点:

二次函数图象及其性质,并利用二次函数解决实际问题。教学难点:

二次函数性质的灵活运用,能把实际问题转化为二次函数的数学模型。

四、教学过程:

(一)基础知识之自我建构

(二)考点梳理过关

考点一、二次函数的定义 1.什么是二次函数?

2.二次函数的三种基本形式

(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);

(2)顶点式:y=a(x-h)2+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);

(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标.

达标练习1.(2017·百色中考)经过A(4,0),B(-2,0), C(0,3)三点的抛物线解析式是__________.考点二、二次函数的图象和性质

达标练习

2、(2017·衡阳中考)已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是:y1________y2(填“<”“>”或“=”).考点三、二次函数的图象与系数a,b,c的关系

达标练习

3、(2017·烟台中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④

B.②④

C.①②③

D.①②③④ 考点四

二次函数图象的平移

达标练习

4、(2017·常德中考)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()

A.y=2(x-3)2-5 B.y=2(x+3)2+5 C.y=2(x-3)2+5 D.y=2(x+3)2-5 考点五

二次函数与方程和不等式

达标练习5、1.(2017·徐州中考)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()

A.b<1且b≠0

B.b>1

C.0

D.b<1 【答题关键指导】

二次函数与一元二次方程的关系

(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,则两个交点的横坐标是一元二次方程ax2+bx+c=0(a≠0)的两个解.(2)二次函数的图象与x轴交点的个数由相应的一元二次方程的根的判别式的符号确定.2、(2017·咸宁中考)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是____________.考点六

二次函数的实际应用 列二次函数解应用题的两种类型 1.未告知是二次函数

(如求最大利润,最大面积等最优化问题)2.已告知二次函数图象

(如涵洞、桥梁、投篮等抛物型问题)

五、堂清检测

4、六、作业

必做题:

1、选做题:

第五篇:二次函数复习教案

第教学目标

18课时 二次函数(二)

1.理解二次函数与一元二次方程之间的关系;

2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程

一、知识梳理: 1.二次函数与一元二次方程的关系:

(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.

(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;

②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;

③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△<0.2.二次函数的应用:

(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;

二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;

(3)画出此抛物线图象,利用图象回答下列问题:

①方程x2-6x+8=0的解是什么?

②x取什么值时,函数值大于0?

③x取什么值时,函数值小于0?

解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;

∴抛物线的顶点坐标为(3,-1)

(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.

②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题

2、已知二次函数yx2(m2)xm1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?

分析:(1)要说明不论m取任何实数,二次函数yx2(m2)xm1的图象必与x轴有两个交点,只要说明方程x2(m2)xm10有两个不相等的实数根,即△>0.

(2)两个交点都在原点的左侧,也就是方程x2(m2)xm10有两个负实数根,因而必须符合条件①△>0,②x1x20,③x1x20.综合以上条件,可求得m的值的范围.

三、合作交流:

1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。

2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是。

四、中考压轴题赏析:(分组合作)

已知:二次函数yx2(m1)xm的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12x210。2(1)求此二次函数的解析式;

5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.

5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2移项后

合52∴xM+xN=k+4.

∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.

当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3

∴直线MN的解析式为y=x-5,2∴此时直线过一、三、四象限,与抛物线有交点;

∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得

2M、N两点关于点E对称.

点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.

五、反思与提高:

1、本节课主要复习了哪些知识,你印象最深的是什么?

2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?

六、备考训练:

初中毕业学业考试指南P64 T7 8 9

下载初三数学复习教案(二次函数)word格式文档
下载初三数学复习教案(二次函数).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学复习二次函数

    1、已知二次函数y=﹣x2+bx+c的图象过点A(3,0),C(﹣1,0).求二次函数的解析式;如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;在......

    初中数学二次函数专题复习教案解读

    初中数学二次函数复习专题 〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗 1. 理解二次函数的概念; 2. 会把二次函数的一般式化为顶点式,确定图象的顶点......

    二次函数复习

    二次函数复习(1)教学反思 在二次函数复习这节课中,围绕(1)二次函数的定义(2)二次函数的图像、性质与a、b、c的关系(3)二次函数解析式的求法(4)数形结合这四个知识点进行练习。 下面我要......

    二次函数复习教案(五篇)

    如皋市实验初中九年级(下)数学教案 设计:余亚明 2010年12月课题:二次函数的复习【教学目标】 1.理解二次函数的概念,会画二次函数的图象,能从图象上认识其性质。 2.会用待定系数法......

    人教版中考数学专题复习二次函数

    2021年人教版中考数学专题复习二次函数(满分120分;时间:90分钟)一、选择题(本题共计8小题,每题3分,共计24分,)1.在下列函数表达式中,一定为二次函数的是A.y=x+3B.y=ax2+bx+cC.y=t2-2t+......

    二次函数复习说课稿[本站推荐]

    二次函数复习说课稿1数学课堂教学如何结合现代教育教学理论、结合学生的实际来实施素质教育,优化课堂教学,提高教学效益呢?这是每个老师在今天的课改面前都有的困惑。那么我们......

    初三数学二次函数单元测试题及答案

    二次函数单元测评 (试时间:60分钟,满分:100分) 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量) A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是......

    初三上册数学“二次函数”教学设计

    初三上册数学“二次函数”教学设计 教学任务分析 教学目标: 知识技能:通过探究实际问题与二次函数关系,让学生掌握利用顶点坐标解决最大值(或最小值)问题的方法. 数学思考:1.通过研......