第一篇:初中数学知识点
定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理 圆的切线垂直于经过切点的半径
推论1 经过圆心且垂直于切线的直线必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
圆的外切四边形的两组对边的和相等
弦切角定理 弦切角等于它所夹的弧对的圆周角
推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
第二篇:初中数学知识点总结
初中数学知识点总结过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行
12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
第三篇:初中数学知识点归纳:几何
学冠教育-初中数学知识点归纳:几何
初中数学几何公式大全——初中几何公式包括:线、角、圆、正方形、矩形等数学学几何的公式,以供同学们学习和理解!
初中几何公式:线
同角或等角的余角相等
过一点有且只有一条直线和已知直线垂直
过两点有且只有一条直线
两点之间线段最短
同角或等角的补角相等
直线外一点与直线上各点连接的所有线段中,垂线段最短
平行公理
经过直线外一点,有且只有一条直线与这条直线平行
如果两条直线都和第三条直线平行,这两条直线也互相平行
初中几何公式:角
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
初中几何公式:三角形
定理
三角形两边的和大于第三边
推论
三角形两边的差小于第三边
三角形内角和定理
三角形三个内角的和等于
180°
推论
直角三角形的两个锐角互余
推论
三角形的一个外角等于和它不相邻的两个内角的和
推论
三角形的一个外角大于任何一个和它不相邻的内角
全等三角形的对应边、对应角相等
边角边公理
有两边和它们的夹角对应相等的两个三角形全等
角边角公理
有两角和它们的夹边对应相等的两个三角形全等
推论
有两角和其中一角的对边对应相等的两个三角形全等
边边边公理
有三边对应相等的两个三角形全等
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等
定理
在角的平分线上的点到这个角的两边的距离相等
定理
到一个角的两边的距离相同的点,在这个角的平分线上
角的平分线是到角的两边距离相等的所有点的集合资
初中几何公式:等腰三角形
等腰三角形的性质定理
等腰三角形的两个底角相等
推论
等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和高互相重合33
推论
等边三角形的各角都相等,并且每一个角都等于
60°
等腰三角形的判定定理
如果一个三角形有两个角相等,那么这两个角所对的边也相
等(等角对等边)
推论
三个角都相等的三角形是等边三角形
推论
有一个角等于
60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于
30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理
线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理
和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42
定理
关于某条直线对称的两个图形是全等形
定理
如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理
两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这
条直线对称
勾股定理
直角三角形两直角边
a、b的平方和、等于斜边
c的平方,即
a+b=c
勾股定理的逆定理
如果三角形的三边长
a、b、c
有关系
a+b=c,那么这个三角形是
直角三角形
初中几何公式:四边形
定理
四边形的内角和等于
360°
四边形的外角和等于
360°
多边形内角和定理
n
边形的内角的和等于(n-2)×180°
推论
任意多边的外角和等于
360°
平行四边形性质定理
平行四边形的对角相等
平行四边形性质定理
平行四边形的对边相等
推论
夹在两条平行线间的平行线段相等
平行四边形性质定理
平行四边形的对角线互相平分
平行四边形判定定理
两组对角分别相等的四边形是平行四边形
平行四边形判定定理
两组对边分别相等的四边形是平行四边形
平行四边形判定定理
对角线互相平分的四边形是平行四边形
要
平行四边形判定定理
一组对边平行相等的四边形是平行四边形
初中几何公式:矩形
矩形性质定理
矩形的四个角都是直角
矩形性质定理
矩形的对角线相等
矩形判定定理
有三个角是直角的四边形是矩形
矩形判定定理
对角线相等的平行四边形是矩形
初中几何公式:菱形
菱形性质定理
菱形的四条边都相等
菱形性质定理
菱形的对角线互相垂直,并且每一条对角线平分一组对角
菱形面积=对角线乘积的一半,即
S=(a×b)÷2
菱形判定定理
四边都相等的四边形是菱形
菱形判定定理
对角线互相垂直的平行四边形是菱形
初中几何公式:正方形
正方形性质定理
正方形的四个角都是直角,四条边都相等
正方形性质定理
正方形的两条对角线相等,并且互相垂直平分,每条对角线平分
一组对角
定理
关于中心对称的两个图形是全等的72
定理
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平
分
逆定理
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个
图形关于这一点对称
初中几何公式:等腰梯形
等腰梯形性质定理
等腰梯形在同一底上的两个角相等
等腰梯形的两条对角线相等
等腰梯形判定定理
在同一底上的两个角相等的梯形是等腰梯形
对角线相等的梯形是等腰梯形
初中几何公式:等分
平行线等分线段定理
如果一组平行线在一条直线上截得的线段
相等,那么在其他
直线上截得的线段也相等
推论
经过梯形一腰的中点与底平行的直线,必平分另一腰
推论
经过三角形一边的中点与另一边平行的直线,必平分第三边
三角形中位线定理
三角形的中位线平行于第三边,并且等于它的一半
梯形中位线定理
梯形的中位线平行于两底,并且等于两底和的一半
L=(a+b)÷2
S=L×h
(1)比例的基本性质
如果
a:b=c:d,那么
ad=bc
如果
ad=bc,那么
a:b=c:d
(2)合比性质
如果
a/b=c/d,那么(a±b)/b=(c±d)/d
要
资料
(3)等比性质
如果
a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例
推论
平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比
例
定理
如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么
这条直线平行于三角形的第三边
平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三
角形三边对应成比例
定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形
与原三角形相似
相似三角形判定定理
两角对应相等,两三角形相似(ASA)
直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理
两边对应成比例且夹角相等,两三角形相似(SAS)
判定定理
三边对应成比例,两三角形相似(SSS)
定理
如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条
直角边对应成比例,那么这两个直角三角形相似
性质定理
相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似
比
性质定理
相似三角形周长的比等于相似比
性质定理
相似三角形面积的比等于相似比的平方
任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦
值
任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切
值
初中几何公式:圆
圆是定点的距离等于定长的点的集合102
圆的内部可以看作是圆心的距离小于半径的点的集合103
圆的外部可以看作是圆心的距离大于半径的点的集合104
同圆或等圆的半径相等
到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
到已知角的两边距离相等的点的轨迹,是这个角的平分线
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
定理
不在同一直线上的三个点确定一条直线
垂径定理
垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
资料
W
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112
推论
圆的两条平行弦所夹的弧相等
113
圆是以圆心为对称中心的中心对称图形
114
定理
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115
推论
在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一
组量相等那么它们所对应的其余各组量都相等
116
定理
一条弧所对的圆周角等于它所对的圆心角的一半
117
推论
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相
等
118
推论
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119
推论
如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120
定理
圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线
L
和⊙O
相交
d﹤
r
②直线
L
和⊙O
相切
d=r
③直线
L
和⊙O
相离
d﹤
r
122
切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
123
切线的性质定理
圆的切线垂直于经过切点的半径
124
推论
经过圆心且垂直于切线的直线必经过切点
125
推论
经过切点且垂直于切线的直线必经过圆心
126
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连
线平分两条切线的夹角
127
圆的外切四边形的两组对边的和相等
128
弦切角定理
弦切角等于它所夹的弧对的圆周角
129
推论
如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130
相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等
131
推论
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中
项
132
切割线定理
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条
线段长的比例中项
133
推论
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134
如果两个圆相切,那么切点一定在连心线上
135①两圆外离
d﹤
R+r
②两圆外切
d=R+r
③两圆相交
R
-r﹤
d﹤
R
+r(R
﹤
r)
④两圆内切
d=R
-r(R
﹤
r)
⑤两圆内含
d﹤
R
-r(R
﹤
r)
要
资
136
定理
相交两圆的连心线垂直平分两圆的公共弦
137
定理
把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正
n
边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正
n
边
形
138
定理
任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139
正
n
边形的每个内角都等于(n-2)×180°/n
140
定理
正
n
边形的半径和边心距把正
n
边形分成2n
个全等的直角三角形
141
正
n
边形的面积
Sn=pnrn/2
p
表示正
n
边形的周长
142
正三角形面积√3a/4
a
表示边长
143
如果在一个顶点周围有
k
个正
n
边形的角,由于这些角的和应为
360°,因此
k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144
弧长计算公式:L=n∏R/180
145
扇形面积公式:S
扇形=n∏R
/360=LR
/2
146
内公切线长=
d-(R-r)
外公切线长=
d-(R+r)
第四篇:初中数学证明题知识点(本站推荐)
北师大版初中证明题知识点大全
一、相交线与平行线
1、平行线的性质
(1)两线平行,内错角相等(2)两线平行,同位角相等(3)两线平行,同旁内角互补
2、平行线的判定
(1)内错角相等,两线平行(2)同位角相等,两线平行(3)同旁内角互补,两线平行(4)同平行于一线的两线平行(5)同垂直于一线的两线平行
二、角平分线
1、角平分线的性质
定义:角平分线上的点到这个角的两边的距离相等.2、角平分线的判定
(1)在一个角的内部,到角的两边距离相等的点在这个角的平分线上.(2)把一个角分成相同角度的线叫做角平分线。
3、三角形三内角的平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.三、垂直平分线
1、垂直平分线的意义及性质
(1)定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。(2)性质:线段垂直平分线上的点到这条线段两个端点的距离相等。(3)三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.2、垂直平分线的判定
线段的中线并且垂直于这条线段 四、三角形全等
1、全等三角形的判定
(1)定理:三边分别相等的两个三角形全等.(SSS)(2)定理:两边及其夹角分别相等的两个三角形全等.(SAS)(3)定理:两角及其夹边分别相等的两个三角形全等.(ASA)
(4)定理:两角分别相等且其中一组等角的对边相等的两个三角形全 等.(AAS)(5)定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)
2、全等三角形的性质
全等三角形对应边相等、对应角相等.五、相似三角形
1.定义:对应角相等,对应边成比例的两个三角形叫相似三角形. 2.相似比定义:相似三角形对应边的比. 3.相似三角形的判定
(1)对应边相等,对应角成比例。(2)两角对应相等的两个三角形相似。AA(3)两角对应成比例且夹角相等的两个三角形相似。SAS(4)三边对应成比例的两个三角形相似。SSS 4.相似三角形的性质:对应角相等,对应边成比例。
5、相似多边形的周长比等于相似比,面积比等于相似比的平方。
六、勾股定理
222(1)若三角形三边长a,b,c满足abc,那么这个三角形是直角三角形三角形
222(2)若abc,时,以a,b,c为三边的三角形是三角形; 222(3)若abc,时,以a,b,c为三边的三角形是三角形;
(4)用含字母的代数式表示n组勾股数:
2n1,2n,n1(n2,n为正整数);
2n1,2n22n,2n22n1(n为正整数)m2n2,2mn,m2n2(mn,m,n为正整数)
七、等腰三角形
1、等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),(3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴。
3、等腰三角形的判定:
(1)有两条边相等的三角形是等腰三角形。
(2)如果一个三角形有两个角相等,那么它们所对的边也相等
八、等边三角形
1、等边三角形:三边都相等的三角形叫做等边三角形。
2、等边三角形的性质:
(1)具有等腰三角形的所有性质。
(2)等边三角形的各个角都相等,并且每个角都等于60°。
3、等边三角形的判定
(1)三边都相等的三角形是等边三角形。(2):三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
九、直角三角形
1、直角三角形的性质
(1)定理:直角三角形的两个锐角互余.(2)定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.(3)勾股定理:直角三角形两条直角边的平方和等于斜边的平方.(4)直角三角形斜边上的中线等于斜边上的一半。
2、直角三角形的判定
(1)定理:有两个角互余的三角形是直角三角形.(2)定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.十、平行四边形
1、平行四边形的性质
(1)定理:平行四边形的对边相等.(2)定理:平行四边形的对角相等.(3)定理:平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,两条对角线的交点是它的对称中心.2、平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理:两组对边分别相等的四边形是平行四边形.(3)定理:一组对边平行且相等的四边形是平行四边形.(4)定理:对角线互相平分的四边形是平行四边形.十一、特殊平行四边形
菱形
1、菱形定义:有一组邻边相等的平行四边形叫做菱形. 菱形(1)是平行四边形;(2)一组邻边相等.
2、菱形的性质:具有平行四边形的所有性质。还有以下个性:(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直,并且每条对角线平分一组对角;(3)菱形既是中心对称图形,又是轴对称图形。
3、菱形的判定
(1)对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:是一个平行四边形;两条对角线互相垂直.(2)四边都相等的四边形是菱形.
矩形
1、矩形定义:有个一角是直角的平行四边形叫做矩形(1)矩形是特殊的平行四边形;(2)有一个角是直角.
2、矩形的性质:具有平行四边形的所以性质。还有以下个性: 性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等。
矩形既是中心对称图形,又是轴对称图形。
3、矩形的判定:
(1)有一个内角是直角的平行四边形叫矩形(定义法)(2)对角线互相平分且相等的平行四边形是矩形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)对角线相等(3)都是直角的四边形是矩形.
(4)直角三角形斜边上的中线等于斜边的一半。
正方形
1、正方形的定义:有一组对边直平行且相等,并且有一个角是直角的平行四边形叫做正方形。
注意:
1、正方形概念的三个要点:(1)是平行四边形;(2)有一组邻边相等;(3)有一个角是直角.
强调:正方形是在平行四边形的前提下定义的,它包含两层意思: ①有一组邻边相等的平行四边形(菱形),②有一个角是直角的平行四边形(矩形)。
说明:正方形不仅是特殊的平行四边形,而且是特殊的矩形,还是特殊的菱形.
2、正方形的性质:具有平行四边形、矩形、菱形的所有性质:(1)边:两组对边平行且相等;(2)角:四个角都是直角;
(3)对角线:对角线相等,互相垂直平分,每条对角线平分一组对角.(4)正方形是中心对称图形,对称中心是对角线的交点;
(5)正方形又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有四条对称轴;
注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,这是正方形的特殊性质.
3、正方形的判定方法:
(1)有一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形;(3)有一个角是直角的菱形是正方形;(4)对角线相等的菱形是正方形.注意:要确定一个四边形是正方形,应先确定它是矩形或是菱形,然后再加上相应的条件,确定是正方形.十二、梯形
1、梯形的定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
2、等腰梯形定义:两条腰相等的梯形叫做等腰梯形。
3、直角梯形定义:一条腰和底边垂直梯形叫做直角梯形。
4、等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
6、等腰梯形的判定:同一同一底上的两个内角相等的梯形是等腰梯形。十三、三角形高,中线,角平分线,中位线
三角形的角平分线
1、定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
2、性质:三角形的三条角平分线交于一点。交点在三角形的内部。
三角形的中线:
1、定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
2、性质:三角形的三条中线交于一点,交点在三角形的内部。三角形的高线:
1、定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;
三角形的中位线
定义:连接三角形两边中点的线段叫做三角形的中位线.性质:三角形的中位线平行于第三边,且等于第三边的一半.3、由三角形的三条中位线,可以得出以下结论:
三条中位线组成一个三角形,其周长为原三角形周长的一半; 三条中位线将原三角形分割成四个全等的三角形; 三条中位线将三角形划分出三个面积相等的平行四边形.十四、三角形内角和,补角,余角,外角
1、三角形的内角的关系:
三角形三个内角和等于180°。直角三角形的两个锐角互余。
2、余角、补角和对顶角(1)余角:
定义:如果两个角的和是直角,那么称这两个角互为余角。性质:同角或等角的余角相等。(2)补角:
定义:如果两个角的和是平角,那么称这两个角互为补角。性质:同角或等角的补角相等。(3)对顶角:
定义:我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角。对顶角的性质:对顶角相等。
3、外角
三角形的一个外角等于它不相邻的两个内角之和。
十五、多边形的内角和与外角和
(n2)·180°.定理:n边形的内角和等于定理:多边形的外角和都等于360°.1n(n3)2备注:n边形共有条对角线.
第五篇:【精】初中数学知识点专题
初一至初三 数学知识点一览表
七年级:
上——1.数学与我们同行
2.有理数->绝对值 乘除 乘法运算律(交换律结合律分配律)乘方 混合运算
3.代数式->合并同类项 去括号
4.一元一次方程->移项 解方程
5.走进图形世界 折叠 三视图
6.平面图形的认识
(一)线 角平行 垂直
下——7.平面图形的认识
(二)平行条件 性质平移 三角形 多边形内角和
8.幂的运算 同底数幂乘除 幂的乘方 积的乘方
9.整式乘法与因式分解乘法公式 提公因式
10.二元一次方程 解方程 加减消元 代入消元
11.一元一次不等式 性质 符号
12.证明 定义 命题
八年级:
上——1.全等三角形 性质 判定
2.轴对称图形 中垂线 角平分线 等腰等边三角形 斜边上的中线等于一半
3.勾股定理 应用
4.实数平方根 立方根
5.平面直角坐标系 象限
6.一次函数 y=kx+b 正比例函数 图像 k>0, k<0 一次函数与二元一次方程
下——7.数据的收集、整理、描述 频数分布表 频数分布直方图
8.认识概率 频率 概率 摸球实验
9.中心对称图形——平行四边形 判定 矩形 菱形 正方形 三角形中位线
10.分式 约分 通分 最简公分母 分式加减 异分母加减 乘除 分式方程
11.反比例函数 图像 性质
12.二次根式乘除 最简二次根式
九年级:
上——1.图形与证明
(二)证明
2.数据的离散程度 极差 方差 标准差
3.二次根式
4.一元二次方程 配方法 因式分解法 跟的判别式 跟与系数的关系
5.中心对称图形
(二)圆 圆周角 圆心角 切线性质 弧长 扇形面积 圆锥侧面积 全面积
下——
6.二次函数 y=ax^2+bx+c图像 最大值最小值
7.锐角三角形 正切 正弦 解三角形
8.统计的简单应用
9.概率的简单应用