第一篇:复合函数的单调性的证明
复合函数的单调性的证明
例
1、已知函数yf(x)与yg(x)的定义域都是R,值域分别是0,与,0,在R上f(x)是增函数而g(x)是减函数,求证:F(x)f(x)g(x)在R上为减函数.分析:证明的依据应是减函数的定义.证明:设x1,x2是R上的任意两个实数,且x1x2,则F(x1)F(x2)f(x1)g(x1)f(x2)g(x2)
f(x1)g(x1)f(x1)g(x2)f(x1)g(x2)f(x2)g(x2)f(x1)g(x1)g(x2)g(x2)f(x1)f(x2)
f(x)是R上的增函数,g(x)是R上的减函数,且x1x2.f(x1)f(x2),g(x1)g(x2)即f(x1)f(x2)0,g(x1)g(x2)0.又f(x)的值域为0,,g(x)的值域为,0,f(x1)0,g(x2)0.F(x1)F(x2)0即F(x1)F(x2)
F(x)在R上为减函数.小结:此题涉及抽象函数的有关证明,要求较高,此外在F(x1)F(x2)的变形中涉及到增减项的技巧,它也应是源于单调性只能比较同一个函数的某两个函数值,必须构造出f(x1)与f(x2)的差和g(x1)与g(x2)的差.
第二篇:复合函数的概念及复合函数的单调性
复合函数的概念及复合函数的单调性
1.复合函数的概念
如果y是的函数,又是x的函数,即yf(),g(x),那么y关于x的函数yf[g(x)]叫做函数yf()和g(x)的复合函数,其中是中间变量,自变量为x,函数值y。
例如:函数y()x1322x是由y(),x2x复合而成立。
221函数ylg(34xx)是由ylg,34xx复合而成立,、是中间变量。
2.复合函数单调性
一般地,定理:设函数g(x)在区间M上有意义,函数yf()在区间N上有意义,且当xM时,N
有以下四种情况:
(1)若g(x)在M上是增函数,yf()在N上是增函数,则yf[g(x)]在M上也是增函数;
(2)若g(x)在M上是增函数,yf()在N上是减函数,则yf[g(x)]在M上也是减函数;
(3)若g(x)在M上是减函数,yf()在N上是增函数,则yf[g(x)]在M上也是减函数;
(4)若g(x)在M上是减函数,yf()在N上是减函数,则yf[g(x)]在M上也是增函数。
即:同增异减
注意:内层函数g(x)的值域是外层函数yf()的定义域的子集。
例
1、讨论下列函数的单调性(注意:要求定义域)
(1)y()
解:
213x22x(2)ylg(34xx)
练习1:
1.求下列函数的单调区间。
(1)y
2(3)y
例
2、已知yf(x),且lglgylg3xlg(3x)。
(1)求yf(x)的表达式及定义域;
(2)讨论yf(x)的单调性。
练习2 1.已知f(x)82xx,g(x)f(2x),求g(x)的单调区间。
2.讨论函数yloga(x4x3)的单调性。2x25x2
(2)ylog1(x2x3)
22xx1(4)y(3xx)221222
练习题
1.若函数yf(x)的图象过点(0,1),则yf(x4)的图象必过点()
A.(4,1)
B.(1,4)C.(4,1)
D.(1,1)
2.函数ylog2x在区间,00,上()2A.是奇函数,且在0,上是增函数 B.是偶函数,且在0,上是增函数 C.是奇函数,且在0,上是减函数 D.是偶函数,且在0,上是减函数
3.函数y166xx2(0x4)的最大值与最小值分别是()
A.25,16 B.5,0 C.5,4 D.4,0 11x4.函数y321值域为()
A.(,1)
B.(,1)
C.[,1)
D.[,)5.函数f(x)log1(6xx)的单调递增区间是()31313132A.[11,)
B.[,2)22x22(a1)x1C.(,)
D.(3,)
12126.函数f(x)2在区间[5,)上是增函数,则实数a的取值范围是()A.[6,+)
B.(6,)
C.(,6]
D.(,6)7.已知yloga(2ax)在0,1上是x的减函数,则a的取值范围是()A.0,1
B.1,2
C.0,2
D.2,
第三篇:复合函数单调性教案
复合函数单调性教案
教学目标 知识目标
1.掌握有关复合函数单调区间的四个引理.2.会求复合函数的单调区间.3.必须明确复合函数单调区间是定义域的子集.能力目标
培养学生的数学转化思想和构建数学建模能力。情感目标
培养学生分析问题,解决问题的能力。教学重点与难点
1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间.2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.教学过程设计
师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.生:设y=f(u)的定义域为A,u=g(x)的值域为B,若AÍB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.师:很好.下面我们再复习一下所学过的函数的单调区间.(教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)(教师板书,可适当略写.)例
求下列函数的单调区间.1.一次函数y=kx+b(k≠0).解 当k>0时,(-∞,+∞)是这个函数的单调增区间;当k<0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=k(k≠0).x解 当k>0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k<0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax2+bx+c(a≠0).bb)是这个函数的单调减区间,(-,+∞)是它的单调增区间;2a2abb当a<0时(-∞,-)是这个函数的单调增区间,(-,+∞)是它的单调减区间;
2a2a解
当a>0时(-∞,-4.指数函数y=ax(a>0,a≠1).
解
当a>1时,(-∞,+∞)是这个函数的单调增区间,当0<a<1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=logax(a>0,a≠1).解
当a>1时,(0,+∞)是这个函数的单调增区间,当0<a<1时,(0,+∞)是它的单调减区间.师:我们还学过幂函数y=xn(n为有理数),由于n的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析.师:我们看看这个函数y=2x2+2x+1,它显然是复合函数,它的单调性如何? 生:它在(-∞,+∞)上是增函数.师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理.(板书)引理1 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明
在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢? 生:不能.因为并非所有的简单函数都是某区间上的增函数.师:你回答得很好.因此,还需增加一些引理,使得求复合函数的单调区间更容易些.(教师可以根据学生情况和时间决定引理2是否在引理1的基础上做些改动即可.建议引理2的证明也是改动引理1的部分证明过程就行了.)引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.证明
在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:我们明白了上边的引理及其证明以后,剩下的引理我们自己也能写出了.为了记忆方便,咱们把它们总结成一个图表.(板书)
师:你准备怎样记这些引理?有规律吗?
(由学生自己总结出规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数.)师:由于中学的教学要求,我们这里只研究y=f(u)为u的单调函数这一类的复合函数.做例题前,全班先讨论一道题目.(板书).例1 求下列函数的单调区间:
y=log4(x2-4x+3)师:咱们第一次接触到求解这种类型问题,由于对它的解题步骤、书写格式都不太清楚,我们先把它写在草稿纸上,待讨论出正确的结论后再往笔记本上写.师:下面谁说一下自己的答案? 生:这是由 y=log4u与u=x2-4x+3构成的一个复合函数,其中对数函数 y=log4u 在定义域(0,+∞)上是增函数,而二次函数u=x2-4x+3,当x∈(-∞,2)时,它是减函数,当x∈(2,+∞)时,它是增函数,.因此,根据今天所学的引理知,(-∞,2)为复合函数的单调减区间;(2,+∞)为复合函数的单调增区间.师:大家是否都同意他的结论?还有没有不同的结论?我可以告诉大家,他的结论不正确.大家再讨论一下,正确的结论应该是什么? 生:……
生:我发现,当x=1时,原复合函数中的对数函数的真数等于零,于是这个函数没意义.因此,单调区间中不应含原函数没有意义的x的值.师:你说得很好,怎样才能做到这点呢? 生:先求复合函数的定义域,再在定义域内求单调区间.师:非常好.我们研究函数的任何性质,都应该首先保证这个函数有意义,否则,函数都不存在了,性质就更无从谈起了.刚才的第一个结论之所以错了,就是因为没考虑对数函数的 定义域.注意,对数函数只有在有意义的情况下,才能讨论单调性.所以,当我们求复合函数的
单调区间时,第一步应该怎么做? 生:求定义域.师:好的.下面我们把这道题作为例1写在笔记本上,我在黑板上写.(板书)解
设 y=log4u,u=x2-4x+3.由
{u>0,u=x2-4x+3,解得原复合函数的定义域为x<1或x>3.师:这步咱们大家都很熟悉了,是求复合函数的定义域.下面该求它的单调区间了,怎样求解,才能保证单调区间落在定义域内呢? 生:利用图象.师:这种方法完全可以.只是再说清楚一点,利用哪个函数的图象? 可咱们并没学过画复合函数的图象啊?这个问题你想如何解决? 生:……
师:我来帮你一下.所有的同学都想想,求定义域也好,求单调区间也好,是求x的取值范围还是求复合函数的函数值的取值范围?或是求中间量u的取值范围? 生:求x的取值范围.师:所以我们只需画x的范围就行了,并不要画复合函数的图象.(板书)师:当x∈(-∞,1)时,u=x2-4x+3为减函数,而y=log4u为增函数,所以(-∞,1)是复合函数的单调减区间;当x∈(3,+∞)时,u=x2-4x+3为增函数y=log4u为增函数,所以,(3,+∞)是复合函数的单调增区间.师:除了这种办法,我们还可以利用代数方法求解单调区间.下面先求复合函数单调减区 间.(板书)u=x2-4x+3=(x-2)2-1, x>3或x<1,(复合函数定义域)x<2(u减)解得x<1.所以x∈(-∞,1)时,函数u单调递减.由于y=log4u在定义域内是增函数,所以由引理知:u=(x-2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.(板书)u=x2-4x+3=(x-2)2-1, x>3或x<1,(复合函数定义域)x>2(u增)解得x>3.所以(3,+∞)是复合函数的单调增区间.师:下面咱们再看例2.(板书)例2
求下列复合函数的单调区间:
y=log(2x-x2)师:先在笔记本上准备一下,几分钟后咱们再一起看黑板,我再边讲边写.(板书)解
设 y=logu,u=2x-x2.由
u>0
u=2x-x2 解得原复合函数的定义域为0<x<2.由于y=log13u在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x-x2的单调性正好相反.易知u=2x-x2=-(x-1)2+1在x≤1时单调增.由
0<x<2(复合函数定义域)
x≤1,(u增)解得0<x≤1,所以(0,1]是原复合函数的单调减区间.又u=-(x-1)2+1在x≥1时单调减,由
x<2,(复合函数定义域)
x≥1,(u减)解得0≤x<2,所以[0,1]是原复合函数的单调增区间.师:以上解法中,让定义域与单调区间取公共部分,从而保证了单调区间落在定义域内.师:下面我们再看一道题目,还是自己先准备一下,就按照黑板上第一题的格式写.(板书)例3 求y=(学生板书)的单调区间.解
设y=.由
u∈R, u=x2-2x-1, 解得原复合函数的定义域为x∈R.因为y=在定义域R内为减函数,所以由引理知,二次函数u=x2-2x-1的单调性与复合函数的单调性相反.易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由
x∈R,(复合函数定义域)
x≤1,(u减)解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.师:黑板上这道题做得很好.请大家都与黑板上的整个解题过程对一下.师:下面我小结一下这节课.本节课讲的是复合函数的单调性.大家注意:单调区间必须是定义域的子集,当我们求单调区间时,必须先求出原复合函数的定义域.另外,咱们刚刚学习复合函数的单调性,做这类题目时,一定要按要求做,不要跳步.(作业均为补充题)作业
求下列复合函数的单调区间.1.y=log3(x2-2x);(答:(-∞,0)是单调减区间,(2,+∞)是单调增区间.)
第四篇:专题:函数单调性的证明
函数单调性的证明
函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法。
一、证明方法步骤为:
① 在给定区间上任取两个自变量x1、x2且x1<x2 ② 将fx1与fx2作差或作商(分母不为零)
③ 比较差值(商)与0(1)的大小 ④ 下结论,确定函数的单调性。
在做差比较时,我们常将差化为积讨论,常用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。
二、常见的类型有两种:
(一)已知函数的解析式:
1例1:证明:函数fx=在x∈(1,+∞)单调递减
x-
1例2:证明:函数fx=x+x+1在x∈R时单调递增
3[1,+)时单调递增 例3:证明:函数fx=x-1在x∈2
例4:讨论函数fx=x+
1在(1,+)的单调性,并求最小值 x-1
例5:求函数fx= x+2的单调区间 x-1+)单调递增 练习:
1、证明函数fx=x+(a>0)在(a,2、讨论函数fx=1+x-x的单调性
2ax
(二)fx抽象函数的单调性:
抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商,这一点可观察题意中与0比较,应作差;与1比较,应作商。如下三例:
例1:已知函数满足x、y∈R时,f(xy)f(x)f(y)恒成立,且当x>0时,>0.证明:f(x)在R上单调递增.例2:已知函数满足x、y∈R时,f(xy)f(x)f(y)恒成立,且当x>1时,0.证明:f(x)在(0,+∞)上单调递增.例3:已知函数满足x、y∈R时,f(xy)f(x)f(y)恒成立,且当x>1时,1.若f(x)0.证明:f(x)在(0,+∞)上单调递增.练习:
1、已知函数
fx对于任意的x、y∈R,fx+fy=fx+y,且当x>0时,fx<0;f1=-23.f(x)>f(x)>总有(1)求证:fx在R上是减函数
(2)求fx在[-3,3]上的最大值与最小值
2、已知函数fx的定义域为R,且m、n∈R,恒有fm+fn=fm+n+1,且f->-1=0,当x21时,fx>0.2(1)求证:fx是单调递增函数(2)求fx在[-2,2]的最大值与最小值.3、定义在R上的函数fx恒为正,且满足fx+y=fxfy,当x>0时,fx>1.(1)证明:fx在R上单调递增.2(2)若函数fx的定义域为[-1,1]时,解不等式fx-1>f2x
4、函数fx的定义域为R,对于任意的a、b∈R皆有fa+fb=fa+b+1,且x>0时,fx>1(1)求证:fx是R上的增函数
2(2)若f4=5,解不等式f3m-m-2<3
3
第五篇:函数的单调性证明
函数的单调性证明
一.解答题(共40小题)
1.证明:函数f(x)=在(﹣∞,0)上是减函数.
2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增.
3.证明f(x)=
在定义域为[0,+∞)内是增函数.
4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数.
第1页(共23页)
5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数.
6.证明:函数f(x)=x2+3在[0,+∞)上的单调性.
7.证明:函数y=
在(﹣1,+∞)上是单调增函数.
8.求证:f(x)=
在(﹣∞,0)上递增,在(0,+∞)上递增.
9.用函数单调性的定义证明函数y=
在区间(0,+∞)上为减函数.
第2页(共23页)
10.已知函数f(x)=x+.
(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若
>0对任意x∈[4,5]恒成立,求实数a的取值范围.
11.证明:函数f(x)=
在x∈(1,+∞)单调递减.
12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数.
13.判断并证明f(x)=
在(﹣1,+∞)上的单调性.
14.判断并证明函数f(x)=x+在区间(0,2)上的单调性.
第3页(共23页)
15.求函数f(x)=的单调增区间.
16.求证:函数f(x)=﹣
﹣1在区间(﹣∞,0)上是单调增函数.
17.求函数的定义域.
18.求函数的定义域.
19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+
(2)f(x)+2f()=3x.
20.若3f(x)+2f(﹣x)=2x+2,求f(x).
第4页(共23页)
21.求下列函数的解析式
(1)已知f(x+1)=x2求f(x)
(2)已知f()=x,求f(x)
(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)
(4)已知3f(x)﹣f()=x2,求f(x)
22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x).
第5页(共23页)
23.已知3f(x)+2f()=x(x≠0),求f(x).
24.已知函数f(x+)=x2+()2(x>0),求函数f(x).
25.已知2f(﹣x)+f(x)=3x﹣1,求f(x).
26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式.
27.已知4f(x)﹣5f()=2x,求f(x).
28.已知函数f(+2)=x2+1,求f(x)的解析式.
第6页(共23页)
29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式.
30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)
31.求下列函数的解析式:
(1)已知f(2x+1)=x2+1,求f(x);
(2)已知f()=,求f(x).
32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式.
33.已知f(2x)=x2﹣x﹣1,求f(x).
34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式.
第7页(共23页)
35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式.
36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式.
37.若3f(x)+2f(﹣x)=2x,求f(x)
38.f(+1)=x2+2,求f(x)的解析式.
39.若函数f()=+1,求函数f(x)的解析式.
40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.
第8页(共23页)
第9页(共23页)
函数的单调性证明
参考答案与试题解析
一.解答题(共40小题)
1.证明:函数f(x)=在(﹣∞,0)上是减函数. 【解答】证明:设x1<x2<0,则:
;
∵x1<x2<0;
∴x2﹣x1>0,x1x2>0; ∴f(x1)>f(x2);
∴f(x)在(﹣∞,0)上是减函数.
2.求证:函数f(x)=4x+在(0,)上递减,在[,+∞)上递增. 【解答】证明:设0<x1<x2<,则f(x1)﹣f(x2)=(4x1+)﹣(4x2+)=4(x1﹣x2)+
=(x1﹣x2)(),又由0<x1<x2<,则(x1﹣x2)<0,(4x1x2﹣9)<0,(x1x2)>0,则f(x1)﹣f(x2)>0,则函数f(x)在(0,)上递减,设≤x3<x4,同理可得:f(x3)﹣f(x4)=(x3﹣x4)(又由≤x3<x4,第10页(共23页)),则(x3﹣x4)<0,(4x3x4﹣9)>0,(x1x2)>0,则f(x3)﹣f(x4)<0,则函数f(x)在[,+∞)上递增.
3.证明f(x)=在定义域为[0,+∞)内是增函数.
【解答】证明:设x1,x2∈[0,+∞),且x1<x2,则:
=∵x1,x2∈[0,+∞),且x1<x2; ∴∴f(x1)<f(x2);
∴f(x)在定义域[0,+∞)上是增函数.
4.应用函数单调性定义证明:函数f(x)=x+在区间(0,2)上是减函数. 【解答】证明:任取x1,x2∈(0,2),且x1<x2,则f(x1)﹣f(x2)=
﹣(=
;
;
因为0<x1<x2<2,所以x1﹣x2<0,x1x2<4,所以f(x1)﹣f(x2)>0,即f(x1)>f(x2),所以f(x)=x+在(0,2)上为减函数.
5.证明函数f(x)=2x﹣在(﹣∞,0)上是增函数. 【解答】解:设x1<x2<0,∴f(x1)﹣f(x2)=2x1﹣﹣2x2+
=(x1﹣x2)(2+∵x1<x2<0,),第11页(共23页)
∴x1﹣x2<0,2+
>0,∴f(x1)﹣f(x2)<0,即:f(x1)<f(x2),∴函数f(x)=2x﹣在(﹣∞,0)上是增函数.
6.证明:函数f(x)=x2+3在[0,+∞)上的单调性. 【解答】解:任取0≤x1<x2,则f(x1)﹣f(x2)==(x1+x2)(x1﹣x2)
因为0≤x1<x2,所以x1+x2>0,x1﹣x2<0,故原式f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以原函数在[0,+∞)是单调递增函数.
7.证明:函数y=
在(﹣1,+∞)上是单调增函数.
=1﹣
在在区间(﹣1,+∞),【解答】解:∵函数f(x)=可以设﹣1<x1<x2,可得f(x1)﹣f(x2)=1﹣∵﹣1<x1<x2<0,﹣1+=
∴x1+1>0,1+x2>0,x1﹣x2<0,∴<0
∴f(x1)<f(x2),∴f(x)在区间(﹣∞,0)上为增函数;
8.求证:f(x)=在(﹣∞,0)上递增,在(0,+∞)上递增.
第12页(共23页)
【解答】证明:设x1<x2,则f(x1)﹣f(x2)=﹣∵x1<x2,∴x1﹣x2<0,﹣(﹣)=﹣=,∴若x1<x2<0,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增.
若0<x1<x2,则x1x2>0,此时f(x1)﹣f(x2)<0,即f(x1)<f(x2),此时函数单调递增. 即f(x)=
9.用函数单调性的定义证明函数y=【解答】解:∵函数y=可以设0<x1<x2,可得f(x1)﹣f(x2)=∴f(x1)>f(x2),∴f(x)在区间(﹣∞,0)上为减函数;
10.已知函数f(x)=x+.
(Ⅰ)用定义证明:f(x)在[2,+∞)上为增函数;(Ⅱ)若>0对任意x∈[4,5]恒成立,求实数a的取值范围.
﹣
=
>0,在区间(0,+∞)上为减函数. 在(﹣∞,0)上递增,在(0,+∞)上递增.
在区间(0,+∞),【解答】(Ⅰ)证明:任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=,∵2≤x1<x2,所以x1﹣x2<0,x1x2>4,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)=x+在[2,+∞)上为增函数;(Ⅱ)解:∵>0对任意x∈[4,5]恒成立,第13页(共23页)
∴x﹣a>0对任意x∈[4,5]恒成立,∴a<x对任意x∈[4,5]恒成立,∴a<4.
11.证明:函数f(x)=
在x∈(1,+∞)单调递减.
【解答】证明:设x1>x2>1,则:
;
∵x1>x2>1;
∴x2﹣x1<0,x1﹣1>0,x2﹣1>0; ∴即f(x1)<f(x2);
∴f(x)在x∈(1,+∞)单调递减.
12.求证f(x)=x+的(0,1)上是减函数,在[1,+∞]上是增函数. 【解答】证明:①在(0,1)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=(=(x1﹣x2)+=(x1﹣x2)(1﹣
;)﹣()),∵x1,x2∈(0,1),x1<x2,∴x1﹣x2<0,1﹣
<0,∴f(x1)﹣f(x2)>0,∴f(x)=x+在(0,1)上是减函数. ②在[1,+∞)内任取x1,x2,令x1<x2,则f(x1)﹣f(x2)=()﹣()
第14页(共23页)
=(x1﹣x2)+=(x1﹣x2)(1﹣),∵x1,x2∈[1,+∞),x1<x2,∴x1﹣x2<0,1﹣
>0,∴f(x1)﹣f(x2)<0,∴f(x)=x+在[1,+∞]上是增函数.
13.判断并证明f(x)=【解答】解:f(x)=证明如下:
在(﹣1,+∞)上任取x1,x2,令x1<x2,f(x1)﹣f(x2)=
﹣
=,在(﹣1,+∞)上的单调性. 在(﹣1,+∞)上的单调递减.
∵x1,x2∈(﹣1+∞),x1<x2,∴x2﹣x1>0,x1+1>0,x2+1>0,∴f(x1)﹣f(x2)>0,∴f(x)=
14.判断并证明函数f(x)=x+在区间(0,2)上的单调性. 【解答】解:任意取x1,x2∈(0,2)且0<x1<x2<2 f(x1)﹣f(x2)=x1+∵0<x1<x2<2
∴x1﹣x2<0,0<x1x2<4,即x1x2﹣4<0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2).
第15页(共23页)
在(﹣1,+∞)上的单调递减.
﹣x2﹣=(x1﹣x2)+
﹣
=(x1﹣x2),所以f(x)在(0,2)上是单调减函数.
15.求函数f(x)=的单调增区间.
=1﹣的单调递增区间为【解答】解:根据反比例函数的性质可知,f(x)=(﹣∞,0),(0,+∞)
故答案为:(﹣∞,0),(0,+∞)
16.求证:函数f(x)=﹣
﹣1在区间(﹣∞,0)上是单调增函数.
【解答】证明:设x1<x2<0,则:
;
∵x1<x2<0;
∴x1﹣x2<0,x1x2>0; ∴;
∴f(x1)<f(x2);
∴f(x)在区间(﹣∞,0)上是单调增函数.
17.求函数的定义域.
【解答】解:根据题意,得,解可得,故函数的定义域为2≤x<3和3<x<5.
18.求函数的定义域.
第16页(共23页)
【解答】解:由故函数定义域为{x|x<}
.
19.根据下列条件分别求出函数f(x)的解析式(1)f(x+)=x2+
(2)f(x)+2f()=3x. 【解答】解:(1)f(x+)=x2+
=(x+)2﹣2,即f(x)=x2﹣2,(x>2或x<﹣2)(2)∵f(x)+2f()=3x,∴f()+2f(x)=,消去f()得f(x)=﹣x.
20.若3f(x)+2f(﹣x)=2x+2,求f(x). 【解答】解:∵3f(x)+2f(﹣x)=2x+2…①,用﹣x代替x,得:
3f(﹣x)+2f(x)=﹣2x+2…②; ①×3﹣②×2得:
5f(x)=(6x+6)﹣(﹣4x+4)=10x+2,∴f(x)=2x+.
21.求下列函数的解析式(1)已知f(x+1)=x2求f(x)(2)已知f()=x,求f(x)
(3)已知函数f(x)为一次函数,使f[f(x)]=9x+1,求f(x)(4)已知3f(x)﹣f()=x2,求f(x)
【解答】解:(1)∵已知f(x+1)=x2,令x+1=t,可得x=t﹣1,∴f(t)=(t﹣
第17页(共23页)
1)2,∴f(x)=(x﹣1)2.(2)∵已知f()=x,令
=t,求得 x=,∴f(t)=,∴f(x)=
.
(3)已知函数f(x)为一次函数,设f(x)=kx+b,k≠0,∵f[f(x)]=kf(x)+b=k(kx+b)+b=9x+1,∴k=3,b=,或k=﹣3,b=﹣,求 ∴f(x)=3x+,或f(x)=﹣3x﹣.
(4)∵已知3f(x)﹣f()=x2①,∴用代替x,可得3f()﹣f(x)=由①②求得f(x)=x2+
22.已知函数y=f(x),满足2f(x)+f()=2x,x∈R且x≠0,求f(x). 【解答】解:∵2f(x)+f()=2x① 令x=,则2f()+f(x)=②,①×2﹣②得: 3f(x)=4x﹣,∴f(x)=x﹣
23.已知3f(x)+2f()=x(x≠0),求f(x). 【解答】解:∵3f(x)+2f()=x,① 等号两边同时以代x,得:3f()+2f(x)=,② 由①×3﹣2×②,解得 5f(x)=3x﹣,∴函数f(x)的解析式:f(x)=x﹣
24.已知函数f(x+)=x2+()2(x>0),求函数f(x).
第18页(共23页)
②,.
.
(x≠0).
【解答】解:∵x>0时,x+≥2且函数f(x+)=x2+()2=设t=x+,(t≥2); ∴f(t)=t2﹣2;
即函数f(x)=x2﹣2(其中x≥2).
=2,﹣2;
25.已知2f(﹣x)+f(x)=3x﹣1,求f(x). 【解答】解:∵2f(﹣x)+f(x)=3x﹣1,∴2f(x)+f(﹣x)=﹣3x﹣1,联立消去f(﹣x),可得f(x)=﹣3x﹣.
26.若2f(x)+f(﹣x)=3x+1,则求f(x)的解析式. 【解答】解:∵2f(x)+f(﹣x)=3x+1…①,用﹣x代替x,得:
2f(﹣x)+f(x)=﹣3x+1…②; ①×2﹣②得:
3f(x)=(6x+2)﹣(﹣3x+1)=9x+1,∴f(x)=3x+.
27.已知4f(x)﹣5f()=2x,求f(x). 【解答】解:∵4f(x)﹣5f()=2x…①,∴4f()﹣5f(x)=…②,①×4+②×5,得:﹣9f(x)=8x+∴f(x)=﹣x﹣
第19页(共23页),.
28.已知函数f(【解答】解:令t=则由f(+2)=x2+1,求f(x)的解析式. +2,(t≥2),x=(t﹣2)2.
+2)=x2+1,得f(t)=(t﹣2)4+1.
∴f(x)=(x﹣2)4+1(x≥2).
29.若f(x)满足3f(x)+2f(﹣x)=4x,求f(x)的解析式. 【解答】解:f(x)满足3f(x)+2f(﹣x)=4x,…①,可得3f(﹣x)+2f(x)=﹣4x…②,①×3﹣②×2可得:5f(x)=20x. ∴f(x)=4x.
f(x)的解析式:f(x)=4x.
30.已知f(x)=ax+b且af(x)+b=9x+8,求f(x)【解答】解:∵f(x)=ax+b且af(x)+b=9x+8,∴a(ax+b)+b=9x+8,即a2x+ab+b=9x+8,即,解得a=3或a=﹣3,若a=3,则4b=8,解得b=2,此时f(x)=3x+2,若a=﹣3,则﹣2b=8,解得b=﹣4,此时f(x)=3x﹣4.
31.求下列函数的解析式:
(1)已知f(2x+1)=x2+1,求f(x);(2)已知f()=,求f(x).
【解答】解:(1)令2x+1=t,则x=(t﹣1),∴f(t)=(t﹣1)2+1,第20页(共23页)
∴f(x)=(x﹣1)2+1;(2)令m=(m≠0),则x=,∴f(m)==,∴f(x)=(x≠0).
32.已知二次函数满足f(2x+1)=4x2﹣6x+5,求f(x)的解析式. 【解答】解:(1)令2x+1=t,则x=则f(t)=4()2﹣6•
;
+5=t2﹣5t+9,故f(x)=x2﹣5x+9.
33.已知f(2x)=x2﹣x﹣1,求f(x). 【解答】解:令t=2x,则x=t,∴f(t)=t2﹣t﹣1,∴f(x)=x2﹣x﹣1.
34.已知一次函数f(x)满足f(f(f(x)))=2x﹣3,求函数f(x)的解析式. 【解答】解:设f(x)=ax+b,∴f(f(x)=a(ax+b)+b,∴f(f(f(x))))=a[a(ax+b)+b]+b=2x﹣3,∴,解得:,∴f(x)= x﹣.
第21页(共23页)
35.已知f(x+2)=x2﹣3x+5,求f(x)的解析式. 【解答】解:f(x+2)=x2﹣3x+5,设x+2=t,则x=t﹣2,∴f(t)=(t﹣2)2﹣3(t﹣2)+5=t2﹣7t+15,∴f(x)=x2﹣7x+15.
36.已知函数f(x﹣2)=2x2﹣3x+4,求函数f(x)的解析式. 【解答】解:令x﹣2=t,则x=t+2,代入原函数得 f(t)=2(t+2)2﹣3(t+2)+4=2t2+5t+6 则函数f(x)的解析式为f(x)=2x2+5x+6
37.若3f(x)+2f(﹣x)=2x,求f(x)【解答】解:∵3f(x)+2f(﹣x)=2x…①,用﹣x代替x,得:
3f(﹣x)+2f(x)=﹣2x…②; ①×3﹣②×2得:
5f(x)=6x﹣(﹣4x)=10x,∴f(x)=2x.
38.f(+1)=x2+2,求f(x)的解析式.
【解答】解:设∴x=(t﹣1)2; ∵f(+1)=x2+2+1=t,则t≥1,∴f(t)=(t﹣1)4+2(t﹣1),∴f(x)=(x﹣1)4+2(x﹣1),x∈[1,+∞).
39.若函数f(【解答】解:令)=
+1,求函数f(x)的解析式.
=t(t≠1),则=t﹣1,第22页(共23页)
∴f(t)=2+(t﹣1)2=t2﹣2t+3,∴f(x)=x2﹣2x+3(x≠1).
40.已知f(x﹣1)=x2﹣4x.(1)求f(x)的解析式;(2)解方程f(x+1)=0.
【解答】解:(1)变形可得f(x﹣1)=(x﹣1)2﹣2(x﹣1)﹣∴f(x)的解析式为f(x)=x2﹣2x﹣3;
(2)方程f(x+1)=0可化为(x+1)2﹣2(x+1)﹣3=0,化简可得x2﹣4=0,解得x=2或x=﹣2
第23页(共23页)
3,