第一篇:工艺课程设计前言
前言
机械制造工艺学(machinery technology)是研究集机械、电子、光学、信息科学、材料科学、生物科学、激光学、管理学等最新成就为一体的一个新兴技术与新型工业,归纳总结机械制造工艺的科学理论与实践,探索解决工艺过程中遇到的实际问题,从而揭示出一般规律的一门科学。主要包括机械加工工艺规程的制订、机床夹具设计原理、机械加工精度、加工表面质量、典型零件加工工艺、机器装配工艺基础、机械设计工艺基础、现代制造技术及数控加工工艺等部分。加工工艺课程设计是我们在学习数控加工工艺、机械加工实训及其他有关课程之后进行的一个重要的实践性教学环节,是第一次较全面的工艺设计训练,其目的是培养学生运用机械制造工艺学及有关课程的知识,分析和解决工艺问题的能力,初步具备设计一个中等复杂程度零件的工艺规程的能力。能根据被加工零件的技术要求,运用夹具设计的基本原理和方法,学会拟订夹具设计方案,完成夹具结构设计,初步具备设计出高效,省力,经济合理并能保证加工质量的专用夹具的能力。以进一步巩固、深化、扩展本课程所学到的理论知识,强化工艺设计能力。通过加工工艺课程设计,同学应进一步提高识图、制图和机械设计的水平;掌握机械加工工艺设计的方法,学会查阅和运用有关专业资料、手册等工具书;培养独立思考和工作的能力,为毕业后走向社会从事相关技术工作打下良好的基础。加工工艺设计课程要求我们应该像真正在工厂工作一样的严格要求自己,必须以科学务实和诚信负责的态度对待自己所做的技术决定、数据和计算结果,培养良好的工作作风。
第二篇:模具制造工艺前言
第一章绪论
本章教学主要内容:模具技术的发展及发展趋势;模具制造的要求;过程和方法;
教学重点:模具制造的基本要求和特点;模具制造的工艺过程;模具零件的主要加工方法; 教学难点:学会分析模具制造的工艺过程。1.1 模具制造技术的现状与发展 1.1.1 我国模具制造技术的现状
在现代工业生产中,模具是重要的工艺装备之一。随着科学技术的发展,工业品的品种和数量不断增加,产品的改型换代加快,对产品质量和外观不断提出新的要求,对模具的质量的要求越来越高。模具设计与制造水平的高低,直接影响着国民经济的发展,世界上工业发达的国家,模具工业发展迅速,模具总产值超过机床工业的总产值,发展速度超过了机床、汽车、电子等工业,是国民经济的基础工业之一。模具技术,特别是制造精密、复杂、大型长寿命模具的技术,已成为衡量一个国家机械制造水平的重要标志之一。
目前,我国的模具行业生产厂家数千个,职工有50万人,每年能生产百万套模具。模具制造技术从过去只能制造简单模具已发展到可以制造大型、精密、复杂、长寿命的模具。但总体还存在着制造的模具品种少、精度差、寿命短、生产周期长的弊端,精密、复杂、大型模具很多因为国内制造困难,也不得不从国外进口。为了尽快发展我国的模具工业,国家已经采取了许多具体措施,如给专业模具厂投入技术改造资金,将模具列为国家规划重点科技攻关项目,派有关工程技术人员出国考察,引进国外模具先进技术,制定有关的模具标准等。近几年我国的模具工业发展较快,模具制造水平也在逐步提高。在冲压模具方面,我国设计和制造的电动机定/转硅钢片硬质合金多工位自动级进模,电子、电器行业用的50余工位的硬质合金多工位自动级进模等,都达到了国际同类模具产品的技术水平。凹模镶件的重复定位精度<0.005mm,步距精度<0.005mm,模具成形表面粗糙度达到0.4-0.1mm。
在塑料模具方面,能设计制造汽车保险杠及整体仪表盘大型注射模具,模具重达几十吨,模具尺寸精度可达到10mm,型腔表面粗糙度Ra=0.1mm,型芯表面粗糙度Ra=3.2 mm,模具寿命达到30万次以上,达到国际同类模具产品的技术水平。1.1.2 模具制造技术随着制造业技术的发展而发展的状况
1.模具制造技术随着制造设备水平的提高而提高。随着先进、精密和高自动化程度的模具加工设备的应用,如数控仿形铣床、数控加工中心、精密坐标磨床、连续轨迹数控坐标磨床、高精度低损耗数控电火花成形加工机床、慢走丝精密电火花线切割机床、精密电解加工机床、三坐标测量仪、挤压研磨机等模具加工和检测设备的应用,拓展了可进行机械加工模具的范围,提高了加工精度,降低了制件表面粗糙度,大大提高了加工效率,推进了模具设计制造一体化的发展。
2.模具制造技术随着模具新材料的应用而提高。模具材料是影响模具寿命、质量、生产效率和生产成本的重要因素。
3.模具制造技术随着标准化程度的提高而提高。模具的标准化是代表模具工业与模具技术发展的重要标志。到目前为止,已经制定了冲压模具、塑料模具、压铸模具和2模具基础技术等50多项国家标准,近300多个标准号,基本满足了国内模具生产技术发展的需要。商品化程度是以标准化为前提的,随着标准的颁布实施,模具的商品化程度也大大提高。商品化推动了专业化生产,降低了制造成本,缩短了制造周期,提高了标准件的内外部质量,也促进了新型材料的应用。
4.模具制造技术随着模具现代化设计与制造技术的发展而提高。随着计算机技术的发展应用,计算机辅助模具设计与制造(CAD/CAM)趋于成熟,模具设计与制造一体化技术已经实现。计算机辅助设计制造不仅提高了设计速度,还可以实现成形的模拟,优化设计参数;可以依据设计模型进行自动加工程序的编制,还可以实现加工结束后自动检测。1.1.3 模具制造技术的发展趋势
随着我国社会主义市场经济的不断发展,工业产品的品种增多,产品更新换代加快,市场竞争日益激烈。因此模具质量的提高和生产周期的缩短显得尤为重要,促进模具制造技术的发展出现以下趋势。
1.模具粗加工技术向高速加工发展。以高速铣削为代表的高速切削加工技术代表了模具零件外形表面粗加工发展的方向。高速铣削可以大大改善模具表面的质量状况,并大大提高加工效率和降低加工成本。超高速加工中心的切削进给速度可达76m/min,主轴转速可达45000r/min。另外,毛坯下料设备出现了高速锯床、阳极切割和激光切割等高速、高效率加工设备,出现了高速磨削设备和强力磨削设备。
2.成型表面的加工向精密、自动化方向发展。成型表面的加工向计算机控制和高精度加工方向发展。数控加工中心、数控电火花成形加工设备、计算机控制连续轨迹坐标磨床和配有CNC修整装配与精密测量装置的成型磨削加工设备等的推广使用,是提高模具制 造技术水平的关键。
3.光整加工技术向自动化方向发展。当前模具成形表面的研磨、抛光等加工仍然以手工作业为主,不仅花费工时多,而且劳动强度大、表面质量低。工业发达国家正在研制由计算机控制、带有磨料磨损自动补偿装置的光整加工设备,可以对复杂型面的三维曲面进行光整加工,并开始在模具加工上使用,大大提高了光整加工的质量和效益。
4.逆向制造工程制模技术的发展。以三坐标测量机和快速成型制造技术为代表的逆向制造技术,是一种以复制为原理的制造具有重大的影响。这种技术特别适用于多品种、少批量、形状复杂的模具制造,对缩短模具制造周期,进而提高产品的市场竞争能力有重要意义。5.模具CAD/CAM技术将有更快的发展。模具CAD/CAM技术在模具设计与制造的优势越来越明显,它是模具技术的又一次革命,普及和提高CAD/CAM技术的应用是模具制造业发展的必然趋势。
1.2 模具制造工艺的任务
所谓模具制造工艺,就是把设计转化为产品的过程。模具制造工艺学,是把模具设计转化为模具产品的过程。模具制造工艺的任务就是研究探讨制造的可行性和如何制造的问题,进而研究怎样以低成本、短周期制造高质量模具的任务。成本、周期和质量是模具制造的主要技术经济指标。寻求这3个指标的最佳值,单从模具制造的角度考虑是不够的,应综合考虑设计、制造和使用这3个环节,三者要协调。“设计”除考虑满足使用功能外,还要充分考虑制造的可行性;“制造”要满足设计要求,同时也制约“设计”,并指导用户使用;“用户”也要了解设计与工艺,使得冲压和塑压等制品的设计在满足使用功能等前提下便于制造,为达到较好的技术经济指标奠定基础。
从制造角度考虑,影响制造的主要因素有:
1.表面“外表面加工”较“内表面加工”容易,规则表面比异型表面加工容易,型孔较型腔加工容易。
2.精度精度提高则制造难度可能成几何级数增加。3.表面粗糙度占用制造时间较多(一般多达1/3)。
4.型孔和型腔型孔和型腔的数量增加模具的复杂性和制造难度。5.热加工影响各道工序的制造效率。
1.3 模具制造的特点及基本要求 1.3.1 模具制造的特点
1.单件、多品种生产模具是高寿命专用工艺装备,每套模具只能生产某一特定形状、尺寸和精度的制件,这就决定了模具生产属于单件、多品种生产。
2.生产周期短由于新产品更新换代的加快和市场竞争的日趋激烈,要求模具的生产周期越来越短。模具的生产管理、设计和工艺工作都应该适应这一要求,要提高模具的标准化水平,以缩短制造周期,提高质量,降低成本。
3.要求成套性生产当某个制件需要多副模具加工时,前一模具所制造的是后一模具的毛坯,模具之间相互牵连制约,只有最终制件合格,这一系列模具才算合格。因此,在模具的生产和计划安排上必须充分考虑这一特点。4.模具要求高精度和低表面粗糙度。5.要求模具寿命高,以降低制造成本。
6.模具制造具有经验性的特点,模具制造装配、调试是非常重要的,也是影响制造周期的重要因素。
1.3.2 模具制造的基本要求(1)保证模具质量(2)保证制造周期(3)良好的劳动条件(4)模具成本低廉(5)工艺水平先进
1.4 本课程的性质、任务和学习方法
本课程是高职高专模具设计与制造专业的核心课程之一。通过本课程的学习,使学生掌握三个方面的关键技能,一、能操作所有普通机械加工设备和现代模具加工设备,二、能编制合理工艺方案,运用好各种加工设备加工出高质量的模具零部件,三、装配出高质量的成套模具。
由于现代工业生产的发展和材料成形新技术的应用,对模具制造技术的要求越来越高。模具的制造方法已经不再只是过去传统意义上的一般机械加工,是立足于一般的机械加工,又把现代加工技术与管理与一般机械加工方法有机结合。因此,通过本课程的学习,要求学生掌握机械加工工艺理论基础,切削刀具,模具加工工艺规程,模具加工、装配,生产管理等,同时,要求同学了解模具现代制造技术,以提高学生分析较复杂的模具结构的工艺性和可加工性的能力。
本课程体系中配合有大量的实践教学内容,实践动手能力要求高,涉及的知识面较广。因此,学生除了重视课堂教学外,特别注意实践环节,尽可能使实践教学连贯、系统,以提高本课程的学习效果。
第三篇:热处理工艺课程设计
沈阳理工大学热处理工艺课程设计
T10A 检验量棒的 热处理工艺设计
1 热处理工艺课程设计的目的
热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是 热处理原理与工艺课程的最后一个教学环节。其目的是:(1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所 学知识得到巩固和发展。(2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。
2 热处理课程设计的任务
①普通热处理工艺设计 ②制定热处理工艺参数 ③选择热处理设备 ④分析热处理工序中材料的组织和性能 ⑤设计热处理工艺所需的挂具、装具或夹具 ⑥特殊热处理工艺设计 ⑦填写工艺卡片
3 T10A 检验量棒的技术要求及选材
3.1 T10A 的零件图
T10A 检验量棒的零件如图 3.1 所示。
图 3.1
检验量棒图
3.2 技术要求
1
沈阳理工大学热处理工艺课程设计
T10A 检验量棒的技术要求 如下: 硬度:HRC60~63
[1]
3.3 材料的选择
3.3.1 零件用途 量棒是用来度量工件工件内经专门尺寸的工具。3.3.2 工作条件(1)量棒在使用过程中经常受到工件的摩擦与碰撞,长时期使用量棒会因磨损 而失去其精度。(2)量棒在长时期存放和使用过程中,会因环境和工作而导致量棒的变形,进 而尺寸不再稳定,不能再用来度量工件。(3)量棒在使用过程中,还会受到冲击作用,会导致量棒因偶然碰撞而断裂。综上所述,量棒在使用过程中,经常受到工件的摩擦和碰撞,而作为量棒本身又 必须具备非常高的尺寸精确性和恒定性。长期使用会导致量棒失去其精度,且在存放 时会因保存不当而导致其变形,所以要求量棒不仅要有高的硬度和耐磨性,还要有一 定的韧性。
3.3.3
性能要求
检验量棒的形状简单,尺寸不太大,但量棒在使用中要求很高,为了满足这些要 求,可选用含碳量高的钢,同时要求有一定的韧性。含碳量高的钢经淬火热处理后可 得到马氏体和未溶碳化物,可使量棒有高的硬度和耐磨性,保证量棒在长期使用中不 致被很快磨损,而失去其精度。此外还有高的尺寸稳定性,保证量棒在使用和存放过 程中保持其形状和尺寸的稳定性。高碳钢经淬火并及时回火后,可以在很少降低硬度 的同时使钢的韧性明显提高,这样可使量棒有足够的韧性,以保证量棒在使用时不致 因偶然因素而损坏。
3.3.4
材料选择
根据检验量棒的工作条件,尺寸及性能要求选择碳素工具钢,其未加入合金元素,价格便宜,退火后硬度低,可
加工性好,磨削及抛光性好。T8,T8A,T9,T9A,T10A,T11A 等都属于碳素工具钢,但T8,T8A,T9,T9A接近共析成分,含碳量较少,淬火后的组织
2
沈阳理工大学热处理工艺课程设计
中未溶碳化物极少,耐磨性差。而T11,T11A远离共析成分,在淬火后组织中的未溶碳 化物较多,降低了钢的韧性。T10A在淬火加热时不易过热,又存适量的未溶碳化物,耐磨性高,且弥补了T11A韧性不足的缺点。
3.3.5
T10A钢化学成分及合金元素作用
T10A 钢的化学成分示于表 3.1
表 3.1 T10A 钢的化学成分 ω/% C 0.15~0.30 Mn 0.15~0.30 Si 0.15~0.30 P ≤0.030 S ≤0.030
[1]
化学元素作用: ①C :保证形成碳化物所需要的碳和保证淬火马氏体能够获得的硬度 ②Si: 能提高钢的淬透性和抗回火性,对钢的综合机械性能,还能增高淬火温度,阻碍碳元素溶于钢中。③Mn:能增加钢的强度和硬度,有脱氧及脱硫的功效(形成 MnS),防止热脆,故 Mn 能改善钢的锻造性和韧性,可增进刚的硬化深度,降低钢的下临界点,增加奥氏 体冷却时的过冷度,细化珠光体组织以改善机械性能。
3.3.6
T10A 钢热处理临界转变温度
T10A 钢热处理的临界转变温度见表 3.2[1]
表 3.2 T10A 钢临界转变温度/℃ 钢号 T10A Ac1 730 Ac3 800 Ar1 700
3.4
T10A 钢量棒加工制造工艺流程 T10A 钢量棒加工制造工艺流程如下:
下料→锻造→调质处理→机加工→不完全淬火→清洗→冷处理→低温回火→时效→ 检验→包装
4
T10A 钢的热处理工艺
3
沈阳理工大学热处理工艺课程设计
4.1 T10A 钢的调质处理工艺
4.1.1 调质处理(淬火+高温回火)目的
进行预备热处理,获得粗大回火索氏体,降低淬火前机加工的表面粗糙度,使淬 火后具有高而且均匀的硬度。如果采用正火加球化退火,则加热周期长,生产效率低。所以选择调质处理作为 T10A 钢的预备热处理,处理后可以获得回火索氏体,减少淬 火变形,提高机械加工的光洁度。4.1.2 淬火工艺(1)淬火目的 淬火是为了获得马氏体(2)淬火温度 加热温度:780±10℃。因为 T10A 是过共析钢,钢中含有碳化物形成元素。为使碳化物溶入奥氏体中,使 奥氏体合金化程度增高,提高淬火回火后的机械性能,因此调质处理加热温度在 730℃(即 Ac1 温度)加 30-50℃。所以最终选择的加热温度为 780±10℃.(3)淬火设备 选用RDM系列埋入式盐浴炉,盐浴炉参数见表 4.1。
表 4.1 RDM-70-8 埋入式盐浴炉 型号 额定功率 电源 相数 RDM-70-8 70(KW)3 电压 380(V)850℃
[7]
额定温度
工作空间尺寸(mm ×mm)450×350×700
说明:炉温均匀,介质流动性好,加热速度,温度均匀,工件变形小,加热质量好,利于提高产品质量,炉膛容积有效利
用率高,产量大,耗电量少,可节省电能与筑炉 材料,电极寿命长,减小停炉时间。适用于中,小型工件成批量生产。
(4)加热方法 采用到温加热的方法,是指当炉温加热到指定的温度时,再将工件装进热处理炉进行 加热。原因是加热速度快,节约时间,便于批量生产。
4
沈阳理工大学热处理工艺课程设计
(5)加热介质 加热介质为 44%NaCl+56%KCl
表 4.2 加热介质与使用温度的关系 盐浴成分(%,按重量计算)28NaCl+72CaCl2 34NaCl+33CaCl2+33BaCl2 50NaCl+50BaCl2 22NaCl+78BaCl2 44NaCl+56KCl 34KCl+66BaCl2 熔点(℃)500 570 600 640 663 657 使用温度范围(℃)540~870 600~870 650~900 675~900 700~870 700~950
(6)保温时间 保温时间:12min 选定的依据: 加热时间可按下列公式进行计算: t=a×K×D,式中 t 为加热时间(min),K 为反映装炉时的修正系数,可根据表 4.4 可得 K 取 1.4,a 为加热系数 min/mm,加热 系数 a 可根据钢种与加热介质、加热温度,参数按照表 4.3 选取,D 为工件有效厚度(mm).可得 t=a×K×D=1.4×20×24=672s
表 4.3 工件加热系数 a 钢号 碳钢 合金钢 高合金钢 高速钢 退火、正火(箱式炉)箱式炉 0.7~0.8min/mm 0.9~1.0min/mm 1.0~1.5min/mm 2~3min/mm 0.7~0.8min/mm 0.9~1.0min/mm 预热 1min/mm 加热 45s/mm 2~2.5min/mm 淬火 盐炉 20~30s/mm 30~45s/mm 预热 30s/mm 加热 16s/mm 预热 15~30s/mm 加热 8~12s/mm
(7)冷却方式 由 T10A 的淬透性曲线可知,要达到所要求的硬度,可选择水淬,且由于 T10A 的淬透 性低,为获得马氏体组织,应选择强烈的淬火介质.所以选择水作为 T10A 的淬火介质。(8)冷却介质 冷却介质:水
5
第四篇:化工原理课程设计前言
一.前言 1.精馏与塔设备简介 蒸馏是分离液体混合物的一种方法,是传质过程中最重要的单元操作之一,蒸馏的理论依据是利用溶液中各组分蒸汽压的差异,即各组分在相同的压力、温度下,其探发性能不同(或沸点不同)来实现分离目的。例如,设计所选取的苯-甲苯体系,加热苯(沸点80.2℃)和甲苯(沸点110.4℃)的混合物时,由于苯的沸点较甲苯为低,即苯挥发度较甲苯高,故苯较甲苯易从液相中汽化出来。若将汽化的蒸汽全部冷凝,即可得到苯组成高于原料的产品,依此进行多次汽化及冷凝过程,即可将苯和甲苯分离。这多次进行部分汽化成部分冷凝以后,最终可以在汽相中得到较纯的易挥发组分,而在液相中得到较纯的难挥发组分,这就是精馏。在工业中,广泛应用精馏方法分离液体混合物,从石油工业、酒精工业直至焦油分离,基本有机合成,空气分离等等,特别是大规模的生产中精馏的应用更为广泛。蒸馏按操作可分为简单蒸馏、平衡蒸馏、精馏、特殊精馏等多种方式。按原料中所含组分数目可分为双组分蒸馏及多组分蒸馏。按操作压力则可分为常压蒸馏、加压蒸馏、减压(真空)蒸馏。此外,按操作是否连续蒸馏和间歇蒸馏。工业中的蒸馏多为多组分精馏,本设计着重讨论常压下的双组分精馏,即苯-甲苯体系。在化学工业和石油工业中广泛应用的诸如吸收,解吸,精馏,萃取等单元操作中,气液传质设备必不可少。塔设备就是使气液成两相通过紧密接触达到相际传质和传热目的的气液传质设备之一。塔设备一般分为阶跃接触式和连续接触式两大类。前者的代表是板式塔,后者的代表则为填料塔。筛板塔在十九世纪初已应用与工业装置上,但由于对筛板的流体力学研究很少,被认为操作不易掌握,没有被广泛采用。五十年代来,由于工业生产实践,对筛板塔作了较充分的研究并且经过了大量的工业生产实践,形成了较完善的设计方法。筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。本设计讨论的就是筛板塔。2.体系介绍 苯,沸点为80.2℃;氯苯,沸点为110.4℃,是非常重要的化工原料,都为无色、无毒,有一定致癌性的最常见的有机溶剂,因其良好的理化性能,而被广泛地应用于化工、日化、医药等行业。苯-甲苯体系为完全互溶双液理想系统。氯苯(A)~苯(B)二组分体系在 下的气~液平衡数据 3.筛板塔的特点 筛板塔板简称筛板,结构持点为塔板上开有许多均匀的小孔。根据孔径的大小,分为小 孔径筛板(孔径为3—8mm)和大孔径筛板(孔径为10—25mm)两类。工业应用小以小孔径 筛板为主,大孔径筛板多用于某些特殊场合(如分离粘度大、易结焦的物系)。筛板的优点足结构简单,造价低;板上液面落差小,气体压降低,生产能力较大;气体分散均匀,传质效率较高。其缺点是筛孔易堵塞,不宜处理易结焦、粘度大的物料。应予指出,尽管筛板传质效率高,但若设计和操作不当,易产生漏液,使得操作弹性减 小,传质效率下降.故过去工业上应用较为谨慎。近年来,由于设计和控制水平的不断提高,可使筛板的操作非常精确,弥补了上述不足,故应用日趋广泛。在确保精确设计和采用先进控制手段的前提下,设计中可大胆选用。
第五篇:机械制造工艺及夹具课程设计
目 录
设计任务书„„„„„„„„„„„„„„„„„„„(1)
一、零件的分析„„„„„„„„„„„„„„„(2)1.1 零件的作用 1.2 零件的工艺分析
二、工艺规程设计„„„„„„„„„„„„„„(4)2.1 定位基准的选择 2.2 重点工序的说明 2.3 制订工艺路线 2.4 机械加工余量的确定 2.5 确定切削用量及基本工时
三、夹具设计„„„„„„„„„„„„„„„„(14)3.1 问题的提出 3.2 夹具设计
四、参考文献„„„„„„„„„„„„„„„„(17)
五 心得体会„„„„„„„„„„„„„„„„„(18)
机械制造工艺及夹具课程设计任务书
设计题目: “CA6140车床拨叉零件”机械加工工艺规程及夹具
生产纲领:年产量为5000件
设计内容:1.零件图一张
2.毛坯图一张
3.机械加工工艺过程 工序卡片一张
4.机床夹具设计 每人一套
5.夹具零件图一张
6.课程设计说明书一份
23456
采用高速三面刃铣刀,dw=175mm,齿数Z=16。
ns=1000v10000.35==0.637r/s(38.2r/min)3.14175πdw按机床选取nw=31.5r/min=0.522r/s(表4—17)
πdwns 故实际切削速度ν==0.29m/s
1000切削工时
l=75mm,l1=175mm,l2=3mm tm= 2)粗铣右端面
粗铣右端面的进给量、切削速度和背吃刀量与粗铣左端面的切削用量相同。
切削工时
l=45mm,l1=175mm,l2=3mm tm= 3)精铣左端面
αfll1l2751753= =121.2s=2.02min
nwαfZ0.5220.2516ll1l2451753= =106.8s=1.78min
nwαfZ0.5220.2516=0.10mm/Z(表3-28)ν=0.30m/s(18m/min)(表3-30)采用高速三面刃铣刀,dw=175mm,齿数Z=16。
ns=1000v10000.30==0.546r/s(32.76r/min)3.14175πdw按机床选取nw=31.5r/min=0.522r/s(表4—17)
πdwns 故实际切削速度ν==0.29m/s
1000切削工时
l=75mm,l1=175mm,l2=3mm
tm=
ll1l2751753= =302.92s=5.05min
nwαfZ0.5220.1016工序Ⅱ:钻、扩花键底孔 1)钻孔Ø 20㎜
f=0.75mm/r·Klf=0.75×0.95=0.71㎜/s(表3—38)ν=0.35m/s(21m/min)(表3—42)s=1000vπd=10000.35=5.57r/s(334r/min)w3.1420按机床选取 nw=338r/min=5.63r/s 故实际切削速度 ν=πdwns1000=0.35m/s 切削工时 l=80mm,l1= 10mm,l2=2mm tm=ll1l280102n= wf5.630.71=23s(0.4min)2)扩孔Ø 22㎜ f=1.07(表3—54)ν=0.175m/s(10.5m/min)1000v10000.s=πd=175w3.1422=2.53r/s(151.8r/min)按机床选取 nw=136r/min=2.27r/s 故实际切削速度 ν=πdwns1000=0.16m/s 切削工时 l=80mm,l1= 3mm,l2=1.5mm t1l2m=lln= 8031.5=35s wf2.271.07(0.6min)
n
n
工序Ⅲ:倒角1.07×15
f=0.05㎜/r(表3—17)ν=0.516m/s(参照表3—21)ns=1000vπd=10000.516=6.3r/s(378r/min)w3.1426 按机床选取 nw=380r/min=6.33r/s 切削工时 l=2.0mm,l1= 2.5mm,tm=ll1n= 2.02.5=14s(wf6.330.050.23min)
工序Ⅳ:拉花键孔
单面齿升 0.05㎜(表3—86)v=0.06m/s(3.6m/min)(表3—88)
切削工时(表7—21)thlKm=1000vS
zZ式中:
h——单面余量1.5㎜(由Ø 22㎜—Ø 25㎜); l——拉削表面长度80㎜;
——考虑标准部分的长度系数,取1.20; K——考虑机床返回行程的系数,取1.40; V——切削速度3.6m/min; Sz——拉刀同时工作齿数 Z=L/t。t——拉刀齿距,t=(1.25—1.5)L=1.3580=12㎜
Z=L/t=80/126齿
t1.5801.201.40m=10003.60.066=0.15min(9s)工序Ⅴ:铣上、下表面 1)粗铣上表面的台阶面
αf=0.15mm/Z(表3-28)
ν=0.30m/s(18m/min)(表3-30)采用高速三面刃铣刀,dw=175mm,齿数Z=16。
nv10000.30s=1000πd=w3.14175=0.546r/s(33r/min)按机床选取nw=30r/min=0.5r/s(表4—17)
故实际切削速度ν=πdwns1000=0.27m/s 切削工时
l=80mm,l1=175mm,l2=3mm tll1l2m=
n= 801753wαfZ0.50.1516=215s=3.58min 2)精铣台阶面 αf=0.07mm/Z(表3-28)ν=0.25m/s(18m/min)(表3-30)采用高速三面刃铣刀,dw=175mm,齿数Z=16。n1000v10000.25s=
πd=w3.14175=0.455r/s(33r/min)按机床选取nw=30r/min=0.5r/s(表4—17)
故实际切削速度ν=πdwns1000=0.27m/s 切削工时
l=80mm,l1=175mm,l2=3mm tll1l280175m=
n= 3wαfZ0.50.0716=467s=7.7min)粗铣下表面保证尺寸75㎜
本工步的切削用量与工步1)的切削用量相同
112
三 夹具设计
3.1 问题的提出
为了提高劳动生产率,保证加工质量,降低劳动强度,需要设计专用夹具 经过与指导老师协商,决定设计铣30x80面的铣床夹具。
3.2 夹具设计
1.定位基准的选择
由零件图可知,其设计基准为花键孔中心线和工件的右加工表面(A)为定位基准。因此选用工件以加工右端面(A)和花键心轴的中心线为主定位基准。1.切削力和夹紧力计算
(1)刀具: 高速钢端铣刀 φ30mm z=6 机床: x51W型立式铣床
由[3] 所列公式 得 FCFapXFqVyufzzaeFzwFd0n
查表 9.4—8 得其中: 修正系数kv1.0
CF30 qF0.83 XF1.0
yF0.65 uF0.83 aP8 z=24 wF0
代入上式,可得 F=889.4N
因在计算切削力时,须把安全系数考虑在内。
安全系数 K=K1K2K3K4 其中:K1为基本安全系数1.5 K2为加工性质系数1.1 K3为刀具钝化系数1.1 K4 为断续切削系数1.1 所以 FKF1775.7N
2.定位误差分析
由于30x80面尺寸的设计基准与定位基准重合,故轴向尺寸无基准不重合度误差。径向尺寸无极限偏差、形状和位置公差,故径向尺寸无基准不重合度误差。即不必考虑定位误差,只需保证夹具的花键心轴的制造精度和安装精度。3.夹具设计及操作说明
如前所述,在设计夹具时,应该注意提高劳动率.为此,在螺母夹紧时采用开口垫圈,以便装卸,夹具体底面上的一对定位键可使整个夹具在机床工作台上有正确的安装位置,以利于铣削加工。结果,本夹具总体的感觉还比较紧凑。
夹具上装有对刀块装置,可使夹具在一批零件的加工之前很好的对刀(与塞尺配合使用);同时,夹具体底面上的一对定位键可使整个夹具在机床工作台上有一正确的安装位置,以有利于铣削加工。铣床夹具的装配图及夹具体零件图分别见附图中。
四、参考文献
1.切削用量简明手册,艾兴、肖诗纲主编,机械工业出版社出版,1994年 2.机械制造工艺设计简明手册,李益民主编,机械工业出版社出版,1994年 3.机床夹具设计软件版V1.0,机械工业出版社,2004 4.互换性与测量技术基础,刘品 刘丽华主编,哈尔滨工业大学出版社出版,2001年1月
5.机床夹具设计,哈尔滨工业大学、上海工业大学主编,上海科学技术出版社出版,1983年
6.机床夹具设计手册,东北重型机械学院、洛阳工学院、一汽制造厂职工大学编,上海科学技术出版社出版,1990年
7.机械工程手册 第8、9卷,机械工程手册、电机工程手册编委会,机械工业出版社出版,1982年
8.金属机械加工工艺人员手册,上海科学技术出版社,1981年10月 9.机械工艺装备设计实用手册,李庆寿主编,宁夏人民出版社出版,1991年 10.机械制造工艺学,郭宗连、秦宝荣主编,中国建材工业出版社出版,1997年
11.机床夹具设计,秦宝荣主编,中国建材工业出版社出版,1998年 12.机械制造工艺学习题集,陈榕王树兜主编,福建科学技术出版社出版,1985年
13.机械制造工艺学课程设计指导书,赵家齐主编,哈尔滨工业大学出版社出版,2002年
14.金属切削机床夹具设计手册 第二版,浦林祥主编,机械工业出版社出版,1995年12月
15.机械零件手册,天津大学机械零件教研室编,人民教育出版社出版,1975年9月
五 心得体会
为期三周的工艺、夹具课程设计结束,回顾整个过程,我觉得受益匪浅。课程设计作为《机械制造技术基础》课程的重要教学环节,使理论与实际更加接近,加深了理论知识的理解,强化了生产实习中的感性认识。
本次课程设计主要经过了两个阶段。第一阶段是机械加工工艺规程设计,第二阶段是专用夹具设计。第一阶段中本人认真复习了有关书本知识学会了如何分析零件的工艺性,学会如何查有关手册,选择加工余量、确定毛坯类型、形状、大小等,绘制出了毛坯图。为了可以更深刻清楚的完成本次课程设计向老师请教了很多关于夹具方面的知识,而且自己也参阅了很多夹具设计的资料。又根据毛坯图和零件图构想出两种工艺方案,比较确定其中较为合理的工艺方案来编制工艺。其中运用了基准选择、切削用量选择计算、时间定额等方面的知识。还结合了我们生产实习中所看到的实际情况选定设备,填写了工艺文件。夹具设计阶段,运用工件定位、夹紧及零件结构设计等方面知识。
通过这次设计,我基本掌握了一个中等复杂零件的加工过程分析、工艺文件的编制、专用夹具的设计的方法和步骤等。学会查阅手册,选择使用工艺设备等。
总的来说,这次设计,使我在基本理论的综合运用以及正确解决实际问题等方面得到了一次较好的训练。提高了我独力思考问题、解决问题创新设计的能力,为以后的设计工作打下了较好的基础。
由于自己能力有限,设计中还有很多不足之处,恳请老师、同学批评指正。