第一篇:平行线性质讲习题的时候需要主要的问题
平行线性质讲习题的时候需要主要的问题
1,讲习题时要仔细,首要的注意分析题目。
2,语速要慢一些,声音要大。3,讲题要仔细,要面面俱到。4,要简单易懂。
5,强调更正的时候用另一种笔更正。6,找角的时候要分清楚是那些角,要讲清楚。
第二篇:x平行线性质习题精选
平行线的性质习题精选
一、选择题:(每小题3分,共21分)
1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有()
A.5个B.4个C.3个D.2个
AC
二、填空题:(每小题3分,共9分)
1.如图6所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据
是______;如果、∠CED=∠FDE,那么________∥_________.根据是________.2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条
路平行,若第一次拐角是150°,则第二次拐角为
________.B
A
B
AD
A
D
CA
EDFB
D
D
(1)(2)(3)
2.如图2所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么
∠BDC等于()A.78°B.90°C.88°D.92°
3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内-错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④4.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交
5.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
EF
(7)(8)(9)
3.如图8所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠
ACD=•_______.三、训练平台:(每小题8分,共32分)
1.如图9所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数.2.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度
数.•
D
C
B
E
DA
F
3.如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.B
E
C
B
A
(4)(5)(6)
7.如图5所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个
4.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.四、提高训练:(每小题9分,共18分)
1.如图所示,已知直线MN的同侧有三个点A,B,C,且AB∥MN,BC∥MN,试说明
A,•B,C三点在同一直线上.(1)(2)(3)(4)
六、中考题与竞赛题:(每小题4分,共8分)
1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则求∠2的度数。
AC
E
B
(a)
D
M
BCN
2.如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度
数.A
GM
NE
D
2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE的度数。
AC
E
BD
B
C
(b)
3.如图,E是DF上一点,B是AC上一点,∠1=∠2,∠C=∠D,求证:
五、探索发现:(共12分)
如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP
∠A=∠F。
D
E
F
B
A
C
D
B
P
AC
BD
AC
P
BD
C
31B
C
B
A
4.如图,已知AB∥CD,∠3=30°,∠1=70°,求∠A-∠2的度数.一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。(3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)(二.填空题:
1.如图③ ∵∠1=∠2,∴ ___∥___()。∵∠2=∠3,∴ ___∥___()。2.如图④ ∵∠1=∠2,∴ ___∥__()。∵∠3=∠4,∴ __∥__()。
3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有___。4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)∴ AB∥CD()又∵∠1+∠2 =180(已知)∴ AB∥EF()∴ CD∥EF()三.选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BC B.AB∥CDC.EF∥BCD.AD∥EF 2.如图⑧,判定AB∥CE的理由是()
A∠B=∠ACEB∠A=∠ECDC∠B=∠ACB D∠A=∠ACE
3.如图⑨,下列推理错误的是()
A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d
4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
3.①③B.②④C.①③④D.①②③④ 四.完成推理,填写推理依据:
1如图⑩ ∵∠B=∠___,∴ AB∥CD()∵∠BGC=∠____,∴ CD∥EF()∵AB∥CD,CD∥EF,∴ AB∥___()2.如图⑾ 填空:
(1)∵∠2=∠3(已知)∴ AB____()(2)∵∠1=∠A(已知)∴_____()(3)∵∠1=∠D(已知)∴_____()(4)∵_______=∠F(已知)∴AC∥DF()3.填空。如图,∵AC⊥AB,BD⊥AB(已知)∴∠CAB=90°,∠______=90°()∴∠CAB=∠___()∵∠CAE=∠DBF(已知)∴∠BAE=∠______∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠
+∠
=
180
°∴
_________
()))
五.证明题
1.已知 CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。
3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
.已知:如图,,且
.求证:EC∥DF.5.∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
3B D C
图10
6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.E
B A
P
C D
Q F
图
17.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。求证:GH∥MN。
8.如图已知∠AOE+∠BEF=180°∠AOE+∠CDE=180°,求证:CD∥BE。9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。
10.如图AB//CD,A120,172则D的度数为
11.如图,己知AB//DE,ABC80,CDE140,则BCD__
12.如图,AB//CD,若ABE120,DCE35,则BEC度.13.如图试探索A,E,C之间具备什么关系时,AB//CD,并说明理由。
6. 已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.说明∠P=90.
1、如图,在AB两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48度,A、B两地同时开工,若干天后公路准确接通。
① B地所修公路的走向是南偏西多少度?
② 若公路AB长8千米,另一条公路BC长6千米且BC的走向是北偏西42度,试求A地到公路BC的距离。
2、如图:把一张长方形的纸片ABCD沿EF折叠后,ED交BC于G,点D、C分别落在P、Q位置上,若∠EFG=55度,求∠
1、∠2的度数
3、如图:已知∠1和∠D互余,CF⊥DF,试证明AB∥CD4、如图已知:AB∥CD,∠1=40度,∠2=70度,求∠3的度数
第三篇:平行线的性质_课后习题答案
课后习题答案
习题2.4
1.相等.事实上,两个人眼睛所在的水平线是彼此平行的,而两个人的视线与水平线所成的角是一对内错角.
2.∠D,∠C都等于45°,∠B等于135°.
3.∠A,∠E都等于120°,它们相等.
第四篇:平行线性质
平行线性质
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
第五篇:平行线性质
《平行线的性质》教学设计
作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、教学过程
问题与情境
师生互动
设计意图
活动1 你身边的问题
问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3: 运用与推理
问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4 巩固与提高
问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?
2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、几何推理证明的要领。
3、正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力