第一篇:广州数学六年级知识点
因为有知识,我们上了太空,我们延长了人均寿命。更因为有知识,我们超出生死,不再疑惑。下面小编给大家分享一些数学六年级知识点,希望能够帮助大家,欢迎阅读!
数学六年级知识点1
第一部分【常用的数量关系】
1、每份数×份数=总数;总数÷每份数=份数;
总数÷份数=每份数
2、速度×时间=路程;路程÷速度=时间;
路程÷时间=速度
3、单价×数量=总价;总价÷单价=数量;
总价÷数量=单价
4、工作效率×工作时间=工作总量;
工作总量÷工作效率=工作时间;
工作总量÷工作时间=工作效率;
5、加数+加数=和;
和-一个加数=另一个加数
6、被减数-减数=差;
被减数-差=减数;
差+减数=被减数
7、因数×因数=积;
积÷一个因数=另一个因数
8、被除数÷除数=商;
被除数÷商=除数;
商×除数=被除数
数学六年级知识点2
第二部分【小学数学图形计算公式】
1、正方形(C:周长,S:面积,a:边长)
周长=边长×4;C=4a
面积=边长×边长;S=a×a2、正方体(V:体积,a:棱长)
表面积=棱长×棱长×6;S表=a×a×6
体积=棱长×棱长×棱长;V= a×a×a3、长方形(C:周长,S:面积,a:边长,b:宽)
周长=(长+宽)×2;C=2(a+b)
面积=长×宽;S=a×b4、长方体
(V:体积,S:面积,a:长,b:宽,h:高)
(1)表面积=(长×宽+长×高+宽×高)×2;
S=2(ab+ah+bh)
(2)体积=长×宽×高;
V=abh5、三角形(S:面积,a:底,h:高)
面积=底×高÷2;
S=ah÷2
三角形的高=面积×2÷底
三角形的底=面积×2÷高
6、平行四边形(S:面积,a:底,h:高)
面积=底×高;
S=ah7、梯形(S:面积,a:上底,b:下底,h:高)
面积=(上底+下底)×高÷2;
S=(a+b)×h÷28、圆形
(S:面积,C:周长,π:圆周率,d:直径,r:半径)
(1)周长=π×直径π=2×π×半径;
C=πd=2πr
(2)面积=π×半径×半径;
S= πr?
9、圆柱体
(V:体积,S:底面积,C:底面周长,h:高,r:底面半径)
(1)侧面积=底面周长×高=Ch=πdh=2πrh
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
10、圆锥体
(V:体积,S:底面积,h:高,r:底面半径)
体积=底面积×高÷311、总数÷总份数=平均数
12、相遇问题:
相遇路程=速度和×相遇时间;
相遇时间=相遇路程速度和;
速度和=相遇路程÷相遇时间
13、利润与折扣问题: 利润=售出价-成本;
利润率=利润÷成本×100%;
利息=本金×利率×时间;
涨跌金额=本金×涨跌百分比;
税后利息=本金×利率×时间×(1-利息税)
数学六年级知识点3
第三部分【常用单位换算】
(一)长度单位换算
1千米=1000米;
1米=10分米;
1分米=10厘米;
1米=100厘米;
1厘米=10毫米
(二)面积单位换算:
1平方千米=100公顷;
1公顷=10000平方米;
1平方米=100平方分米;
1平方分米=100平方厘米;
1平方厘米=100平方毫米
(三)体积(容积)单位换算:
1立方米=1000立方分米;
1立方分米=1000立方厘米;
1立方分米=1升;
1立方厘米=1毫升;
1立方米=1000升
(四)重量单位换算:
1吨=1000千克;
1千克=1000克;
1千克=1公斤
(五)人民币单位换算:
1元=10角;1角=10分;1元=100分
(六)时间单位换算:
1世纪=100年;1年=12月;
【大月(31天)有:1、3、5、7、8、10、12月】;
【小月(30天)有:4、6、9、11月】
【平年:2月有28天;全年有365天】;
【闰年:2月有29天;全年有366天】
1日=24小时;1时=60分=3600秒;1分=60秒;
数学六年级知识点4
第四部分【基 本 概 念】
第一章 数和数的运算
一、概念
(一)整 数
1.自然数、负数和整数
(1)自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。0也是自然数。
1是自然数的基本单位,任何一个自然数都是由若干个1组成。0是最小的自然数,没有最大的自然数
(2)负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。
正整数(1、2、3、4、……)
(3)整数:
零(0既不是正数,也不是负数)
负整数(-1、-2、-3、-4……)
2、零的作用
(1)表示数位。读写数时,某个单位上一个单位也没有,就用0表示。
(2)占位作用。
(3)作为界限。如“零上温度与零下温度的界限”。
3、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除 :整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
(1)如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
如:因为35能被7整除,所以35是7的倍数,7是35的因数。
(2)一个数的因数的个数是有限的,其中最小的约数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
如:3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。
(4)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
(5)个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
(7)一个数各位数上的和能被9整除,这个数就能被9整除。
(8)能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
(9)一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
(10)一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
(11)能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。
(12)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(13)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
例如 4、6、8、9、12都是合数。
(14)1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
(15)每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
例如15=3×5,3和5 叫做15的质因数。
(16)把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如:把28分解质因数
(17)几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公约数。
例如:
12的约数有1、2、3、4、6、12;
18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。
(18)公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
①1和任何自然数互质。
②相邻的两个自然数互质。
③两个不同的质数互质。
④当合数不是质数的倍数时,这个合数和这个质数互质。
⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
⑥如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
⑦如果两个数是互质数,它们的最大公约数就是1。
(19)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如:的倍数有2、4、6、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 ……
其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
数学六年级知识点5
小数
1、小数的意义
(1)把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。
(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
(3)一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
(4)在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的分类
(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25、0.368 都是纯小数。
(2)带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25、5.26 都是带小数。
(3)有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如: 41.7、25.3、0.23 都是有限小数。
(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如: 4.33 …… 3.1415926 ……
(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:π
(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 …… 0.0333 ……12.109109 ……
(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如: 3.99 ……的循环节是“ 9 ”,0.5454 ……的循环节是“ 54 ”。
(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
例如: 3.111 …… 0.5656 ……
(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
例如: 3.1222 …… 0.03333 ……
(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。
例如: 3.777 …… 简写作:3.7(?);0.5302302 …… 简写作:0.53(?)02(?)。
广州数学六年级知识点
第二篇:广州六年级数学上册第一单元知识点总结
广州六年级数学上册第一单元知识点总结
(一)分数乘法意义
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便 运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分 别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b <1时,c 在进行因数与积的大小比较时,要注意因数为0时的特殊情况。 (四)分数乘法混合运算 1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号 里面的,再算括号外面的。 2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(重要) (五)倒数的意义:乘积为1的两个数互为倒数 1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为 倒数。(必须说清谁是谁的倒数) 2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。 3、求倒数的方法: ①求分数的倒数:交换分子、分母的位置。 ②求整数的倒数:整数分之1。 ③求带分数的倒数:先化成假分数,再求倒数。 ④求小数的倒数:先化成分数再求倒数。4、1的倒数是它本身,因为1×1=1 0没有倒数,因为任何数乘0积都是0,且0不能作分母。 5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。假分数的倒数小于或等于1。带分数的倒数小于1。 (六)分数乘法的解决问题 (已知单位“1”的量(用乘法),求单位“1”的几分之几是多少) 1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面 几。 几 2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数× 3、写数量关系式技巧: (1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ” 单位“1”的量×分率=分率对应量(2)分率前是“的”: (3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量 小学六年级数学知识点总结 1. 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式正方形 C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体 V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形 C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形 s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积 ×2÷底三角形底=面积 ×2÷高6平行四边形 s面积 a底 h高面积=底×高s=ah7 梯形 s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏S=∏rr 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2 苏教版六年级数学上册知识点 第一单元——长方体和正方体 课时内容: 长方体和正方体的认识 长方体和正方体的表面积 体积和体积单位 长方体和正方体的体积 相邻体积单位间的进率 整理与练习 1.认识长方体、正方体,理解长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。2.理解正方体与长方体的联系与区别。 3.认识长方体、正方体的展开图,能够知道各个面在展开图中的位置。 4.理解并掌握长方体和正方体表面积的计算方法,能正确计算长方体与正方体的表面积。5.能根据长方体和正方体表面积的计算方法,解决生活中的实际问题。6.理解体积和容积的意义,会从直观上比较两个物体体积或容积的大小。7.掌握常用的体积和容积单位,知道1立方分米=1升,1立方厘米=1毫升。8.掌握长方体和正方体的体积公式,能正确计算长方体和正方体的体积。9.能根据长方体和正方体的体积公式解决一些实际问题。10.掌握相邻体积单位之间的进率,掌握体积单位的换算方法。11.能够正确解答有关长方体和正方体的实际问题。 第二单元——分数乘法 课时内容: 分数与整数相乘 分数乘分数 分数连乘 倒数的认识 整理与练习 1.理解分数与整数相乘的意义,掌握分数与整数相乘的计算方法,能够正确进行计算。2.能够用分数与整数相乘的方法解决一些简单的实际问题。3.理解分数乘分数的意义,探索分数乘分数的计算方法。4.能够正确解答相关实际问题。 5.理解分数乘法的意义,掌握分数连乘的计算方法,能正确进行计算。6.能够运用分数连乘的方法解决一些简单的实际问题。7.理解倒数的意义。 8.掌握求倒数的方法,能熟练地写出一个数的倒数。 第三单元——分数除法 课时内容: 分数除以整数 一个数除以分数 分数除法的简单应用 分数连除和乘除混合运算 比的意义 比的基本性质 按比例分配问题 整理与练习 1.探索并理解分数除法的意义。 2.探索并掌握分数除以整数的计算方法,并能正确计算。3.能够运用分数除以整数解决简单的实际问题。4.理解一个数除以分数的意义和基本算理。 5.学会并掌握一个数除以分数的计算方法,并能正确计算。6.能解决一些简单的与一个数除以分数相关的实际问题。 7.掌握“已知一个数的几分之几是多少,求这个数”这类应用题的结构特征和解题思路。8.掌握“已知一个数的几分之几是多少,求这个数”这类应用题的解题方法,能正确地解答相关的数学问题。 9.掌握分数连除和乘除混合运算的计算方法,能够正确进行计算。10.能够正确解答与分数连除和乘除混合运算相关的实际问题。11.理解比的意义和各部分名称。 12.沟通比与分数除法之间的关系,能用两种形式表示比。13.掌握求比值的方法。 14.理解比的基本性质,沟通比和分数、除法之间的关系。15.掌握化简比的方法,能够熟练地化简比。 16.理解把一个数量按一定的比来进行分配的意义。17.能够正确地解答按比例分配的实际问题。 第四单元——解决问题的策略 课时内容: 解决问题的策略 1.在解决实际问题的过程中初步学会运用替换的策略分析数量关系,确定解题思路,并有效地解决问题。 第五单元——分数四则混合运算 课时内容: 分数四则混合运算 用分数乘法和加减法解决稍复杂的实际问题 1.理解并掌握分数四则混合运算的运算顺序,并能正确进行分数四则混合运算。2.能运用运算律及相关性质进行有关分数的简便计算。 3.掌握稍复杂的求一个数的几分之几的应用题的结构特征及解题方法。4.能运用所学知识解决相关的数学问题。 第六单元——百分数 课时内容: 百分数的意义和读写 百分数与分数、小数的互化 求一个数是另一个数的百分之几的简单实际问题 求一个数比另一个数多(少)百分之几的实际问题 纳税和利息问题 折扣问题 列方程解稍复杂的百分数实际问题 整理与练习 1.能够理解百分数的意义,掌握百分数的读、写方法。2.掌握百分数、分数与比之间的内在联系。3.掌握百分数与分数、小数的互化方法。4.能够正确比较百分数、分数和小数的大小。 5.会解答有关“求一个数是另一个数的百分之几”的简单实际问题。6.理解一些常见百分率的意义,会求简单的百分率。 7.理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。 8.加深对百分数的理解,体会百分数和比一个数多(少)百分之几与日常生活的联系。9.初步理解税率的含义,知道它在实际生活中的应用。10.会用求一个数的百分之几的方法求利息、税费。11.能列方程解决一些稍复杂的百分数实际问题。 12.会借助线段图、数量关系分析稍复杂的百分数实际问题,进一步提高解决问题的能力。 第七单元——整理与复习 课时内容: 数的世界(1)数的世界(2)图形王国 应用广角 1.掌握分数乘法的计算方法和分数四则混合运算的运算顺序,能正确计算分数乘除法和分数混和四则运算题(不超过三步的),能应用运算律和运算性质进行有关分数的简便计算。 2.能应用比的意义和基本性质求比值,化简比。3.能够解决相关的实际问题。 4.进一步理解百分数的意义,能正确进行百分数与分数、小数的互化,理解打折、利息、纳税等相关知识。 5.能够用分数、比和百分数的知识解决相关的实际问题。 6.掌握长方体和正方体的特征,理解体积(容积)单位的意义及进率。 7.进一步理解并掌握长方体、正方体和表面积的计算方法,能正确解答相关实际问题。8.能综合应用学过的数学知识和方法解决日常生活现象,解决简单的实际问题,增强解决问题的策略意识和反思意识。 苏教版六年级数学下册知识点 第一单元 扇形统计图 一、扇形统计图的意义: 用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。 二、常用统计图的优点: 1、条形统计图:可以清楚的看出各种数量的多少。 2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。 3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。 三、扇形面积的大小表示的意义: 在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。) 第二单元 圆柱和圆锥 知识点一:圆柱、圆锥的认识 相关概念: ①圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。 ②圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。③圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。④圆锥的高:圆锥的定点到底面圆心的距离。圆锥只有一条高。 知识点二:圆柱侧面积的计算方法 理解掌握: 圆柱的侧面展开图:有可能是长方形,也有可能是正方形。 ①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。 长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。 正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh 知识点三:圆柱表面积的计算方法 理解掌握: 圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2 用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮? 解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。 解:12.56÷3.14÷2=2(厘米)2×3.14×2×(12.56+2)=182.8736平方厘米 答:做一个这样的罐头盒需要182.8736平方厘米铁皮。 知识点四:圆柱体积的计算方法 理解掌握: 利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。 相关公式:①已知半径和高,V圆柱=πr2h ②已知直径和高,V圆柱=π(d÷2)2h ③已知周长和高,V圆柱=π(C÷2π)2h 难点解析:把圆柱的底面平均分成n份,切开后平成一个近似的长方体。得到的结论:圆柱的底面周长等于长方体的两条长的和;圆柱的半径等于长方体的宽;圆柱的高等于长方体的高;圆柱的体积等于长方体的体积;★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。 知识点五:圆锥体积的计算方法 理解掌握: 根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。 用字母表示为V圆柱=3V圆锥或者V圆锥=1/3V圆柱。相关公式:只需要在圆柱的相关公式前面乘以三分之一。①已知半径和高,V圆锥=1/3πr2h ②已知直径和高,V圆锥=1/3π(d÷2)h ③已知周长和高,V圆锥=1/3π(C÷2π)2h 重点解析: 在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨? 解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)h 1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米 1.7×6.28=10.676吨 答:这堆沙子共重10.676吨。 知识点七:圆柱和圆锥的横截面 理解掌握:★圆柱横截面的分割方法: ① 按底面的直径分割,这样分割的横截面是长方形或者是正方形,如果横截面是正方形说明圆柱的底面直径和高相等。② 按平行于底面分割,这样分割的横截面是圆。圆锥横截面的分割方法: ① 按圆锥的高分割,这样分割的横截面是等腰三角形。② 按平行于底面分割,这样分割的横截面是圆。 2第三单元解决问题的策略 学会用“转化”的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。 第四单元比例 知识点一:图像的放大和缩小 理解掌握: 把图形按1:n的比缩小,就是把图形的每条边都放大到原来的1/n; 把图形按n:1的比放大,就是把图形的每条边都缩小到原来的n倍。知识点二:比例的意义 理解掌握: 1、比例:表示两个比相等的式子。任何一个比例都是由两个内项和两个外项组成。 2、比和比例的区别: (1)比是表示两个数相除的关系。比例是表示两个比相等的关系。(2)比由两项组成(前项、后项)。比例由四项组成(两个内项、两个外项)。 知识点三:应用比的含义组成比例 理解掌握: 判断两个比能否组成比例,关键要看它们的比值是否相等。若比值相等,则能组成比例;若比值不想等,则不能组成比例。知识点四:比例的基本性质 理解掌握: 比例的基本性质:在比例里,两个外项的积等于两个内项的积。若a:b=c:d,那么ad=bc。 若用分数表示比a/b=c/d,那么ad=bc。------十字交叉法 知识点五:解比例 理解掌握: 解比例的依据是比例的基本性质,已知比例中的任意三项,就可以求出另外一项。 例1: 5:8=x:16 1/9 : 1/4 =x:18 8x=5×16 4:9 =x:18 x=10 9x =4×18 x =8 知识点六:用比例解应用题 解题方法:审题列出比例等量关系式------设未知数列出比例方程------解比例并检验写答 例1:A、B两种商品的价格比是5:3,如果它们的价格分别上涨了420元后,价格比是6:5。那么A商品原来多少元? 解析:本题中告诉我们A、B两种商品涨价前后的价格比,利用比例的基本性质可以得到等量关系是: (A商品原来的价格+420元):(B商品原来的价格+420元)=6:5 利用比例基本性质,设A商品原来的价格是5x元,B商品原来的价格是3x元 列出比例方程 (5x+420):(3x+420)=6:5 (5x+420)×5 =(3x+420)×6------比例基本性质 25x+2100 =18x+2520------乘法分配率 25x-18x=2520-2100------等式基本性质 x =60 5×60=300元 答:A商品原来300元。 知识点七:比例尺的意义 理解掌握: 比例尺就是图上距离与实际距离的比。图上距离是比的前项,实际距离是比的后项,比例尺是一个最简单的整数比。 相关公式:(1)比例尺=图上距离÷实际距离 (2)图上距离=比例尺×实际距离(3)实际距离=图上距离÷比例尺 知识点八:比例尺的应用 理解掌握: (1)注意比例尺的前后单位是否统一。一般比例尺的单位是厘米,而题目往往会给出以千米做单位的比例 尺。如1:40千米=1:4000000厘米(2)因为图上距离是比例的前项,实际距离是比例的后项,所以当比例尺的图上距离大于实际距离时,表示设计图纸大于实际物体,如比例尺是10:1(经常在精密仪器、化学领域中出现);当比例尺的图上距离小于实际距离时,表示设计图纸小于实际物体,如比例尺1:100(比如设计一栋教学楼)。 第五单元 确定位置 知识点 一、根据方向和距离确定物体的位置 理解掌握: (1)用字母表示方向。S表示“南”,W表示“西”,E表示“东”,N表示“北”。 (2)理解“X偏X若干度”,如南偏西15°,表示由南面向西面旋转15°的方向;西偏南15°,表示有西面向南面旋转15°的方向。这两个方向一样吗?请同学们仔细考虑一下?如果不一样,那么应该这么说呢?南偏西15°= 偏 ° ;西偏南15°= 偏 °。 (3)如何来用方向和距离确定位置呢? 答:一找观察地点和实际地点,二看实际地点在观察地点的什么方向上,三量出观察地点和实际地点的距离,四标注要清楚。知识点 二、根据平面图用方向和距离描述简单的行走路线 解题方法:描述行走路线的方法: 按行走路线,确定观测点及行走方向和路程,用“先„„然后„„再”等词语,按顺序叙述。 第六单元正比例和反比例 知识点 一、正比例的意义及应用 理解掌握: (1)正比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数 的比值(在除法中是叫做商)一定,那么这两个量叫做成正比例的量,它们的关系叫做成正比例关系。 (2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),正比例关系式可用x/y=k。 (3)判断两种量是否成正比例的应用方法: 1、判断两个是否相关联; 2、判断这两个量的比值是否一定,比值一定就成正比例关系; 反之不成正比例关系。(简说:用除法,商一定,成正比)知识点 二、正比例的图像 理解掌握: 正比例图像是一条直线。从图像中,可以直观看到两种量的变化情况,由一个量的值可以直接找到对应的另一个量的值。知识点三:反比例的意义及应用 理解掌握: (1)反比例的定义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,那么这两个量叫做成反比例的量,它们的关系叫做成反比例关系。 (2)如果用字母x和y分别表示两种相关的量,用k表示它们的比值(一定),反比例关系式可用x×y=k。 (3)判断两种量是否成反比例的应用方法: 1、判断两个是否相关联; 2、判断这两个量的积是否一定,积一定就成反比例关系;反之 不成反比例关系。(简说:用乘法,积一定,成反比)知识点四:用正反比例解应用题 解题方法: (1)判断题目中相关联的量成什么关系,列出等量关系式;(2)设未知数,列方程;(3)解方程并检验写答。 例1:一部机器上有两个互相咬合的齿轮,主动轮有80个齿,每分钟转90转。从动轮有48个齿,每分钟转多少转? 解析:先判断齿数和转数成反比例关系,理由是齿数×转数=总齿数(一定)。 等量关系是:主动轮齿数×主动轮转数=从动轮齿数×从动轮转数 再设从动轮每分钟转x转。48×x=80×90 x=150 答:从动轮每分钟转150转。第三篇:小学六年级数学知识点总结
第四篇:苏教版六年级数学上册知识点
第五篇:苏教版六年级数学下册知识点