人教版六年级数学整数知识点总结

时间:2019-05-12 23:24:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版六年级数学整数知识点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版六年级数学整数知识点总结》。

第一篇:人教版六年级数学整数知识点总结

人教版六年级数学整数知识点总结

人教版六年级数学整数知识点总结 1 整数的意义

自然数和0都是整数。2 自然数

我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。

一个物体也没有,用0表示。0也是自然数。3计数单位

一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4 数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除

整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。

如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。

因为35能被7整除,所以35是7的倍数,7是35的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。

个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。

个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。

一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。

一个数各位数上的和能被9整除,这个数就能被9整除。

能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

能被2整除的数叫做偶数。

不能被2整除的数叫做奇数。

0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28分解质因数

几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。

公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

以上就是为大家整理的人教版六年级数学整数知识点,希望对小朋友们有所启发!

小学六年级数学知识点:分数乘法

解析小学六年级下学期数学分数除法知识点

第二篇:六年级上册数学知识点总结

圆知识点总结

一、与圆有关的概念

1、圆是由一条曲线围成的平面图形。

(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)

2、画圆时,针尖固定的一点是圆心,通常用字母O表示;

连接圆心和圆上任意一点的线段是半径,通常用字母r表示;

通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。

在同一个圆里,有无数条半径和直径。

在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。在同一个圆内的所有线段中,圆的直径是最长的。

3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。

画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d÷2)

5、圆是轴对称图形,有无数条对称轴,对称轴就是直径所在的直线。

6、圆心决定圆的位置,半径决定圆的大小。要比较两圆的大小,就是比较两个圆的直径或半径。

7、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。用字母π表示。

π是一个无限不循环小数。π=3.141592653„„

我们在计算时,一般保留两位小数,取它的近似值3.14。π>3.14

8、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长 最短。

9、几个直径和为n的圆的周长=直径为n的圆的周长(如图)

几个直径和为n的圆的面积<直径为n的圆的周长

10、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方

(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)

11、常用的3.14的倍数:

3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×12=37.68 3.14×14=43.96 3.14×16=50.24 3.14×18=56.52 3.14×24=75.36 3.14×25=78.5 3.14×36=113.04 3.14×49=153.86 3.14×64=200.96 3.14×81=254.34

12、常用的平方数:

11²=121 12²=144 13²=169 14²=196 15²=225 16²=256 17²=289 18²=324

19²=361

20²=400 25²=625

二、圆的周长公式

1、已知圆的半径(r),求圆的周长(c):C=2πr

2、已知圆的直径(d),求圆的周长(c)C=πd

3、已知圆的周长,求圆的半径:r=C÷π÷2

4、已知圆的周长,求圆的直径:d=C÷π

5、求半圆的弧长,半圆的弧长等于圆周长的一半:半圆的弧长=πr或者半圆的弧 长=πd÷2

6、求半圆的周长,半圆的周长等于圆周长的一半加一条直径: C半圆= πr+2r=5.14r

C半圆= πd÷2+d=2.57d

7、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长×每分的转数

8、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。圆面积公式1、2、已知圆的半径,求圆的面积S=πr²

3、已知圆的直径,求圆的面积S=(d÷2)²

4、已知圆的周长,求圆的面积S=(C÷π÷2)²

5、半圆的面积,即整圆面积的一半:半圆面积=πr²÷2=(d÷2)²÷2=(C÷π÷2)²÷2总之,即得除以2

6、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。

S圆环=S外圆—S内圆=πR²-πr²=π(R²-r²)

7、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

8、长方形里最大的圆。两者联系:宽=直径

画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以宽为直径画圆。

例:在长10分米,宽8分米的长方形中画一个最大的圆,圆的周长和面积各是多少?

9、在圆内画一个最大的正方形 这个最大的正方形的面积=直径×半径 画法:

10、在半圆内画一个最大的三角形,三角形的底就是圆的直径,三角形的高就是圆的关径。三角形的面积=直径直径×半径÷2

11、周长相等的平面图形中,圆的面积最大; 面积相等的平面图形中,圆的周长最短。

11、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,面积的倍数=半径倍数的平方(即r扩大n倍,直径扩大n倍,周长扩大n倍,面积扩大n2倍)

二、分数混合运算

(一)分数混合运算

1、分数混合运算顺序与整数混合运算顺序相同,没有括号的先算(乘除),再算(加减);有括号的先算(括号里面的),再算(括号外面的)。

2、整数的运算律在分数运算中同样适用。加法运算定律:

加法交换律:a+b=b+a 加法结合律:a+b+c=a+(b+c)乘法定律:

乘法交换律:a×b=b×a 乘法结合律:a×b×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c 减法定律:减法的性质a-b-c=a-(b+c)或a-(b+c)=a-b-c 除法的性持:a÷b÷c=a÷(b×c)或a÷(b×c)= a÷b÷c

3、用方程解决有关分数混合运算的实际问题,关键是找出(单位1),并把它设为未知数,再找出等量关系计算。

4、分数基本性质:分数的分子和分母同时乘以或除以相同的数(0除外)分数的大小不变。

5、分数加减法

同分母分数相加减,分母不变,分子相加减,异分母分数相加减,要先通分为同分母分数再相加减。

(二)分数混合运算的应用

1、打折 计算方法:现价÷原价=折扣

2、一件商品打几折,求现价。计算方法:原价×折数

3、一件商品打几折,求原价。计算方法:现价÷折数

4、分数混合运算的应用题解答方法

基本知识规律:解答方法:

1、找单位“1”

2.确定乘或除:已知单位1,用乘法;未知单位1,用除法

3.对应量和对应分率:单位1×对应分率=对应量;对应量÷对应分率=单位1.若用方程,一般设单位1未未知数 找单位1:

三、百分数及百分数的应用

1、表示一个数是另一个数的百分之几的数叫作(百分数),也叫作(百分率)或(百分比)。

2、百分率一般是指(部分)占(整体)的百分之几。

3、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

4、百分数化成小数时,把(百分号)先去掉,再把小数点向(左)移动(两)位;百分数化成分数,先写成分母是(100)的分数形式,再化成(最简)分数。

5、求一个数是另一个数的几分之几(或百分之几)?

“是”字前面的数÷“是”字后面的数

6、求一个数比另一个数多(或少)几分之几(或百分之几)?

(大数-小数)÷“比”字后面的数 7、8、打折 计算方法:现价÷原价=折扣

9、一件商品打几折,求现价。计算方法:原价×折数

10、一件商品打几折,求原价。计算方法:现价÷折数

11、应纳税额。计算方法: 营业额×税率

12、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

13、税后利息 计算方法:利息-利息×税率

14、到期后可以取出的钱数 计算方法:本金+税后利息

15、生活中的百分率:

出勤率、缺勤率、发芽率、优秀率、及格率、合格率、命中率、近视率、出粉率、出米率、成活率、出油率、入学率、升学率、森林覆盖率、绿化覆盖率、收视率、体育达标率、疫苗接种率、含糖率、含盐率、正确率、错误率

达标率 = 达标学生人数 ÷ 学生总人数 发芽率 = 发芽种子数 ÷ 种子总数 出勤率 = 出勤人数 ÷ 学生总人数 合格率 = 合格的产品数 ÷ 产品总数 出粉率 = 粉的重量 ÷ 小麦的重量 出油率 = 油的重量 ÷ 花生的重量 出米率 = 米的重量 ÷ 稻谷的重量 成活率 = 成活的数量 ÷ 种植总数 命中率 = 命中的次数 ÷ 投篮总数 含盐率 = 盐的重量 ÷ 盐水的重量

有关分数百分数应用题解题技巧与方法指导

一、解分数,百分数应用题的基本步骤:

1、找准单位1——并在题目的文字下面标注

二、找单位1的方法

1、部分数和总数

在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。例如我国人口约占世界人口的1/5,世界人口是总数,我国人口是部分数,所以,世界人口就是单位“1”。再如,食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1”。解答这类分数应用题,只要找准总数和部分数,确定单位“1”就很容易了。

2、两种数量比较

分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。例如:六(2)班男生比女生多1/2。就是以女生人数为标准(单位“1”),男生比女生多的人数作为比较量。在另外一种没有比字的两种量相比的时候,我们通常找到分 率,看“占” 谁的,“相当于”谁的,“是”谁的几分之几。这个“占”,“相当于”,“是”后面的数量——谁就是单位“1”。例如,一个长方形的宽是长的5/12。在这关键句中,很明显是以长作为标准,宽和长相比较,也就是说长是单位“1”。又如,今年的产量相当于去年的4/3倍。那么相当于后面的去年的产量就是标准量,也就是单位“1”。

3、原数量与现数量

有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。这类分数应用题的单位“1”比较难找。例如,水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!比如水结成冰,原来的数量就是水,那么水就是单位“1”。冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”。

四、百分数题型分类及解题方法 百分数应用题三种类型

第一大类求分率用除法:求一个数是另一个数的百分之几

1.直接求一个数是另一个数的百分之几 一个数÷另一个数 2.求一个数比另一个数多百分之几 多的部分÷单位1 3.求一个数比另一个数少百分之几 少的部分÷单位1 例:(1)男生有25人,女生有20人,女生是男生的百分之几?(2)男生有25人,女生有20人,男生比女生多百分之几?(3)男生有25人,女生有20人,女生比男生少百分之几? 第二大类单位1已知用乘法:求一个数的百分之几是多少

1.直接求一个数的百分之几是多少 单位1×分率 2.求比一个数多百分之几的数是多少 单位1×(1+分率)3.求比一个数少百分之几的数是多少 单位1×(1-分率)例:(1)男生有25人,女生是男生的80%,女生有多少人?(2)女生有20人,男生比女生多25%,女生有多少人?(3)男生有25人,女生比男生少20%,女生有多少人?

第三大类单位1未知用除法:已知一个数的百分之几是多少,求这个数。1.已知一个数的百分之几是多少,求这个数。已知量÷分率=单位1 2.已知比一个数多百分之几的数是多少,求这个数 已知量÷(1+多的分率)=单位1 3.已知比一个数少百分之几的数是多少,求这个数 已知量÷(1-少的分率)=单位1 例:(1)女生有25人,是男生的80%,男生有多少人?(2)男生有25人,比女生多25%,女生有多少人?(3)女生有20人,比男生少20%,男生有多少人?

四、比的认识

(一)、比的意义

1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(比值通常用分数表示,也可以用小数或整数表示)

比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:

路程÷速度=时间。

3、区分比和比值

比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:

7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质

1、根据比、除法、分数的关系:

商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4、化简比:

5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

6、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)

(三)和比的应用题有关的概念

1、求每份数的方法

和÷分数和=每份数

相差数÷相差份数=每份数

部分数÷对应份数=每份数

2、图形求比的常见公式

长方体:(长+宽+高)的和=棱长和÷4

长方形:(长+宽)的和=周长÷2

3、相遇问题 速度和 = 路程÷相遇时间

(四)比的应用

★知识体系

1、在工农业生产和生活中,常常需要把一个数量按照一定的比来进行分配。这种分配方法通常叫按比例分配。

按比例分配应用题分为三种情况,看下面的三个例子:

例(1)一年级与二年级共有学生130人,一年级与二年级人数比是5︰8,两个年级各有学生多少人?

例(2)二年级比一年级多30人,一年级与二年级人数比是5︰8,两个年级各有多少人? 例(3)二年级有80人,一年级与二年级人数比是5︰8,一年级有多少人? ★解题方法总结:

在解决“比的应用”的有关问题时,要抓住解题关键,用所给的数量除以对应的份数,求出每份数,然后用每份数分别乘所求数量的份数,从而求出所求数量。类型不同的题要用不同的方法求出每份数:

(1)“已知两数的和与两数的比,求两数分别是多少?” 每份数=两数的和÷比各项的和

(2)“已知两数的差与两数的比,求两数分别是多少?”每份数=两数的差÷比各项的差

(3)“已知其中一项与两数的比,求另一个数是多少?” 每份数=其中一项÷对应的份数 题型体系

●己知总数和比。

解题方法:

(1)每份数=两数的和÷比中各项的和(2)用各部分数占的份数×每份数 求出每部分量。

3、答题并检验。

●已知一个量和比。

解题方法:

1、每份数=其中一项÷对应的份数

2、用各部分数占的份数×每份数 求出每部分量。

3、答题并检验。

●已知相差数和比。

解题方法:

1、每份数=两数的差÷比中各项的差

2、用各部分数占的份数×每份数 求出每部分量。

3、答题并检验。

五、数据处理

六、常用的数量关系

1、每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2、速度×时间=路程

路程÷速度=时间

路程÷时间=速度

3、单价×数量=总价

总价÷单价=数量

总价÷数量=单价

4、工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

5、加数+加数=和

和-一个加数=另一个加数

6、被减数-减数=差

被减数-差=减数

差+减数=被减数

7、因数×因数=积

积÷一个因数=另一个因数

8、被除数÷除数=商

被除数÷商=除数

商×除数=被除数

七、常见的单位换算 【长度单位】

1千米=1000米=10000分米=100000厘米=1000000毫米 1米=10分米=100厘米 1厘米=10毫米 1分米=10厘米 【面积单位】

1平方千米=100公顷 1公顷=10000平方米 一平方千米=1000000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 相邻面积单位间的进率是100。大单位转化成小单位乘以进率,小单位转化成大单位除以进率。【体积、容积单位】

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1升=1000毫升 1立方分米=1升 1立方厘米=1毫升

相邻体积间进率为1000。大单位转化成小单位乘以进率,小单位转化成大单位除 以进率。【质量单位】

1吨=1000千克 1千克=1000克 【人民币单位换算】

1元=10角 1角=10分 1元=100分

【时间换算】 1世纪=100年 1年=12月 1日=24小时=60秒 例题

时=60分分 1 1

第三篇:小学六年级数学知识点总结

小学六年级数学知识点总结

1. 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数

小学数学图形计算公式正方形

C周长 S面积 a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体

V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形

C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形

s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积 ×2÷底三角形底=面积 ×2÷高6平行四边形

s面积 a底 h高面积=底×高s=ah7 梯形

s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏S=∏rr 9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2

第四篇:小学六年级数学知识点总结

小学六年级数学知识点总结

1. 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数

3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率

6、加数+加数=和和-一个加数=另一个加数、被减数-减数=差被减数-差=减数差+减数=被减数

8、因数×因数=积积÷一个因数=另一个因数

9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式正方形

C周长 S面积 a边长周长=边长×4C=4a

面积=边长×边长S=a×a正方体

V:体积 a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a长方形

C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh三角形

s面积 a底 h高面积=底×高÷2s=ah÷2

三角形高=面积 ×2÷底三角形底=面积 ×2÷高平行四边形

s面积 a底 h高面积=底×高s=ah梯形

s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径C=∏d=2∏r

(2)面积=半径×半径×∏S=∏rr圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数小数×倍数=大数(或者 和-小数=大数)差倍问题

差÷(倍数-1)=小数小数×倍数=大数(或 小数+差=大数)小学奥数公式和差问题的公式

(和+差)÷2=大数(和-差)÷2=小数

和倍问题的公式

和÷(倍数-1)=小数 小数×倍数=大数(或者 和-小数=大数)

差倍问题的公式

差÷(倍数-1)=小数 小数×倍数=大数(或 小数+差=大数)

植树问题的公式非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1全长=株距×(株数+1)

株距=全长÷(株数+1)封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题的公式

相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题的公式

追及距离=速度差×追及时间追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式

溶质的重量+溶剂的重量=溶液的重量溶质的重量÷浓度=溶液的重量 溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量利润与折扣问题的公式

利润=售出价-成本涨跌金额=本金×涨跌百分比

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)

(一)数的读法和写法 1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。

2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3、小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。

4、小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 1254300000

改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。

2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如: 1302490015 省略亿后面的尾数是 13 亿。

3.四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略

345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。

4.大小比较

1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2.比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大……

3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1.把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4.成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质;

两个合数的公约数只有1时,这两个合数互质。

(五)约分和通分

1、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

小数、小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2、小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25、0.368 都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如: 3.25、5.26 都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 41.7、25.3、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。例如: 4.33 ……

3.1415926 ……

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 …… 0.0333 …… 12.109109 ……

一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如: 3.99 ……的循环节是“ 9 ”,0.5454 ……的循环节是“ 54

”。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:

3.111 …… 0.5656 ……

混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。

3.1222 …… 0.03333 ……

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作。

(六)分数分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(七)百分数

表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率或百分比。百分数通常用“%”来表示。百分号是表示百分数的符号。

第五篇:人教四上数学期末复习计划知识点汇总

人教版四年级上册数学复习计划

一、指导思想:

根据本学期教学计划,结合本班级学生及数学学习的具体情况,以基础知识为中心,以提高计算和运用数学解决问题的能力为重点,力求挖掘学生的积极性和学习潜在能力,做到查缺补漏,培优补差。以提高学生的数学成绩。

二、复习形式:绿色圃中小学教育网http://www.xiexiebang.com

第一步:分单元复习.第二步:归类复习.第三步:综合复习。

三、复习内容:

1、大数的认识

2、公顷和平方千米

3、角的度量

4、三位数乘两位数

5、平行四边形和梯形

6、除数是两位数的除法

7、统计

8、数学广角

复习时按照整册教材的知识体系分——大数的认识、乘法和除法、空间与图形、统计和数学广角这四大块来进行知识的梳理。

四、复习目标:

1、通过整理和复习,使学生对万级、亿级的数,十进制计数法,用“万”、“亿”作单位表示大数以及近似数等知识有进一步的认识,建立有关整数概念的认知结构。

2、通过整理和复习,使学生进一步巩固对三位数乘两位数的笔算方法和除数是两位数的除法笔算,进一步提高用计算器进行大数目以及探索规律的操作技能,加深对计算器的认识。

3、通过整理和复习,使学生进一步掌握直线、射线和线段的特征,认识角、平行四边形和梯形,在观察物体中加深对物体和相应视图的认识,进一步发展空间观念。

4、通过整理和复习,使学生进一步掌握统计的基本知识和方法,会画两种不同的统计图。

绿色圃中小学教育网http://www.xiexiebang.com5、通过整理和复习,使学生进一步提高综合运用所学知识解决实际问题的能力,在解决实际问题的过程中进一步体会数学的价值。

6、通过整理和复习,使学生经历回顾本学期的学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和能力。

五、具体安排:

周次

容17、18

分单元复习基础知识

分类分板块复习

综合复习及检测

综合复习及检测

六、复习措施:

1、教会学生复习方法,先全面复习每一单元,再重点复习有关重点内容。

2、采用多种方法,比如学生出题,抢答,抽查,学生互批等方法,提高学习兴趣。

3、加强补差,让优等生帮助后进生。

4、课堂上教会学生抓住每单元的知识要点,重点突破,加强解决问题能力的培养,并相机进行计算能力的培养。

人教版四年级上册期末知识点汇总

四年级上册数学复习知识点

第一单元大数的认识

1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。

相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。

特别注意:计数单位与数位的区别。

2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。

3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。

4、按照我国的计数习惯,从右边起,每四个数位是一级。

6、亿以上数的读法:

先分级,从高位开始读起。先读亿级,再读万级,最后读个级。

亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。

每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。

7、亿以上数的写法:

从最高位写起,先写亿级,再写万级,最后写个级。

哪个数位上一个单位也没有,就在那个数位上写0。

8、比较数的大小:

位数不同的两个数,位数多的数比较大。

位数相同的两个数,从最高位开始比较。

9、求近似数:

省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。

这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5

还是等于或大于5

。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。

10、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。

11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。

12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。

13、ON╱CE:开关及清除屏键,清除显示屏上的内容。

AC:清除键,清除所有内容。

第二单元公顷和平方千米

1、边长是100米的正方形面积是1公顷。

1公顷

=

10000平方米

2、边长是1千米的正方形面积是1平方千米。

1平方千米

=

1000000平方米

1平方千米=100公顷

3、从大单位变到小单位,乘以进率。

从小单位变到大单位,除以进率。

4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如:

香港特别行政区的面积约1100()。

广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44();

操场、教室等较小的面积适合用平方米。如一个教室的面积约60();

5、长方形面积

=

×

正方形面积

=

边长

×

边长

第三单元角的度量

1、直线、射线、线段

直线:可以向两端无限延伸,没有端点。

射线:可以向一端无限延伸,只有一个端点。

线段:不能延伸,有两个端点,线段是直线的一部分。

2、直线、射线与线段有什么联系和区别?

①、直线和射线都可以无限延伸,因此无法量出长短。

②、线段可以量出长度。

③、线段有两个端点,直线没有端点,射线只有一个端点。

名称

形状

端点

延伸

线段

直的2

不能

射线

直的1

一端

直线

直的0

两端

3、从一点引出两条射线所组成的图形叫做角。

4、角的计量单位是“度”,用符号“

°”表示。

将圆平均分成360

份,每一份所对的角的大小是l

度,记做1°。

5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。

6、度量角的工具叫量角器。

7、量角的步骤:

①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。

②角的另一条边所对的量角器上的刻度,就是这个角的度数。

8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。

9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°

10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°

1周角=2平角=4直角

1直角=90°

11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。

锐角<直角<钝角<平角<周角

12、画角的步骤:

(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。

(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。

(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。

13、经过一点可以画无数条直线;经过两个点,只能画一条直线。

14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°

第四单元三位数乘两位数

1、三位数乘两位数的笔算方法:

先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。

2、积的变化规律:

一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。

3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。

单价

×数量

=

总价

单价=总价

÷

数量

数量=

总价

÷

单价

4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。

速度

×时间=

路程

速度=路程

÷

时间

时间=路程

÷

速度

5、速度单位通常有:千米/时、米/分、米/秒等。

第五单元平行四边形和梯形

1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

记作:a∥b

读作:a平行于b2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

记作:

a⊥b

读作:a垂直于b3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。

经过直线上一点(或外一点)作垂线,可以画一条。

5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。

6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。

8、平行四边形的特点:容易变形。例如:伸缩门、升降机

9、平行四边形和梯形有无数条高。

10、两腰相等的梯形叫做等腰梯形。特点:两腰相等,两底角相等。

11、有一个角是直角的梯形叫做直角梯形。

特点:有一条腰就是梯形的高。

12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

13、两个完全一样的三角形可以拼成一个平行四边形。

两个完全一样的梯形可以拼成一个平行四边形。

两个完全一样的直角梯形可以拼成一个长方形或平行四边形。

14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。

15、三角形三个内角的和是180°,四边形四个内角的和是360°。

16、四边形小结:

两组对边分别平行的四边形叫做平行四边形;

只有一组对边平行的四边形叫梯形。

两腰相等的梯形叫做等腰梯形。

有一个角是直角的梯形叫做直角梯形。

四个角都是直角的四边形叫长方形。

四个角都是直角,并且四条边都相等的四边形叫正方形。

第六单元除数是两位数的除法

1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。

2、除数是两位数的除法的计算方法:

从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数‚除到被除数的哪一位,就在那一位上写商。

求出每一位商,余下的数必须比除数小。

3、商的变化规律:

被除数和商的变化相同。

除数和商的变化相反。

商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。

除数×

+

余数

=

被除数

(被除数-余数)÷

=

除数

第七单元条形统计图

1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。

2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定

第八单元数学广角--优化

1、沏茶问题:

合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。

2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。

3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。

下载人教版六年级数学整数知识点总结word格式文档
下载人教版六年级数学整数知识点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学六年级上册知识点总结范文

    六年级上册数学知识要点 一、目标与要求 1.使学生能在方格纸上用数对确定位置。 2.使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。 3.使学生理解倒数......

    六年级上册数学知识点总结(5篇材料)

    读书不是为了考试,本来考试是一件正确的事情,它是用来检查我们对学习过的知识是否懂了,懂了多少 多深分数只是反映了我们对学过知识的掌握程度,下面小编给大家分享一些六年级上......

    苏教版六年级上册数学知识点总结[范文大全]

    第一章:方程以及列方程解应用题1、形如ax±b=c方程的解法 【解方程时,可以利用等式的基本性质来解,注意两边要同时加上或减去同一个数】 例:3x+15=30要在两边同时减去15;而4x-6=1......

    六年级数学第一单元知识点总结

    六年级数学第一单元知识点总结:分数乘法 一、分数乘法 (一)分数乘法的意义: 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 3333例如: ×5表示求5......

    苏教版六年级数学上册知识点总结归纳

    (新版)苏教版六年级数学上册知识点归纳总结 第一单元长方体和正方体 1.长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。 2.长方体的特征:面——有六个面,都是长......

    人教办小学数学六年级上册

    人教办小学数学六年级上册《圆的面积》学生调研 课堂再现 以下是我在教学六年级上册《圆的面积》一课前所做的学生调研。 几何知识的初步认识按由易到难的顺序贯穿在整个小......

    人教小学六年级下册数学教学计划(精选)

    六年级下册数学教学计划 一、教学内容 这一册教材包括下面一些内容:负数、圆柱与圆锥、比例、统计、数学广角、整理和复习等。 教学重点:百分数的应用、圆柱的侧面积和表面积......

    人教六年级数学教案

    黄花镇黄花小学六年级下册数学教案 执教者: 陈荣利2012年上学期 第一单元百分数(二) 1.百分数的应用(二) 课题一:利息 教学内容:教科书第1—2页及“做一做”中的题目,练习一的第......