第一篇:高中数学3
复习题三
解下列各题
1、求无穷递缩等比数列1,x,x2,x3,(|x|1)的和
2、lim5x4
xx1
xx3. x3、lim(1)x02.
tanxsinx.2x0x
xx5、求函数y()的导数 1x4、lim6、求函数y(1x2)sinx的二阶导数
7、已知曲线yxlnx的切线与直线2x2y30垂直,求此切线方程.
exex2x8、lim. x0xsinx9、已知函数f(x)exlnax在x2 处有极值,求a的值.
10、a、b为何值时,点(1,3)为曲线yax3bx2的拐点?
111、3exdx x112、
13、
14、1cosxdx 1cosx1dx xlnx4
01 1x
sinxsin3xdx15、0
16、求曲线y3x2,y2x所围成图形的面积。
第二篇:高中数学3
数学34、若直线xy2被圆(xa)2y24所截得的弦长为22,则实数a的值为
5、直线L过点(-2,0)与圆x2y22x有两个交点时,斜率k的取值范围
6、若点p的坐标是(5cos,4sin),圆C的方程为x2y225则点P与圆C的位置关系
7、对于任何实数k,直线(3k2)xky20与圆x2y22x2y20的位置关系
8、直线yx1上的点到圆x2y24x2y40的最近距离为
9、已知过点P(0,4)的直线L被圆(x1)2y24所截得的弦长为23,求直线L的方程?
第三篇:高中数学学习方法3
数学中的记忆能力是掌握基础知识,形成基本能力的基础。许多数学知识,不仅需要我们理解,而且更需要我们记住它。那么,怎样才能提高学生记忆数学知识的能力呢?下面来介绍几种记忆方法:
一、分类记忆法
遇到数学公式较多,一时难于记忆时,可以将这些公式适当分组。例如求导公式有18个,就可以分成四组来记:(1)常数与幂函数的导数(2个);(2)指数与对数函数的导数(4个);(3)三角函数的导数(6个);(4)反三角函数的导数(6个)。求导法则有7个,可分为两组来记:(1)和、差、积、商复合函数的导数(4个);(2)反函数、隐函数、幂指数函数的导数(3个)。
二、推理记忆法
许多数学知识之间逻辑关系比较明显,要记住这些知识,只需记忆一个,而其余可利用推理得到,这种记忆称为推理记忆。例如,平行四边形的性质,我们只要记住它的定义,由定义推理得它的任一对角线把它平分成两个全等三角形,继而又推得它的对边相等,对角相等,相邻角互补,两条对角线互相平分等性质。
三、标志记忆法
在学习某一章节知识时,先看一遍,对于重要部分用彩笔在下面画上波浪线,再记忆时,就不需要将整个章节的内容从头到尾逐字逐句的看了,只要看划重点的地方并在它的启示下就能记住本章节主要内容,这种记忆称为标志记忆。
四、回想记忆法
在重复记忆某一章节的知识时,不看具体内容,而是通过大脑回想达到重复记忆的目的,这种记忆称为回想记忆。在实际记忆时,回想记忆法与标志记忆法是配合使用的。
第四篇:高中数学必修3经典教案全集
新课标高中数学必修3教案
目
录
第一章 算法初步...............................................................................................................................1 1.1.1算法的概念.......................................................................................................................3 1.1.2 程序框图(第二、三课时)................................................................................................9 1.2.1输入、输出语句和赋值语句(第一课时).......................................................................15 1.2.2-1.2.3条件语句和循环语句(第二、三课时)..................................................................21 1.3算法案例 第1、2课时 辗转相除法与更相减损术.............................................................27 第3、4课时 秦九韶算法与排序.........................................................................31 第5课时 进位制...................................................................................................35 算法初步 复习课...........................................................................................................................39 第二章 统计初步.............................................................................................................................45 2.1.1 简单随机抽样.......................................................................................................................45 2.1.2 系统抽样...............................................................................................................................49 2.1.3 分层抽样...............................................................................................................................53 2.2.1用样本的频率分布估计总体分布(2课时).......................................................................57 2.2.2用样本的数字特征估计总体的数字特征(2课时)...........................................................61 第三章 概率......................................................................................................................................65 3.1 随机事件的概率 3.1.1 —3.1.2随机事件的概率及概率的意义(第一、二课时)...............65 3.1.3 概率的基本性质(第三课时)...........................................................................................69 3.2 古典概型(第四、五课时)3.2.1 —3.2.2古典概型及随机数的产生..............................73 3.3 几何概型 3.3.1—3.3.2几何概型及均匀随机数的产生.......................................................79
I
第五篇:高中数学必修3教学反思
高中数学必修3教学反思
邵
营
必修3是高中数学比较特殊的一部分内容,既增添了新内容——算法,老内容统计和概率的内容和安排也发生了一些变化。下面就自己的教学过程谈一谈对必修3的体会与反思。
1、第一章的教学主要还是要把握好教学要求,围绕程序框图这一核心,以具体案例为载体,使学生在解决具体问题的过程中,学会基本逻辑结构和算法语句的用法,从中体会算法的思想,提高逻辑思维能力,不必要搞太难的算法设计,因为在其它章节中,算法思想也是要渗透的,学生有较多的机会接触算法问题.至于高中数学引入算法的理由,我体会还是在于算法思想所体现的很强的逻辑性对提高学生逻辑思维能力的作用,而不在于学会多少程序语言或程序设计.所以还是应该关注算法的“数学味”.
2、在第二章的教学中,感到学生虽然知道各种统计量(平均数、标准差、回归方程等)的计算方法,但理解其中蕴涵的统计思想却很难,不能自觉的形成统计观念和概率思维.因此,在统计教学中,要更多地关注在“计算”后,让学生对结果的含义作出解释.实际上,课本在这方面是有示范的.例如,在讲完“众数、中位数、平均数”后,课本有一个关于某企业职工工资待遇的“探究”栏目,还配了某市公路项目投资数据的利用方面的练习等,在教学中可让学生对这些问题开展讨论,并让他们举一些类似的问题.通过讨论,学生认识企业老总利用数据设置的陷阱在哪里,应当如何理解和使用数据特征等.
3、概率的教学,离开了具体案例寸步难行,要让学生在具体案例中体验概率有关问题的情景,在案例中发现问题、解决问题,亲身体验案例情景,以激发兴趣。在实际教学中一方面要尽量创设情境,采用案例教学的基本方式展开教学,通过大量的具体案例来帮助学生理解;另一方面要设计一些活动,让学生经历统计的全过程,在学生合作学过程中,学生既要独立思考,自主探索,又要在解决实际问题中与别人合作、交流。例如:在教学《确定事件与不确定事件》中,让学生通过一系列的案例理解概念。太阳从东边升起,抛起的篮球会下降等等一定会发生的事件就是可能事件,太阳从西边升起,公鸡下蛋等一定不会发生的事件就是不可能事件。让学生在具体案例中体验概念。
2013年10月