2013考研证明题系列-题目7

时间:2019-05-12 11:58:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013考研证明题系列-题目7》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013考研证明题系列-题目7》。

第一篇:2013考研证明题系列-题目7

这是一个积分 等式问题。处理积分等式的方法通常有几种,第一种是利用构造辅助函数来证明,另外一种则是利用分部积分来证明。这道题,我们得仔细观察下形式是怎样的。不难发现,这个形式与泰勒的展开式极其相似。所以我们可以将关注的焦点放在泰勒展开上面。于是,很自然的,考虑构造辅助函数。

注:这种构造方法是很常见的,无论是在证明积分不等式还是积分等式!都可以先转换成积分上限函数,通过其性质来证明相关命题!

下一步是将这个积分上限函数展开成泰勒展开式。这里又涉及到两个问题:

1)到底应该展开成几阶的。这时候,我们应该看看题目要证的命题需要我们展开到几阶。明显,题目里面出现了条件具有二阶导数,所以最多可以展开到二阶,而命题中也有2阶导数,所以,我们需要把这个积分上限函数展开到3阶!

2)应该在哪一点展开。从结论中也可以看出,需要在(a+b)/2点展开。

于是,展开式如下:

这个时候,离最后的证明还差一些,就是怎么在这样的条件下得到需要的式子。令x=b,这个时候可以得到需要的左边的式子。但是右边还差一些

这时候可以再令x=a.此时,左边等于0,右边奇数次导数项和上面的式子的奇数次导数项互为相反数,而偶数次导数项相同,一旦相减,就离最后的结论更近了。

于是我们得到了如下的解法

最后一步利用连续介值定理(条件有说二阶导数连续)来做的,这一步看似简单实际上却是很重要而且很容易被大家忽略的一步。不这样做,容易出现以下的一种错误!

这种方法是对知识掌握不牢固的同学容易犯的错误。因为在泰勒公式里面,ξ是一个变量,准确的写法应该是f(ξ(x)),也就是说,ξ是关于x的函数,所以上面式子的最后一项的积分是积不出来的!

最后,对此题进行小结。这道题是典型的将积分(不)等式先构造相应的积分上限函数来做的,其中涉及的知识有泰勒展开和连续性介值定理。题目的条件告诉了我们,一般来说,一

道题目是没有无用的条件,如果条件没有用完,那么很可能你的方法是错误的。比如这道题的那种错误的解法!没有用到二阶导数连续!

最后练习一道题吧!

第二篇:2013考研证明题系列-题目5

看见这道证明题,首先第一步是对比一下两边的差异。仔细观察积分限,被积函数,发现只有抽象函数f里面的表达式变了,而且变的很有规律!

可以说,相当于用一个变量去替换了x^2,所以此时此刻,我们很容易想到积分换元,于是

可是,这个时候麻烦又出现了。原因有两点

(1)积分下限没改变但是上限变了

(2)多了个系数2

这个时候,我们得想办法处理,如何才能将这个东西向已知结论靠拢呢?考虑到积分区间的可加性,我们不妨将这个积分的区间分开成两段,其分界点为a。

也许有人会问,你为什么想到要在a点取分界点,我个人认为原因有两点。

原因1:我们要证明的式子最后的积分上限就是a,所以我主动构造出来一个,后面那个看能不能用什么方法处理使得也变成结论形式

原因

注意到我给的这个式子,a对于抽象函数而言,相当于是一个比例中项,也就是平衡位置。所以,选取这一点,对后面的问题处理也有一定帮助!(不过这个理由有点抽象,需要一定的数学基础才能比较好的认知)不过理由1是很明确的,是证明题的要素之一:朝着目标转化!接下来就是对这个表达式的处理了

还是同样的思想,我们应该朝着目标转化,也就是说,积分限需要变成1,a!那么我们需要找到一个适当的变化,使得能够满足条件。其次,在这种变换下,我们不允许f内的自变

量形式发生任何变化,一旦变化,由于是抽象函数,所以根本无法处理。

在这两种条件的限制下,我们考虑下述变换。

这种变换的优势体现在两点:一是f内部函数形式没变,二是积分限出现了a,1,也就是目标!因此,我们有理由相信,这种方法是可以行得通。

PS:其实,在找出这种方法为正确的变换之前,我也尝试了一些其他的变化

所以,证明不是一步就能看出来的,而需要不断去修正,去尝试。

具体解答如下

总结一下这道题目我们能够学习到的东西。

(1)证明题的根本思想,朝着目标转化!

(2)定积分换元的技巧,考虑结论的形式

(3)对于解题过程中,也需要不断的尝试。失败不可怕,因为失败之中,也可能含有成功的线索!

下面两道练习题,大家有兴趣自己试试。

两道题都不太难,练习2还有多种方法。

第三篇:2013考研证明题系列-题目4

这道题看上去就比较容易入手。因为题目有两个问题,一般来说,第一问是为第二问做铺垫的,往往第二问可以用到第一问的结论,就算用不到,第一问也会给第二问带来很明确的方向。

还是条件入手,分析条件,从正向边界,平面区域,不难得出此题是二重积分和曲线积分的转换问题,应该使用格林公式来做。于是分别对第一问左右两边用格林公式,转换成二重积分。

对比二重积分的被积表达式,发现其实并不完全一样。所以这个时候我们又得考虑一下,是不是哪个条件没有用上。仔细观察下给的条件,发现积分区域没用上,这个区域有个特点,就是很对称,不过不关于x轴也不关于y轴对称,而是关于y=x对称。于是OK了。利用这种对称性,成功的证明两个二重积分是相等的了!

下面接着做第二问。

第二问是一个不等式问题,如果没有第一问的铺垫,也算是比较难的了,不过有了第一问,那么就相对简单些了。

先做一些处理

这一步也算是得力于第一问了。就是利用y=x对称的这个性质!这样一来,我们将多变量转换成了单变量,这也是做题的一种策略!

可是即使做到这一步,我们也无法直接得出结论,并且e^sinx这种函数是无法积分(准确说无法找出初等原函数),加上题目本身也不是让你准确积出来,而是证明不等式,所以联想到放缩!

于是下一步考察e^x+e^(-x)这个函数的性质

为了能够积分容易,泰勒公式是一个不错的选择,它将各种函数都弄成了幂函数的形式,而

幂函数正是很容易积分的形式。于是,将e^x+e^(-x)在x=0点展开。一放缩,本题就得出答案了,具体过程如下。

最后总结一下这道题目

题目分析过程不算特别难,主要就是格林公式的应用和二重积分的对称性,以及最后的泰勒公式展开。

但是有两个地方值得挖掘

(1)题目可以一般化!

方法与上面一模一样,这里不赘述。不过需要注意的是,第二问就无法证明大于等于5/2π^2,只能证明大于等于2π^2

(2)对于本题的第二问,我们可以从解答中看出,还可以继续不断的进行更强的放缩

得到的结果也更加强!

这一种方法给我们的启示就是:对于那种无法积出具体分的积分不等式,我们可以利用泰勒展开来做。适当放缩就可以得到答案!

下面就这个方法,给一道习题

此题左边比较容易,右边稍微有点难,可以尝试一下!

第四篇:2013考研证明题系列-题目3

题目3是一道积分不等式的证明,是李永乐或者陈文灯书上都可以找到的题目。其中方法很典型,里面的一些技巧也是证明题中常用的,所以我把这道题弄出来进行剖析,将自己的思路展现给大家看看。

拿到这道题目,大家可能都有点傻眼了。怎么表达式这么复杂?!!而且绝对值,积分号,求导号让人眼花缭乱,感觉根本不知道从何下手。我们不妨先从三个独立的表达式分析起走。第一个表达式

首先要明白这个式子说的是什么东西。读懂表达式,是你做证明题的根本!不难看出,这个式子说的就是|f(x)|的在区间[a,b]的最大值。写的这么高深,弄得大家心里发慌,其实根本就是一只纸老虎嘛!我们并不关心最大值在哪一点取得,所以我们可以把取得最大值的这一点设为ξ,则这个式子可以化成|f(ξ)|.你看,这样一简化,是不是显得更加简洁和舒服,让自己的信心也增加了不少。第二个表达式

这个式子对积分熟悉一点的看见了就应该有一种很强烈的反应,就是积分中值定理!所以这个式子我们也可以简化一下成|f(η)|.这样一来,不但大大简化了表达式,而且成功的与第一个表达式联系了起来!这样对题目的认知也就在简化中一点一点的清晰化了!第三个表达式

这个表达式相对于前面两个来说要复杂一些,因为它没有很好的化简方式。所以我们只有暂且不管这个表达式,把它作为一个常量,摆在那里,考虑去处理表达式1,2,使得能够得到表达式3!

为此,我们将表达式1和表达式2放在一起,于是移项,得到下面不等式,也就是我们需要证明的!

注意到左边两个式子|f(ξ)|-|f(η)|,看见这个,然后考虑到这是一道不等式的题目,并且ξ,η

都是未知的一个数,我们应该立即联想到放缩,用什么放缩?绝对值不等式!

|x|-|y|<=|x-y|,然后逻辑方向(也就是不等式的方向)也是正确的,所以放心大胆的做吧!如此一来,我们便可以一口气做下去了。于是得到下面的解答!

|

最后需要再多说两句的就是放缩的后期有一步非常经典

注意到没有,第一步的那个等号是这道题里面最难也是最精华的部分。反用牛顿--莱布尼茨公式。成功将积分和导数联系在了一起,破解了这个看似超级复杂的证明题!

后面的就是定积分的基本性质

虽然这个式子平时看起来觉得再熟悉简单不过了,可是真正使用的时候还是不简单的。最后对这个题目打一个小结,这道题到底让我们学到了哪些知识和思想方法。

知识1:积分中值定理,在某些时候可以简化表达式

知识2:绝对值不等式以及定积分里面的绝对值不等式

知识3:牛顿--莱布尼茨公式的逆用

考察的知识不难,关键如何将这些知识串联起来,这是需要不断训练的,当然,通过平时练习多总结多思考,就是提高的最快路径了!

思想方法1:对证明的式子需要有个宏观把握,能简化的要简化,这样便于你看清楚整个题目间的关系。

思想方法2:不等式证明中间肯定有放缩,这个时候需要找出一定放缩的方法,而且更重要的是判断放缩的方向是否正确,如果正确才可继续往下做。

思想方法3:对公式的逆用。有些时候我们做题做多了,往往对有些公式只会顺着用,反过来如何用未曾或者很少想过。其实,像这种难度较大的不等式,往往有一定的思想方法在里面,通过这道题目,我们也学习到了牛顿莱布尼茨公式逆用的威力。可以联系积分与导数!总而言之,这道题目难度不小,不过也不是天马行空的,仔细琢磨,会发现里面有很多思想是值得学习借鉴的!

最后选了一道题目,供大家练习

第五篇:考研数学证明题题目11

今天还是讨论关于不等式的问题。

这次的这个不等式大家看见了一定不会陌生,因为思路很容易就拿出来了。就是转化成求一个函数的极值问题。然后解法一就诞生了。

上面的方法估计是绝大多数人都会采用的方法,算是一种通法了。也是必须得掌握的重要思想方法之一。

然而,是不是这个题目除了这种方法就没有其他的办法来做了呢?答案是否定的。

注意到需要证明的不等式可以先化成e^x>x^2-2ax+1,而左边的式子要和幂函数联系起来,很容易想到的就是马克劳林展开。于是可以尝试着看看是否能够利用这个来做。

首先可以试着将e^x展开到二阶的,然后看看是否能够证明需要的不等式。发现不行,然后再继续多展开一阶。于是,解法二横空出世。

说句实话,就这道题而言,这种方法确实挺复杂的,而且还没有求导的方法精确。不过,这种思想方法对于一些题目来说,却可能是重要的突破口!下面看看一道习题吧。

由于这道题目比较难,所以直接给出解答。

这个题目可以说相当于反用幂级数的展开,然后利用马克老林余项的估值最后证明出结论。这个看似很一般的题目,中间却蕴含着无限的思想,需要大家细细品味!

下载2013考研证明题系列-题目7word格式文档
下载2013考研证明题系列-题目7.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    考研数学证明题题目10

    今天来看看不等式的题目。不等式对于我们来说应该是再熟悉不过的了,初中的时候学过一次二次不等式,高中更是系统学习了不等式,在考研试题里面,也不乏不等式的题目。不等式的题目......

    考研证明题

    翻阅近十年的数学真题,同学可以发现:几乎每一年的试题中都会有一道证明题,而且基本上都可以用中值定理来解决,重点考察同学的逻辑推理分析能力,但是参加研究生数学考试的同学所学......

    2017考研:考研数学证明题知识点归纳

    2017考研:考研数学证明题知识点归纳 高等数学题目中比较困难的是证明题,今天凯程老师给大家整理了在整个高等数学,容易出证明题的地方。 一、数列极限的证明 数列极限的证明是......

    考研数学证明题三步走

    数学证明三步走 纵观近十年考研数学真题,大家会发现:几乎每一年的试题中都会有一个证明题,而且基本上都是应用中值定理来解决问题的。但是要参加硕士入学数学统一考试的同学所......

    2019考研数学一证明题答题技巧(模版)

    2019考研数学一证明题答题技巧 来源:智阅网 证明题是数学题型中考生比较头疼的一类。所以,咱们从基础复习开始,就需要大家多多总结,掌握方法技巧。所以,一起来看看强化阶段时,应该......

    考研数学单选题和证明题经典解题技巧

    考研数学单选题和证明题经典解题技巧到了考研复习的关键性强化和冲刺阶段。一些答题技巧性的掌握能够使我们事半功倍。下面小编为2015考生们分享单选题和证明题经典解题技巧......

    同济大学考研题目

    2005年同济大学城市规划原理试题 一、简答题(每题10分,一般不超过150字) 1、简述城市用地适应性评价与城市空间布局组织关系。 2、从体现城市土地经济价值角度简述城市用地分布......

    考研数学:单选与证明题经典解题技巧

    考研数学:单选与证明题经典解题技巧很多同学准备考研买了各种辅导机构的资料,大量练习认为这样的话一是能通过题复习知识点,还有就是期望通过题海战术能做到考试真题。这种盲目......