第一篇:高二数学正弦定理强化训练
高二数学正弦定理强化训练 9.3王平
1.在△ABC 中,b = 8,c =8,S△ABC =3,则∠A 等于()
A.30 ºB.60ºC.30º 或 150ºD.60º 或120º 2.在△ABC中,若a = 2b sin A,则∠B为()
A.π3B.π
6C.π6或5π
D.π2π
3或33、已知△ABC中,a=4,b=43,∠A=30°,则∠B等于()
A.30°B.30°或150°C.60°D.60°或120°
4、已知△ABC中,AB=6,∠A=30°,∠B=120°,则△ABC的面积为()A.9B.18C.9D.185、在△ABC中,A=60°,B=75°,a=10,则c=()A.52B.102C.63D.66、△ABC中,AB=3,AC=1,∠B=30°,则△ABC的面积等于
()
A.3
323
C.33D.2或347、若△ABC满足下列条件:
① a = 4,b 10,A 30;② a 6,b 10,A 30; ③ a 6,b 10,A 150;④ a 12,b 10,A 30; 则△ABC存在且恰有一个的是()
A.①④B.③④C.④D.②④
8、已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若a=1,b= 3,A+C=2B,则求sin A9、在△ABC中,角A,B,C所对的边分别为a,b,c.若a=2,b=2,sin B+cos B=2,则
求角A的大小
10、锐角△ABC中,若A=2B,则求a
b
第二篇:北师大版高二数学《正弦定理》教案
高中数学辅导网 http:///
第二章 解三角形
课标要求:本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
编写意图与特色
1.数学思想方法的重要性
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系
加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。
《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量京翰教育1对1家教 http:///的方法,发挥了向量方法在解决问题中的威力。
在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”
3.重视加强意识和数学实践能力
学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。
教学内容及课时安排建议
1.1正弦定理和余弦定理(约3课时)
1.2应用举例(约4课时)1.3实习作业(约1课时)
评价建议
1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。
2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的错误,解决测量中出现的一些问题。
1.1正弦定理
(一)教学目标
1.知识与技能:
通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2.过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向
量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
abc学法:引导学生首先从直角三角形中揭示边角关系:,接着就sinAsinBsinC
一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学设想
[创设情景]
如图1.1-1,固定ABC的边CB及B,使边AC绕着顶点C转动。A 思考:C的大小与它的对边AB的长度之间有怎样的数量关系?
显然,边AB的长度随着其对角C的大小的增大而增大。能否
用一个等式把这种关系精确地表示出来?[探索研究]图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角
abc三角函数中正弦函数的定义,有sinA,sinB,又sinC1, ccc
A
abc则csinsinsinabc从而在直角三角形ABC中,sinAsinBsinC
(图1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三
ab角函数的定义,有CD=asinBbsinA,则,sinAsinB
C
cb同理可得,sinCsinB
abc从而sinAsinBsinC
AcB
(图1.1-3)
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A作jAC,由向量的加法可得ABACCB
则jABj(ACCB)AB
∴jABjACjCBj
ac jABcos900A0jCBcos900C∴csinAasinC,即bc同理,过点C作jBC,可得从而a
sinAb
sinBc
sinC
类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
abc sinAsinBsinC
[理解定理]:(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使aksinA,bksinB,cksinC;
abcabcbac(2)等价于,sinAsinBsinCsinAsinBsinCsinBsinAsinC
从而知正弦定理的基本作用为: bsinA①已知三角形的任意两角及其一边可以求其他边,如a; sinB
②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]:
例1.在ABC中,已知A32.00,B81.80,a42.9cm,解三角形。
解:根据三角形内角和定理,C1800(AB)1800(32.0081.80)66.20; asinB42.9sin81.80
80.1(cm); 根据正弦定理,bsin32.0asinC42.9sin66.20
74.1(cm).根据正弦定理,csin32.0评述:对于解三角形中的复杂运算可使用计算器。
例2.在ABC中,已知a20cm,b28cm,A400,解三角形(角度精确到10,边长精确到1cm)。bsinA28sin400解:根据正弦定理,sinB0.8999.因为00<B<1800,所以B640,或B1160.asinC20sin760
30(cm).⑴ 当B64时,C180(AB)180(4064)76,csin40000000
asinC20sin240
13(cm).⑵ 当B116时,C180(AB)180(40116)24,csin40000000
评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
[随堂练习]第47页练习1、2题。
abc sinAsinBsinC
abc分析:可通过设一参数k(k>0)使k, sinAsinBsinC
abcabc证明出 sinAsinBsinsinsinsinabc解:设k(k>o)则有aksinA,bksinB,cksinC sinsinsinabcksinAksinBksinC从而==k sinAsinBsinCsinAsinBsinC
aabc2k又,所以=2 sinA
sinAsinBsinC
abcabc评述: ABC中,等式 kk0恒成立。sinAsinBsinCsinAsinBsinC
[补充练习]已知ABC中,sinA:sinB:sinC1:2:3,求a:b:c(答案:1:2:3)
[课堂小结](由学生归纳总结)
abcabc(1)定理的表示形式:kk0; sinsinsinsinsinsin例3.已知ABC中,A
600,a求
或aksinA,bksinB,cksinC(k0)
(2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角;
②已知两边和其中一边对角,求另一边的对角。
abc
(五):①课后思考题:在ABC中,k(k>o),这个k与ABCsinAsinBsinC
有什么关系?
作业:第52页[习题2.1]A组第7、4题。
第三篇:高一数学《正弦定理》教案
湖南省长沙市第一中学 数学教案 高一(下)第五章平面向量
正弦定理
教学目标
(一)知识与技能目标
(1)掌握正弦定理及其推导过程.
(2)会利用正弦定理求解简单的斜三角形边角问题.
(3)能利用计算器进行计算.
(二)过程与能力目标
(1)通过用向量的方法证明正弦定理,体现向量的工具性,加深对向量知识应用的认识.
(2)通过启发、诱导学生发现和证明正弦定理的过程,培养学生观察与分析、归纳与猜想、抽象与概括等逻辑思维能力.
(三)情感与态度目标
通过三角函数、正弦定理、向量数量积等知识间的联系来体现事物之间的普遍联系与辩证统一. 教学重点
正弦定理的证明及应用.
教学难点
(1)用向量知识证明正弦定理时的思路分析与探索.(2)正弦定理在解三角形时的应用思路.
教学过程
一、引入
解直角三角形需要用到的知识:
①三角形内角和定理: ABC180 ②锐角三角函数:
ababsinA ,cosA ,tanA ,cotA;
ccbababasinB ,cosB ,tanB ,cotB.ccab③勾股定理:abc 22
2二、新课
在直角三角形ABC中找出a, b,c与sinA, sinB, sinC之间的关系:
sinAacsinBcbsinBbcsinC1 ccsinC即:casinA
asinAbsinBcsinC 湖南省长沙市第一中学 数学教案 高一(下)第五章平面向量
证明:
证法一:
(传 统 证 法)在任意斜ABC中:SABC12absinC1212acsinB12bcsinABc
abC两边同除以asinAbsinBabc,即得:csinCA证法二:
(将角转化到直角三角形中)作ABC的外接圆O,作直径BC',连接AC',则CC',设圆O半径R,cc则:2R;sinCsinC'同理可得:asinAasinA2R,bsinBbsinB2RcsinC2RBcabC'C
A这里涉及到三角形中的边角关系,而向量中的数量积则反应了边角关系.证法三:
(向量知识来证明)过A作单位向量 j 垂直于AC
ACCBAB,两边同乘以向量j(ACCB)jAB则:jACjCBjAB j,Bcj jACcos90jCBcos(90C) jABcos(90A)asinCcsinAasinAcsinCabAC同理:若过C作j垂直于CB得: cb,sinCsinBasinAbsinBcsinCBcAajbC 当ABC为钝角三角形时,设A90,过A作单位向量j垂直于AC可证明.湖南省长沙市第一中学 数学教案 高一(下)第五章平面向量
正 弦 定 理 :
在一个三角形中,各边和它所对角的正弦csinC比相等,即:.asinAbsinB
2R(R为ABC外接圆半径)它适合于任何三角形变 式
(1)a=2RsinA, b=2RsinB, c=2RsinC;(2)sinA : sinB : sinC = a : b : c;
(3)S ABC12absinC12bcsinA 12acsinB
正弦定理可以解决三角形问题:
1.两角和任意一边,求其它两边和一角;
2.两边和其中一边对角,求另一边的对角,进而可求其它的边和角.三、应用
例 1.在ABC中,已知c10,A45, C30, 求a、b和B.例 2.已知ABC中三内角的正弦之比为 4 : 5 : 6 ,又周长为2152,求三边长.例 3.在ABC中,已知sin2A sinBsinC,求证ABC为直角三角形2.练习
教材第144页第1题. 课堂小结:
1.正弦定理及其变形公式2.利用正弦定理解决三角;
形的两类问题;
作业:
1.阅读教材139页至 144 页;
2.教材第144页习题5.9第1(1)(3)、2、5题.
第四篇:正弦定理教案
正弦定理教案
教学目标:
1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2.能力目标:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情感目标:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
教学过程:
一、复习引入
创设情境:
【师】:世界闻名的巴黎埃菲尔铁塔,比其他的建筑高出很多。如果只提供测角仪和皮尺,你能测出埃菲尔铁塔的高度吗?
【生】:可以先在离铁塔一段距离的地方测出观看铁塔的仰角,再测出与铁塔的水平距离,就可以利用三角函数测出高度。
【创设情境总结】:解决上述问题的过程中我们将距离的问题转化为角,进而转化为三角函数的问题进行计算。这个实际问题说明了三角形的边与角有紧密的联系,边和角甚至可以互相转化,这节课我们就要从正弦这个侧面来研究三角形边角的关系即正弦定理。
二、新课讲解
【师】:请同学们回忆一下,在直角三角形中各个角的正弦是怎么样表示的?
【生】:在直角三角形ABC中,sinAab,sinB,sinC1 cc
abc,c,c,也就是说在Rt△ABCsinAsinBsinC【师】:有没有一个量可以把三个式子联系起来? 【生】:边c可以把他们联系起来,即c
中abc sinAsinBsinC
【师】:对,很美、很对称的一个式子,用文字来描述就是:“在一个直角三角形中,各边与
它所对角的正弦比相等”,那么在斜三角形中,该式是否也成立呢?让我们在几何画板中验证一下,对任意的三角形ABC是不是都有“各边与它所对角的正弦比相等”成立?
【师】:通过验证我们得到,在任意的三角形中都有各个边和他所对的角的正弦值相等。
在上面这个对称的式子中涉及到了三角形三个角的正弦,因此我们把它称为正弦定理,即我们今天的课题。
【师】:直观的印象并不能代替严格的数学证明,所以,只是直观的验证是不够的,那能不
能对这个定理给出一个证明呢?
【生】:可以用三角形的面积公式对正弦定理进行证明:S1111absinCacsinBbcsinA,然后三个式子同时处以abc就可以得222
2到正弦定理了。
【师】:这是一种很好的证明方法,能不能用之前学过的向量来证明呢?答案是肯定的。怎
么样利用向量只是来证明正弦定理呢?大家观察,这个式子涉及到的是边和角,即向量的模和夹角之间的关系。哪一种运算同时涉及到向量的夹角和模呢?
(板书:证法二,向量法)
【生】:向量的数量积ababcos
【师】:先在锐角三角形中讨论一下,如果把三角形的三边看做向量的话,则容易得到三角
形的三个边向量满足的关系:ABBCAC,那么,和哪个向量做数量积呢?还
有数量积公式中提到的是夹角的余弦,而我们要得是夹角的正弦,这个又怎么转化?(启发学生得出通过做点A的垂线根据诱导公式来得到)
【生】:做A点的垂线
【师】:那是那条线的垂线呢?
【生】:AC的垂线
【师】:如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式子的两边同时做数
cos(90A)cos(90C)cos90,化简000
即可得到csinAasinC,即acbc,同理可以得到。即在sinAsinCsinBsinC
锐角三角形ABC中有每条边和它所对的角的正弦值相等这个结论。
【师】:如果△ABC是钝角三角形呢?又怎么样得到正弦定理的证明呢?不妨假设∠A是钝
角,那么同样道理如果我们做AC垂线上的一个单位向量j,把向量j和上面那个式
子ABBCAC的两边同时做数量积运算就可以得到
00jABcos(C90)jBCcos(90C)jACcos900,化简即可得到csinAasinC,即acbc,同理可以得到。即在钝角三角sinAsinCsinBsinC
形ABC中也有每条边和它所对的角的正弦值相等这个结论。
【师】:经过上面的证明,我们用两种方法得到了正弦定理的证明,并且得到了正弦定理对
于直角、锐角、钝角三角形都是成立的。
【师】:大家观察一下正弦定理的这个式子,它是一个比例式。对于一个比例式来说,如果
我们知道其中的三项,那么就可以根据比例的运算性质得到第四项。因此正弦定理的应用主要有哪些呢?
【生】:已知三角形的两边一其中一边的对角求另外一边的对角,或者两角一边求出另外一
边。
【师】:其实大家如果联系三角形的内角和公式的话,其实只要有上面的任意一个条件,我们都可以解出三角形中所有的未知边和角。下面我们来看正弦定理的一些应用。
三、例题解析
【例1】优化P101例
1分析:直接代入正弦定理中运算即可
absinAsinB
csinA10sin45
asinCsin30
bcsinBsinC
B180(AC)180(4530)105
csinB10sin105b205sinCsin30总结:本道例题给出了解三角形的第一类问题(已知两角和一边,求另外两边和一
角,因为两个角都是确定的的,所以只有一种情况)
【课堂练习1】教材P144练习1(可以让学生上台板演)
【随堂检测】见幻灯片
四、课堂小结
【师】:本节课的主要内容是正弦定理,即三角形ABC中有每条边和它所对的角的正弦值相等。写成数学式子就是abc。并且一起研究了他的证明方法,利用它解决sinAsinBsinC
了一些解三角形问题。对于正弦定理的证明主,要有面积法和向量法,其实对于正弦定理的证明,还有很多别的方法,有兴趣的同学下去之后可以自己去了解一下。
五、作业布置
世纪金榜P86自测自评、例
1、例
2板书设计:
六、教学反思
第五篇:正弦定理证明
新课标必修数学5“解三角形”内容分析及教学建议
江苏省锡山高级中学杨志文
新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。
一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较
1.课程内容安排上的变化
“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。
2.教学要求的变化
原大纲对“解斜三角形”的教学要求是:
(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。
(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。
(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。《标准》对“解三角形”的教学要求是:
(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。
3、课程关注点的变化
原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。
4、内容处理上的变化
原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。
二、教学中应注意的几个问题及教学建议
原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。
1.要重视探究和推理
《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。
参考案例:正弦定理的探索、发现与证明
教学建议:建议按如下步骤设计教学过程:
(1)从特殊三角形入手进行发现
让学生观察并测量一个三角板的边长。
提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?
例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,58.610,101010 000
sin30sin60sin90
abc
对于特殊三角形,我们发现规律:。
sinAsinBsinC
则有:
提出问题:上述规律,对任意三角形成立吗?(2)实验,探索规律
二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,忽略测量误差,通过实验,对任意三角形,有结论:
abc,即在一个三角形中,
sinAsinBsinC
各边和它所对的角的正弦的比相等。
提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?
(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A,向
量j
与向量CB的夹角为900-C,(如图1),且有:ACCBAB,所以j·(+)= j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)
ac
。
sinAsinC
cbabc
同理,过点C做单位向量j垂直于,可得:,故有。
sinCsinBsinAsinBsinC
③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与
则得 a sinC = c sinA,即
向量AB的夹角为A-900,向量j与向量的夹角为900-C,且有:,同样可证得:
abc
。
sinAsinB
提出问题:你还能利用其他方法证明吗?
方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。
2.要重视综合应用
《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:
参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135.求BC的长.教学建议:
引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将
A B
四边形问题转化为三角形问题,选择余弦定理求BD,再由正弦定理
例2图 求BC。
3.要重视实际应用
《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。
参考案例:解三角形在实际中的应用
参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与
乙船相遇?
教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇,构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。
答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点
例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E
者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为
解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已
知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.4.要重视研究性学习
解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习
课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.
教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。
参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB
平行。从图形的特点来看,涉及到线段的长度和角度,将
这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.
NBB
PO图(2)
QM
O图(1)
按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:
时,Smax200.
4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:
sin120
又MN2OMsin(60)40sin(60),MQ
20sin
3sin. 3
MP20sin,OP20cos,从而S400sincos200sin2.即当
∴SMQMN
sinsin(60)cos(260)cos60. 33
∴当30时,Smax由于
400. 3
400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33
也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。
参考文献:
①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。
②《普通高中数学课程标准(实验))》。人民教育出版社。2003年4月第一次印刷。③《普通高中数学课程标准(实验)解读》。严士健 张奠宙王尚志等主编。江苏教育出版社。2004年4月。