第一篇:平行线的性质及证明 2
龙华中英文实验学校2013年七(下)初中数学学案(24)班级学生姓名:日期:月日星期()
课题:平行线的性质1课型:新授课
【学习目标】掌握平行线的性质,并能解决一些问题
【学习任务】
环节一:课前完成:(8分钟讲评核对答案,按小组完成情况 加2-5分)
1、已知:如图
(1)∠3=∠B,则EF∥AB,依据是
(2)∠2+∠A=180°,则DC∥AB,依据
(3)∠1=∠4,则GC∥EF,依据是
(4)GC ∥ EF,AB ∥ EF,则GC∥AB,依据
环节二:实践探究(15分钟以内完成,按坐姿,参与度回答问题加2分)根据同位角相等可以判定两直线平行,反过来如果两直线平行同位角之间有什么关系呢?内错角,同旁内角之间又有什么关系呢?猜想一下?然后完成下面的探究:
(一)探究
1已知:如图直线l1∥l2,直线l3、l4与它们相交,请度量∠1和∠2的大小,你能发现
再度量一下∠3和∠4的大小,你还能发现
如果两直线不平行,上述结论还成立吗?
1、结论:平行线的性质1:
(二)、探究
21.如图,已知:a// b那么3与2有什么关系
∵a∥b()
∴ ∠1= ∠2(),又 ∵∠3 = ___(对顶角相等),∴∠ 2 = ∠3.()
结论:平行的性质2:
2.如图:已知a//b,那么2与 3有什么关系呢?(请你按照上一题完成平行性质3 的推理过程)
结论:平行的性质3:环节三:【课堂检测】(按合作学习效果和准确率 加3-5分20分钟)
1、如图,已知平行线AB、CD被直线AE所截
(1)从 ∠1=110 ゜ 可以知道 ∠2 是多少度?为什么?
(2)从 ∠1=110 ゜ 可以知道 ∠3是多少度?为什么?
(3)从 ∠1=110 ゜ 可以知道 ∠4 是多少度?为什么?
2、如图,一条公路两次拐弯前后两条路互相平行。第一次拐的角∠B是142゜,第二次拐的角∠C是多少度?为什么?
3、如图: ∵AB ∥CD(已知)
∴ ∠1= ∠3()又∵∠3= ∠2()∴∠1= ∠2()
又∵∠4+ ∠2 =180 ゜()∴ ∠1+ ∠4 =180 ゜(环节四:课堂小结(2分钟,小组回答、坐姿加2分)整理归纳:平行线的性质:符合语言 :
⑴∵a∥b(已知)
∴ ∠1=∠2()⑵∵a∥b(已知)
∴ ∠1=∠3()⑶∵a∥b(已知)
∴ ∠1+∠4=180°()
龙华中英文实验学校2013年七(下)初中数学学案(25)
班级学生姓名:日期:月日星期()
课题:平行线的判定与性质综合1课型:新授课
【学习目标】1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.2.能够综合运用平行线性质和判定解题.【学习任务】
目标一:巩固复习:(8分钟讲评核对答案,按完成情况加3-5分)
一、复习提问
1、平行线的性质有哪些?
2、平行线的判定有哪些?
3、平行线的性质与判定的区别与联系
(1)区别:性质是:根据两条直线平行,去证角的相等或互补.
判定是:根据两角相等或互补,去证两条直线平行.
(2)联系:它们都是以两条直线被第三条直线所截为前提;
它们的条件和结论是互逆的。
(3)总结:已知平行用性质,要证平行用判定
二、.已知,如右图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°。
(1)∵∠1=∠ABC(已知)
∴AD∥()(2)∵∠3=∠5(已知)
∴AB∥()(3)∵∠2=∠4(已知)
∴∥()(4)∵∠1=∠ADC(已知)
∴∥()(5)∵∠ABC+∠BCD=180°(已知)
∴∥()
目标二:精典例题解析(10分钟,按坐姿,参与度,认真度 加2-3分)例:如图,已知:AD∥BC, ∠AEF=∠B,求证:AD∥EF。
1、分析:
(执果索因)从图直观分析,欲证AD∥EF,只需
∠A+∠AEF=180°,(由因求果)因为AD∥BC,所以∠A+∠B=180°,又
∠B=∠AEF,所以∠
A+∠AEF=180°成立.于是得证
2、证明:∵ AD ∥BC(已知)
∴∠A+∠B=180°(∵ ∠AEF=∠B(已知)∴ ∠A+∠AEF=180°(等量代换)∴ AD∥EF()目标三:【课堂检测】(按合作学习效果和准确率 加扣分25分钟)
1、如图: ∵AB ∥CD(已知)
∴ ∠1= ∠3()又∵∠3= ∠2()∴∠1= ∠2()
又∵∠4+ ∠2 =180 ゜()∴ ∠1+ ∠4 =180 ゜(2、如图:已知 1= 2 求证: BCD+ D=180 证明:如图
∵1= 2(已知)∴AD∥
_____()∵AD ∥_____(已证)
∴ BCD+ D=180()
3、如图,BE∥CD,CE,试说明AADE 推理过程:∵BE∥CD()
∴C()∵CE(已知)
∴E()∴BC∥()目标四:课堂小结(2分钟)
平行线的判定是:已知角的关系,结论是两直线平行。平行线的性质是:已知两直线平行,结论是角的关系。
角的关系 ====平行线
性质 判定
E
1B
C
第二篇:证明、公理、平行线性质定理
证明的必要性、公理与定理、平行线的判定(公)定理、平行线的性质(公)定理
基础知识1.证明:
2.公理:3.定理:
4.等量代换:公理:
5.平行线的判定定理:定理:公理
6.平行线的性质定理定理:基础习题 1.下列说法正确的是()
A.所有的定义都是命题B.所有的定理都是命题
C.所有的公理都是命题D.所有的命题都是定理 22.若P(P5)是一个质数,而P1除以24没有余数,则这种情况()
A.绝不可能B.只是有时可能
C.总是可能D.只有当P=5时可能
3.下列关于两直线平行的叙述不正确的是()
A.同位角相等,两直线平行;B.内错角相等,两直线平行毛
C.同旁内角不互补,两直线不平行;D.如果a∥b,b⊥c,那么a∥c 14.如左图,下列说法错误的是()lllll3A、∵∠1=∠2,∴3∥4B、∵∠3=∠4,∴3∥4 lllll4C、∵∠1=∠3,∴3∥4D、∵∠2=∠3,∴1∥2 ll55.已知:如图,下列条件中,不能判断直线1∥2的()l1A、∠1=∠3B、∠2=∠
3C、∠2=∠4D、∠4+∠5=180 6.若两条平行线被第三条直线所截,则下列说法错误的()l
2A、一对同位角的平分线互相平行B、一对内错角的平分线互相平行
C、一对同旁内角的平分线互相平行D、一对同旁内角的平分线互相垂直
7.如图,AB∥CD,∠α=()BAA、50°B、80°C、85°D、95° C8.已知∠A=50°,∠A的两边分别平行于∠B的两边,则∠B=()AB
A、50°B、130°C、100°D、50°或130° 9.如图,AB∥CD,AD、BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()A、31°B、35° C、41°D、76°
填空
10.如图,(1)如果AB∥CD,必须具备条件∠______=∠________,D根据是____________________。(2)要使AD∥BC,必须具备条件∠______=∠________,根据是
4____________________。B
11.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是________。
D12.如图,已知∠1=30°,∠B=60°,AB⊥AC。(1)计算:∠DAB+∠B=
(2)AB与CD平行吗?()AD与BC平行吗?()B
简答题:
13.如图,已知∠ADE=60°,DF平分∠ADE,∠1=30°,求证:DF∥BE 证明:∵DF平分∠ADE(已知)A 1∴________=∠ADE()
2∵∠ADE=60°(已知)D∴_________________=30°()
∵∠1=30°(已知)
∴____________________()BC∴____________________()
14.已知:如图,∠B=∠C.(1)若AD∥BC,求证:AD平分∠EAC;
(2)AD平分∠EAC,求证:AD∥BC.15、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.能力提升
16.(1)如图(1),AB∥EF.求证:(1)∠BCF=∠B+∠F.(2)当点C在直线BF的右侧时,如
图(2),若AB∥EF,则∠BCF与∠B,∠F的关系如何?请说明理由.D
BC
第三篇:平行线性质
平行线性质
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
平行线的性质
1.两直线平行,同位角相等。
2.两直线平行,内错角相等。
3.两直线平行,同旁内角互补。
4.在同一平面内的两线平行并且不在一条直线上的直线。
有关平行线:
1.平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
如:AB平行于CD,写作AB∥CD
2.平行公理:过直线外一点有且只有一条直线与已知直线平行。
3.平行公理的推论(平行的传递性):
平行同一直线的两直线平行。
∵a∥c,c∥b
∴a∥b
平行线的判定:
1.两条直线被第三条所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
2.两条直线被第三条所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
3.两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
平行线的性质:1.两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等。
2.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补。
3.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等。
两个角的数量关系两直线的位置关系:
垂直于同一直线的两条直线互相平行。
平行线间的距离,处处相等。
如果两个角的两边分别平行,那么这两个角相等或互补。
基本规律
1.平行线的性质和判定中的条件和结论恰好相反。
2.两条平行线的距离是指垂直线段的长度,两条平行线间的距离处处相等。
3.命题必须是一个完整的句子,而且这个句子必须对某件事作出判断。
第四篇:平行线性质
《平行线的性质》教学设计
作者: 来源: 时间:2009-5-18 10:19:16 阅读47次 【大 中 小】
一、教学目标
1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。
2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。
4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。
为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。
二、教学重点和难点
重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。
难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。
三、教材分析
平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。
教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。
因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。
四、学生情况分析
考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛
五、课前准备
课前准备:多媒体课件、三角尺、直尺。
六、教学过程
问题与情境
师生互动
设计意图
活动1 你身边的问题
问题: 如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的方向。
学生观察,小组讨论,交流问题并发表见解, 教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。
本次活动应关注的问题是:
1、不改变方向,在数学中理解应是什么,2、在这个问题中包含了什么问题
3、如何将它转化为数学问题。
通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起, 活动2: 探究平行线的性质
问题:
1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?
2、自己阅读课本的21页“探究”部分,并把空填好。
用电脑展示在画平行线时三角尺在其中取到的作用。
学生通过学习测量比较得到这些角中上下两个角的关系, 关注的问题是:
1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。
2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。
通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。
活动3: 运用与推理
问题: 你能根据性质1,说出性质2,性质3成立的理由吗?如图, 因为a∥b.所以∠1=∠2(_______)又∠3=∠_____,(对顶角相等)所以∠2=∠3, 类似地,对于性质3,你能说出道理吗? 想一想:这节课开始的那个问题应该如何解决? 学生回答,再由同学补充。老师纠正。
教师引导学生观察因为所以之间的关系。
能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。
活动4 巩固与提高
问题1:如图直线a,b被直线c所截 ,1、如果a∥b ,∠1=60?那么∠2,∠3,∠4为多少度。为什么?
2、如果∠1=60?∠3=120?直线a、b有什么关系?为什么? 问题2:∠1=100?∠5=100?∠2=60?那么∠
4、∠3为多少度? 解:因为∠1=100?∠5=100?BR> 所以∠1=∠____()所以 _____∥_______(), 又因为 ∠2 =60?()所以 ∠4=∠______=______()又因为 ∠4与∠3________()所以 ∠3=180?_____=______?BR> 问题3:填一填
如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC ∠BCD=180?(1)因为∠1=∠ABC, 所以 AD∥_____()(2)因为 ∠3=∠5 所以 AB∥_____()(3)因为∠2=∠4 所以 ______∥______()(4)因为∠1=∠ADC 所以______∥______()(5)因为∠ABC ∠BCD=180 所以 _______∥______()问题4,学与用: 某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100?为了便于连接,那么另一侧应以什么角度铺设?为什么? 小结: 布置作业
课本25页的第1、2、3题
由学生独立完成,老师指导,引导学生注意这些之间的关系。
应关注的问题是:
1、平行线的性质和判定的不同。
2、几何推理证明的要领。
3、正确分清推理中因为和所以所表达的意义
通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力
第五篇:平行线性质
孔子教育文化辅导学校
5.3平行线的性质
【知识点】
平行线具有性质:
性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
【典型例题】
1、如图,已知a∥b,c、d都是a、b的截线,∠1=80°,∠5=70°,∠
2、∠
3、∠4各是多少度?为什么? c
a
b12345d
(2)已知:AB∥EF,∠F=78°时,∠
3、∠4各等于多少度?为什么?
A
E12BCD34F3、如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行,第一次拐的角
∠B是142°,第二次拐的角∠C是多少度?为什么?
C4、如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,你能算出
∠EAD、∠DAC、∠C的度数吗?
EB
AD
BC
5、如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B′有什么关系?为什么?
A
A′
BD C
C′B′
【模拟试题】
一、选择题
(1)两直线被第三条直线所截,则()
A、同位角相等B、内错角相等 C、同旁内角互补D、以上都不对
(2)如果一个角的两边分别平行于另一个角的两边,则这两个角()
(第1页,共4页)
A、相等B、互补C、相等或互补D、这两个角无数量关系(3)如图,下列判断不正确的是()A、∵∠1=∠2∴ ∠ 3= ∠ 4B、∵∠2=∠5 ∴ ∠ 6= ∠ 7
C、∵∠ 5+ ∠ 8=1800 ∴ ∠1=∠2D、∵∠ 3+ ∠ 4=1800 ∴ ∠1=∠2
4.如图a所示,AB∥CD,则与∠1相等的角(∠1除外)共有()
A.5个B.4个C.3个D.2个
AC
B
D
A
ACEDFB
D
(a)(b)(c)
5.如图b所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于()A.78°B.90°C.88°D.92°
6.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;
④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④
7.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交
8.如图c所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°9.如图d所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
D
EF
B
F
E
G
(d)(e)
10.如图e所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个
二、填空
1.如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =. 2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =.C F 1 BB ED DF
B C A B D
图1 图2(第2页,共4页)图图
33.如图3所示
(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠= 180°,则AE∥BF. 4.如图4,AB∥CD,∠2 = 2∠1,则∠2 =.
5.如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =.
E C
l
1AF 2 B F G
l2D
F D C C A G
图7 图8 图6图
56.如图6,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =. 7.如图7,AB∥CD,AC⊥BC,图中与∠CAB互余的角有. 8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个.
三、解答下列各题
9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.A CF
D
图9 10.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
E
B C
图10
11.如图11,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)
BE
C D
12.如图12,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°.图 1
1求证:(1)AB∥CD;(2)∠2 +∠3 = 90°.
B A
D C F
四、探索发现:
(第3页,共4页)
图1
2如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP
B
A
PC
D
B
AC
PBD
AC
P
BD
(1)(2)(3)(4)
五、中考题与竞赛题:
1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.AC
E
B
A
D
E
BD
C
(a)(b)
2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE=________.(第4页,共4页)