《垂直关系证明》专题

时间:2019-05-12 17:22:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《垂直关系证明》专题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《垂直关系证明》专题》。

第一篇:《垂直关系证明》专题

《垂直关系》

1、如图1,在正方体ABCDA1B1C1D1中,M为CC1 的中点,AC交BD于点O,求证:AO

平面MBD.

1例

2、如图2,P是△ABC所在平面外的一点,且PA⊥平面ABC,平面PAC⊥平面PBC.

求证:BC⊥平面PAC.

SA⊥平面ABCD,例

3、如图1所示,ABCD为正方形,过A且垂直于SC的平面分别交SB,SC,SD于E,F,G.

求证:AESB,AGSD.

4、如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.

5、如图3,AB是圆O的直径,C是圆周上一点,PA平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.

6、如图9—40,在三棱锥S—ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC

图9—40

7、如图9—41,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD=a,M、N分别是AB、PC的中点.求证:平面MND⊥平面PCD

8、如图9—42,正方体ABCD—A1B1C1D1中,E、F、M、N分别是A1B1、BC、C1D1、B1C1的中点.求证:平面MNF⊥平面ENF.

图9—

42《垂直关系》专题练习

1、如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;

2、如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.3、已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.

4、如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.求证:NP⊥平面ABCD.5、如图,在正方体ABCD-A1B1C1D1 中.求证:平面ACD1 ⊥平面BB1D1D

DA

1DA

C1

C6、如图9—45,四棱锥P—ABCD的底面是边长为a的正方形,PA⊥底面ABCD,E为AB的中点,且PA=AB.求证:平面PCE⊥平面PCD

图9—457、如图,三棱锥PABC中,PA⊥平面ABC,平面PAC⊥平面PBC.问△ABC是否为直角三角形,若是,请给出证明;若不是,请举出反例.BA

C

第二篇:证明垂直位置关系

第五课时学案垂直的证明方法

命题预测

从近几年的高考试题来看,线面垂直的判定与性质、面面垂直的判定与性质等是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高.客观题突出“小而巧”,主要考查垂直的判定及性质;主观题考查较全面,在考查上述知识的同时,还注重考查空间想象、逻辑推理以及分析问题、解决问题的能力.

预测2013年高考仍将以线面垂直、面面垂直为主要考查点,重点考查学生的空间想象以及逻辑推理能力.

考点1 直线与平面垂直的判定与性质

1、(08天津)如图,在四棱锥PABCD中,底面ABCD是矩形. 已知AB3,AD2,PA2,PD22,PAB60.(Ⅰ)证明AD平面PAB;

(Ⅱ)求异面直线PC与AD所成的角的大小;(Ⅲ)求二面角PBDA的大小.

变式1:如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.求证:(1)MD∥平面APC;(2)BC⊥平面APC.变式2:(12全国理)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;

(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.变式3:(06福建)如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD

(I)求证:AO平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。

B

E

变式4:(11大纲理)如图,四棱锥SABCD中,ABCD,BCCD,侧面SAB为等边三角形,ABBC2,CDSD1.

(Ⅰ)证明:SD平面SAB;(Ⅱ)求AB与平面SBC所成角的大小.

2、(08二)如图,正四棱柱ABCDA1B1C1D1中,AA12AB4,点E在CC1上

AC

1且C1E3EC.(Ⅰ)证明:A1C平面BED;(Ⅱ)求二面角A1DEB的大小.EC

3、(04湖北)在棱长为1的正方体ABCD-A1B1C1D1中,E 是棱BC的中点,点F是棱CD上的动点。(1)试确定点F的位置,使得D1E⊥平面AB1F;

(2)当D1E⊥平面AB1F时,求二面角C1―EF―A的大小。

4、(12北京理)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(I)求证:A1C⊥平面BCDE;

(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

(Ⅰ)证明:面PAD⊥面PCD;

考点2平面与平面垂直的判定与性质

1、(2011〃高考江苏卷)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD

变式1:如图,在直三棱柱:ABC-A1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点.(1)求证:B1C∥平面A1BD;

(2)求证:平面A1BD⊥平面ACC1A1;(3)求三棱锥A-A1BD的体积.

变式2:(08湖南)如图,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.(Ⅰ)证明:平面PBE⊥平面PAB;

(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.变式3:(09北京)如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上.(Ⅰ)求证:平面AEC平面PDB;

(Ⅱ)当PD

且E为PB的中点时,求AE与平面PDB所成的角的大小.变式4:(05)已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,DAB90,PA底面ABCD,且PA=AD=DC=

2AB=1,M是PB的中点。

(Ⅱ)求AC与PB所成的角;

(Ⅲ)求面AMC与面BMC所成二面角的大小。

2、(12高考江苏)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且ADDE,F为B1C1的中点. 求证:(1)平面ADE平面BCC1B1;(2)直线A1F//平面ADE.

变式:(11辽宁理)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.(I)证明:平面PQC⊥平面DCQ;(II)求二面角Q—BP—C的余弦值.

3、如图,四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)求证:AD⊥PB;(2)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD?并证明你的结论.

第三篇:高考复习专题---立体几何垂直关系证明

5.(2006年福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD(I)求证:AO平面BCD;

BE

4.(2006年湖南卷)如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.(Ⅰ)证明PQ⊥平面ABCD;

B

14.(福建19)(本小题满分12分)

如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(Ⅰ)求证:PO⊥平面ABCD;

20.(全国Ⅱ20)(本小题满分12分)

如图,正四棱柱ABCDA1B1C1D1中,AA12AB4,点E在CC1上且C1E3EC.

平面BED;(Ⅰ)证明:AC

1DA1

A

10.如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ

E C 

0。

2

(Ⅰ)求证:平面VAB⊥平面VCD;

26.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,BAC90,A1A平面ABC,A1AABAC2AC112,D为BC中点.(Ⅰ)证明:平面A1AD平面BCC1B1;

A1 B1

C1

A

3.(2006年浙江卷)如图,在四棱锥P-ABCD中,底面

为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(Ⅰ)求证:PB⊥DM;

1.(2006年北京卷)如图,在底面为平行四边表的四棱锥PABCD中,ABAC,PA平面ABCD,且PAAB,点E是PD的中点.(Ⅰ)求证:ACPB;(Ⅱ)求证:PB//平面AEC12.(天津•理•19题)如图,在四棱锥PABCD中,PA,ACCD,ABC60°,底面ABC,ABADP

B

C

PAABBC,E是PC的中点.

(Ⅰ)证明CDAE;

(Ⅱ)证明PD平面ABE;

A

B

D

第四篇:怎么证明垂直

怎么证明垂直

1、利用勾股定理的逆定理证明

勾股定理的逆定理提供了用计算方法证明两线垂直的方法,即证明三角形其中一个角等于,由于利用代数的方法,只要能计算出待证直角的对边的平方和等于另两边的平方和即可。

2、利用“三线合一”证明

要证二线垂直,若能证二线之一是等腰三角形的底边,另一线是等腰三角形顶角的平分线或底边上的中线,则二线互相垂直。

3、利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

4、圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

5、利用菱形的对角线互相垂直证明

菱形的对角线互相垂直。

6、利用全等三角形证明

主要是找出两线所成的角中有两角是邻补角,并且证明这两角相等,于是就可知这两角都为,从而直线垂直.赞同

5|评论

1利用直角三角形中两锐角互余证明

由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。

2勾股定理逆定理

3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。

二、高中部分

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

2高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):

Ⅰ.平行关系:

线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。

线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。

面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

Ⅱ.垂直关系:

线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。

线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。

面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直

线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。

1向量法两条直线的方向向量数量积为0

2斜率两条直线斜率积为-1

3线面垂直,则这条直线垂直于该平面内的所有直线

一条直线垂直于三角形的两边,那么它也垂直于另外一边

4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。

5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。

3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑):。

第五篇:垂直关系小结

课题:垂直关系小结

一、学习目标:

1.掌握三种垂直关系的互相转化。2.会求有关距离的问题。

二、重点:三种垂直关系的转化。

难点:如何求距离(点到面、线到面、面到面)。

三、复习引入:

1.证明线线垂直的方法:

2.证明线面垂直的方法:

3.证明面面垂直的方法:

4.点到面、线到面、面到面的距离分别指什么?

四、导思探究。

1.三种垂直关系之间的转化:线面垂直

线线垂直面面垂直

2.求距离的方法有哪些?

① 作出垂线段,并放在直角三角形中计算; ② 在三棱锥中可以用等体积求距离。

五、导练展示:

例1.已知矩形ABCD,过A作SA平面AC,再过A作AE

SB于E,过E作EFSC于F ① 求证AFSC

② 若平面AEF交SD于G,求证AG SD

例2.在正方体ABCDA1B1C1D1中,底面边长为2,则点A1到截面AB1D1的距离为

六、达标检测:

1.如图,在四棱锥P-ABCD中,PA底面ABCD,ABAD,ACCD,∠ABC=60°,PA=AB=BC,E是PC的中点。⑴证明:CDAE

⑵证明:PD平面ABE

2.在三棱锥A-BCD中,AC底面BCD,BDDC,BD=DC,AC=a,∠ABC=30°,则点C到平面ABD的距离是

七、反思小结:

下载《垂直关系证明》专题word格式文档
下载《垂直关系证明》专题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    如何证明面面垂直

    如何证明面面垂直设p是三角形ABC所在平面外的一点,p到A,B,C三点的距离相等,角BAC为直角,求证:平面pCB垂直平面ABC过p作pQ⊥面ABC于Q,则Q为p在面ABC的投影,因为p到A,B,C的距离相等,所......

    立体几何垂直证明范文

    立体几何专题----垂直证明学习内容:线面垂直面面垂直立体几何中证明线面垂直或面面垂直都可转化为 线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等......

    证明垂直习题

    线面、面面垂直的判定及性质一、选择题1、已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线. ②一个平面内的已知直线必垂直于另一个平面的......

    怎么证明面面垂直

    怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的......

    证明平行与垂直

    §9.8 立体几何中的向量方法Ⅰ——证明平行与垂直(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1. 已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)若aa分别与AB,AC垂直,则向量a为A.1......

    证明两条直线垂直

    证明两条直线垂直根据定义推线线垂直←→线面垂直←→面面垂直线线平行←→线面平行←→面面平行就这样还是得实际操作1利用直角三角形中两锐角互余证明由直角三角形的定义......

    面面垂直证明例题(最终定稿)

    数学面面垂直例题例4答案:例8答案:取AC的中点为O,连接OP、OB。 AO=OC,PA=PC,故PO垂直AC......

    怎样证明面面垂直

    怎样证明面面垂直如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理)为方便,下面#后的代表向量。#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.对角线的点积:#AC·......