第一篇:怎样证明弦切角
怎样证明弦切角
设圆心为O,连接OC,OB,OA。过点A作Tp的平行线交BC于D,则∠TCB=∠CDA
∵∠TCB=90-∠OCD
∵∠BOC=180-2∠OCD
∴,∠BOC=2∠TCB(弦切角的度数等于它所夹的弧的圆心角的度数的一半)
∵∠BOC=2∠CAB
∴∠TCB=∠CAB(弦切角的度数等于它所夹的弧的圆周角)
2接OBOC过O做OE⊥BC
所以∠A=1/
2又因为∠OCT=90°
∠OEC=90°
所以∠EOC=∠TCB
所以∠TCB=∠A
3温馨提示
设切点为A切线AB弦AC圆心为O过A作直径AD连OC
角CAB等于90度减角DAC
因为OA等于OC所以角AOC等于180度减去二倍的角DAC
即可证明角AOC等于二倍的角CAB
参考资料:弦切角是这弦所对的圆心角的一半
4线段AD与线段EF互相垂直平分。
证明:设AD交EF于点G.因为Ap为切线,所以弦切角等于所对的圆周角,即∠pAC=∠B,又因为AD平分∠BAC,所以∠DAC=∠BAD,从而∠pAC+∠DAC=∠B+∠BAD,而∠pAC+∠DAC=∠pAD,∠B+∠BAD=∠pDA,所以
∠pAD=∠pDA,则△pAD为等腰三角形,因pM平分∠ApD,所以pM垂直平分AD,则EF垂直平分AD,从而AD垂直EF,则∠AGE=∠AGF=90°,再由∠GAF=∠GAE,得到
△EAG≌△FAG,从而EG=FG,从而AD也垂直平分EF。
5(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA
∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E
那么,连接EC、ED、EA
则有:∠CED=∠CAD、∠DEA=∠DAB
∴∠CEA=∠CAB
∴(弦切角定理)
(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D
那么∠CDA+∠CAD=∠CAB+∠CAD=90
∴∠CDA=∠CAB
∴(弦切角定理)
编辑本段弦切角推论
推论内容
若两弦切角所夹的弧相等,则这两个弦切角也相等
应用举例
例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.解:连结OA,OB.∵在Rt△ABC中,∠C=90
∴∠BAC=30°
∴BC=1/2a(RT△中30°角所对边等于斜边的一半)
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC
∠EFD=∠BAD
∠EFD=∠DAC
⊙O切BC于D∠FDC=∠DAC
∠EFD=∠FDC
EF∥BC
第二篇:弦切角的逆定理的证明
弦切角逆定理证明
已知角CAE=角ABC,求证AE是圆O的切线
证明:连接AO并延长交圆O于D,连接CD,则角ADC=角ABC=角CAE
而AD是直径,因此角ACD=90度,所以角DAC=90度-角ADC=90度-角CAE
所以角DAE=角DAC+角CAE=90度
故AE为切线
第三篇:弦切角定理证明方法
弦切角定理证明方法
(1)连OC、OA,则有OC⊥CD于点C。得OC‖AD,知∠OCA=∠CAD。
而∠OCA=∠OAC,得∠CAD=∠OAC。进而有∠OAC=∠BAC。
由此可知,0A与AB重合,即AB为⊙O的直径。
(2)连接BC,且作CE⊥AB于点E。立即可得△ABC为Rt△,且∠ACB=Rt∠。
由射影定理有AC²=AE*AB。又∠CAD=∠CAE,AC公用,∠CDA=∠CEA,得△CEA≌△CDA,有AD=AE,所以,AC²=AB*AD。
第一题重新证明如下:
首先证明弦切角定理,即有∠ACD=∠CBA。
连接OA、OC、BC,则有
∠ACD+∠ACO=90°
=(1/2)(∠ACO+∠CAO+∠AOC)
=(1/2)(2∠ACO+∠AOC)
=∠ACO+(1/2)∠AOC,所以∠ACD=(1/2)∠AOC,而∠CBA=(1/2)∠AOC(同弧上的圆周角等于圆心角的一半),得∠ACD=∠CBA。
另外,∠ACD+∠CAD=90°,∠CAD=∠CAB,所以有∠CAB+∠CBA=90°,得∠BCA=90°,进而AB为⊙O的直径。
2证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90-∠OCB
∵∠BOC=180-2∠OCB
∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)
∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)
∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)
证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)
证明:分三种情况:
(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA
∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E
那么,连接EC、ED、EA
则有:∠CED=∠CAD、∠DEA=∠DAB
∴∠CEA=∠CAB
∴(弦切角定理)
(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D
那么∠CDA+∠CAD=∠CAB+∠CAD=90
∴∠CDA=∠CAB
∴(弦切角定理)
编辑本段弦切角推论
推论内容
若两弦切角所夹的弧相等,则这两个弦切角也相等
应用举例
例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.解:连结OA,OB.∵在Rt△ABC中,∠C=90
∴∠BAC=30°
∴BC=1/2a(RT△中30°角所对边等于斜边的一半)
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC
∠EFD=∠BAD
∠EFD=∠DAC
⊙O切BC于D∠FDC=∠DAC
∠EFD=∠FDC
EF∥BC
例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径
∴∠ACB=90
∵CD⊥AB
∴∠ACD=∠B,∵MN切⊙O于C
∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.
第四篇:弦切角定理的证明
弦切角定理的证明
弦切角定理:定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.(弦切角就是切线与弦所夹的角)弦切角定理证明
证明:设圆心为O,连接OC,OB,OA。过点A作Tp的平行线交BC于D,则∠TCB=∠CDA
∵∠TCB=90-∠OCD
∵∠BOC=180-2∠OCD
∴,∠BOC=2∠TCB
证明:分三种情况:
(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA
∵为半圆,(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,那么
.(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D
那么
2连接并延长TO交圆O于点D,连接BD因为TD为切线,所以TD垂直TC,所以角BTC+角DTB=90因为TD为直径,所以角BDT+角DTB=90所以角BTC=角BDT=角A
3编辑本段弦切角定义顶点在圆上,一边和圆相交,另图示一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)如右图所示,直线pT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠pCA,∠pCB都为弦切角。编辑本段弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明:证明一:设圆心为O,连接OC,OB,。∵∠TCB=90-∠OCB∵∠BOC=180-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角B点应在A点左侧(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90∴∠CDA=∠CAB∴(弦切角定理)编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.解:连结OA,OB.∵在Rt△ABC中,∠C=90∴∠BAC=30°∴BC=1/2a(RT△中30°角所对边等于斜边的一半)例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC∠EFD=∠BAD∠EFD=∠DAC⊙O切BC于D∠FDC=∠DAC∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB∴∠ACD=∠B,∵MN切⊙O于C∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.
第五篇:弦切角学案
弦切角学习学案
教学目标:使学生了解弦切角的概念,掌握弦切角定理及其推理,进一步使学生了解分情况证明数学命题的思想和方法
教学难点、重点:弦切角定理的证明 教学过程:
一、复习引入
1、前面学习过有关于圆的角度有__________、_____________。
2、当圆周角的一边BC绕着点B旋转,使得BC为圆O 的切线,这个时候就形成了一个新的角,我们称之为弦切角。
BB
C
OO CAA
二、新知学习
1、弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
2、观察下图,你能发现弦切角和弦切角所夹的弧所对的圆周角的关系吗?
C
O P ABE
猜想:______________________ 证明:
CPEOCOPABEAB
弦切角定理: 弦切角等于它所夹的弧所对的圆周角
三、典型例题
例题1, 如图,已知AB是圆O的直径,AC是弦,直线CE和圆O切于点C,AD⊥CE,垂直为D,求证:AC平分∠BAD
B
O
A
CED
练习
1、如图,AB是圆O的弦,CD是经过圆O上一点M 的切线,求证:(!)AB∥CD时,AM=MB(2)AM=MB时,AB∥CD
练习
2、在△ABC中,∠A的平分线AD交BC于D,圆O过点A且和BC切于D,和AB、AC分别交于E、F,求证:EF∥BC
A
O
j EF
B C D
CMDAOB相交弦定理和切割线定理学案
教学目标:能结合具体图形,准确地表述相交弦定理、切割线定理及其推论。教学难点、重点:相交弦定理和切割线定理的证明 教学过程:
1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等。
数学表达式:___________________________
A证明:
D
O P B
C
练习:
已知圆中两条弦相交,第一条弦被交点分为12和16两段,第二条弦的长为32,求第二条弦被交点分成的两段的长
2、切割线定理:从圆外一点引圆的切线和割线,切线长是这个点到割线与圆交点的两条线段长的比例中项。数学表达式: PT2=PA•PB
A证明:
B
O P
T3、切割线定理推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
C数学表达式:PA•PB=PC•PD
D
P BA
练习
1、如图:圆O的割线PAB交圆O于点A和B。PA=6,AB=8,PO=10.9,求圆O的半径
BAPCO
2、如图:两个以O为圆心的同心圆,AB切大圆于BAC切小圆与C,交大圆于D、E,AB=12,AO=15,AD=8。求两圆的半径
B
O
A
D
C
E
思考题:如图,点I是三角形ABC的内心,AI交边BC于点D,交三角形ABC外接圆于点E,求证:IE2=AE*DE
A
IBEDC