第一篇:弦切角定理_含答案
邯郸市第四中学高二数学组(理)选修4-1 直线与圆的位置关系
学案2 圆的切线判定定理与性质定理
弦切角定理
考纲要求:会证明和应用以下定理:圆的切线判定定理与性质定理和弦切角定理
一:知识梳理
1.切线的性质定理:圆的切线垂直于经过切点的__________.推论1:经过圆心且垂直于切线的直线必经过_______;
推论2:经过切点且垂直于切线的直线必经过______.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的________.2.弦切角定理:弦切角等于它所夹的弧所对的______________.推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.二:基本技能:
1.已知一个圆的弦切角等于50°,那么这个弦切角所夹的弧所对的圆心角的度数
为_______.2.如图,AB是直径,点D在AB的延长线上,BD=OB,若CD切⊙
O于C点,则∠CAB的度数为 DCB的度数为ECA的度数为
3.如图,AB,AC是⊙O的两条切线,切点分别为 B、C、D是 上的点,已知∠BAC=800,那么∠BDC =______.优弧BC
上任一点,∠4.如图,AB是⊙ O的弦,AD是⊙ O的切线,C为 AB
BAD =______.5.如图,PA,PB切⊙ O于 A,B两点,AC⊥PB,且与⊙ O相交于 D,若∠DBC=220,则∠APB==________.三:典例分析
类型一: 弦切角与圆周角定理的应用
解题准备:弦切角与圆周角是很重要的与圆相关的角.其主要功能在于协调与圆相关的各种角(如圆心角、圆周角等),是架设圆与三角形全等、三角形相似、与圆相关的各种直线(如弦、
割线、切线)位置关系的桥梁,因而弦切角也是确定圆的重要几何定理的关键环节(如证明切割线定理).:例1:(2010年高考课标全国卷)如图,已知
圆上的弧=,过C点的圆的切线与BA的延长线交于E点,证明:
(1)∠ACE=∠BCD;(2)BC2=BE×CD.变式训练1:(2010年高考江苏卷)
如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC.类型二: 圆的切线的性质与判定
解题准备:若知圆的切线,一种自然的想法就是连结过切点的半径,从而得到垂直关系.证明某条直线是圆的切线的常用方法有:若已知直线与圆有公共点,则需证明圆心与公共点的连线垂直于已知直线即可;若已知直线与圆没有明确的公共点,则需证明圆心到直线的距离等
于圆的半径.例2:如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证:DE是⊙O是切线.B
例3如图.AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分∠DAB.四:能力提升1.(海淀二模3)如图,CD是⊙O的直径,AE切⊙O于点B,连接DB,若D20,则DBE的大小为()A.20B.40C.60D.70
2.(西城二模11)如图,ABC是圆的内接三角形,PA切圆于点
交圆于点D.若ABC60
,PD
1,BD8PAC________,PA________.3.如图,AB是半圆O的直径,C、D是半圆上的两点,半圆O的切线PC
交AB的延长线于点P,∠PCB=25°,则∠ADC为
A.105°B.115°C.120°D.125°
4.如图,AB是⊙O的直径,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,则AC的长为
A.2B.3C.5.如图,AB是⊙ O的直径,AC,BC是⊙ O的弦,PC是⊙ O的切线,切点为 C,∠BAC=35,那么∠ACP等于
0000
A.35B.55C.65D.12
56.如图,在⊙ O中,AB是弦,AC是⊙ O的切线,A是切点,过 B作BD⊥AC于D,BD交⊙ O于 E点,若 AE平分∠BAD,则∠BAD=
00A.30B.4500
C.50D.60
7.如图,⊙O与⊙O′交于 A,B,⊙O的弦AC与⊙O′相切于点 A,⊙O′的弦AD与⊙O相切于A点,则下列结论中正确的是 A.∠1>∠2B.∠1=∠2C.∠1<∠2D.无法确定
8.如图,E是⊙O内接四边形 ABCD两条对角线的交点,CD延长线与过 A点的⊙ O的切线交
AB,则∠AFC的度于F点,若∠ABD=44,∠AED=100,AD
数为
00
A.78B.9200
C.56D.145
C
00
9.过圆内接△ABC的顶点 A引切线交 BC延长线于D,若∠B=35,∠ACB=80,则∠D=
0000
A.45B.50C.55D.60
10.圆内接四边形ABCD的顶点C引切线 MN,AB为圆直径,F
若∠BCM=38,则∠ABC=
A.38B.52C.68D.4211B.如右图,A、B是⊙O上的两点,AC是⊙O的切线,∠B=70°,则∠BAC等于()
A.70°B.35°C.20°D.10°
基本技能:
1.100°2.60°3.50°4.108°5.44° 典例分析: 例
1.0000
变式训练
例2
证明:连接OD.∵BD=CD,OA=OB
∴OD是△ABC的中位线,∴
OD//AC.又∵ DE⊥AC
∴∠DEC=90º∴∠ODE=90º又∵D在圆周上, ∴DE是⊙O是切线.例3.证明:连接OC, ∵CD是⊙O的切线, ∴OC⊥CD.又∵AD⊥CD,∴OC//AD.由此得∠ACO=∠CAD.∵OC=OA.∴∠CAO=∠ACO.∴∠CAD=∠CAO.故AC平分∠DAB 能力提升:
1.D2.60°,33.B4.C5.B6.D7.B8.C9.A10.B11.C
第二篇:弦切角定理证明方法
弦切角定理证明方法
(1)连OC、OA,则有OC⊥CD于点C。得OC‖AD,知∠OCA=∠CAD。
而∠OCA=∠OAC,得∠CAD=∠OAC。进而有∠OAC=∠BAC。
由此可知,0A与AB重合,即AB为⊙O的直径。
(2)连接BC,且作CE⊥AB于点E。立即可得△ABC为Rt△,且∠ACB=Rt∠。
由射影定理有AC²=AE*AB。又∠CAD=∠CAE,AC公用,∠CDA=∠CEA,得△CEA≌△CDA,有AD=AE,所以,AC²=AB*AD。
第一题重新证明如下:
首先证明弦切角定理,即有∠ACD=∠CBA。
连接OA、OC、BC,则有
∠ACD+∠ACO=90°
=(1/2)(∠ACO+∠CAO+∠AOC)
=(1/2)(2∠ACO+∠AOC)
=∠ACO+(1/2)∠AOC,所以∠ACD=(1/2)∠AOC,而∠CBA=(1/2)∠AOC(同弧上的圆周角等于圆心角的一半),得∠ACD=∠CBA。
另外,∠ACD+∠CAD=90°,∠CAD=∠CAB,所以有∠CAB+∠CBA=90°,得∠BCA=90°,进而AB为⊙O的直径。
2证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90-∠OCB
∵∠BOC=180-2∠OCB
∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)
∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)
∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)
证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)
证明:分三种情况:
(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA
∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E
那么,连接EC、ED、EA
则有:∠CED=∠CAD、∠DEA=∠DAB
∴∠CEA=∠CAB
∴(弦切角定理)
(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D
那么∠CDA+∠CAD=∠CAB+∠CAD=90
∴∠CDA=∠CAB
∴(弦切角定理)
编辑本段弦切角推论
推论内容
若两弦切角所夹的弧相等,则这两个弦切角也相等
应用举例
例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.解:连结OA,OB.∵在Rt△ABC中,∠C=90
∴∠BAC=30°
∴BC=1/2a(RT△中30°角所对边等于斜边的一半)
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC
∠EFD=∠BAD
∠EFD=∠DAC
⊙O切BC于D∠FDC=∠DAC
∠EFD=∠FDC
EF∥BC
例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径
∴∠ACB=90
∵CD⊥AB
∴∠ACD=∠B,∵MN切⊙O于C
∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.
第三篇:弦切角定理的证明
弦切角定理的证明
弦切角定理:定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.(弦切角就是切线与弦所夹的角)弦切角定理证明
证明:设圆心为O,连接OC,OB,OA。过点A作Tp的平行线交BC于D,则∠TCB=∠CDA
∵∠TCB=90-∠OCD
∵∠BOC=180-2∠OCD
∴,∠BOC=2∠TCB
证明:分三种情况:
(1)圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA
∵为半圆,(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,那么
.(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D
那么
2连接并延长TO交圆O于点D,连接BD因为TD为切线,所以TD垂直TC,所以角BTC+角DTB=90因为TD为直径,所以角BDT+角DTB=90所以角BTC=角BDT=角A
3编辑本段弦切角定义顶点在圆上,一边和圆相交,另图示一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)如右图所示,直线pT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠pCA,∠pCB都为弦切角。编辑本段弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.弦切角定理证明:证明一:设圆心为O,连接OC,OB,。∵∠TCB=90-∠OCB∵∠BOC=180-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角B点应在A点左侧(2)圆心O在∠BAC的内部.过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90∴∠CDA=∠CAB∴(弦切角定理)编辑本段弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60°,AB=a求BC长.解:连结OA,OB.∵在Rt△ABC中,∠C=90∴∠BAC=30°∴BC=1/2a(RT△中30°角所对边等于斜边的一半)例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.求证:EF∥BC.证明:连DF.AD是∠BAC的平分线∠BAD=∠DAC∠EFD=∠BAD∠EFD=∠DAC⊙O切BC于D∠FDC=∠DAC∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB∴∠ACD=∠B,∵MN切⊙O于C∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD.
第四篇:圆切线长定理及弦切角练习题
切线长定理及弦切角练习题
(一)填空
1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____.
2.已知:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°侧∠CAB=____ .
3.已知:直线AB与圆O切于B点,割线ACD与⊙O交于C和D
4.已知:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,∠P=15°,∠ABC=47°,则∠C= ____.
5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____.
6.已知:如图 7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,则△ABC为____ 三角形.
7.已知:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O于C点,∠A=36°,那么∠ACD=____.
(二)选择
8.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于
[ ] A.62.5°;B.55°;C.50°;D.40°.
9.已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为
[ ]
A.1 个;B.2个;C.4个;D.5个.
10.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径,MN切⊙O于C点,∠BCM=38°,那么∠ABC的度数是
[ ]
A.38°;B.52°;C.68°;D.42°.
11.已知如图7-151,PA切⊙O于点A,PCB交⊙O于C,B两点,且 PCB过点 O,AE⊥BP交⊙O于E,则图中与∠CAP相等的角的个数是
[ ]
A.1个;B.2个;C.3个;D.4个.
(三)计算
12.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°,AD为⊙O一弦.求∠ADC与∠PCA的度数.
13.已知:如图7-153,PA切⊙O于A,PO交⊙O于B,C,PD平分∠APC.求∠ADP的度数.
14.已知:如图7-154,⊙O的半径OA⊥OB,过A点的直线交OB于P,交⊙O于Q,过Q引⊙O的切线交OB延长线于C,且PQ=QC.求∠A的度数.
15.已知:如图7-155,⊙O内接四边形ABCD,MN切⊙O于C,∠BCM=38°,AB为⊙O直径.求∠ADC的度数.
16.已知:如图7-156,PA,PC切⊙O于A,C两点,B点
17.已知:如图 7-157,AC为⊙O的弦,PA切⊙O于点A,PC过O点与⊙O交于B,∠C=33°.求∠P的度数.
18.已知:如图7-158,四边形ABCD内接于⊙O,EF切⊙O
19.已知 BA是⊙O的弦,TA切⊙O于点A,∠BAT= 100°,点M在圆周上但与A,B不重合,求∠AMB的度数.
20.已知:如图7-159,PA切圆于A,BC为圆直径,∠BAD=∠P,PA=15cm,PB=5cm.求 BD的长.
21.已知:如图7-160,AC是⊙O直径,PA⊥AC于A,PB切⊙O于B,BE⊥AC于E.若AE=6cm,EC=2cm,求BD的长.
22.已知:如图7-161所示,P为⊙O外一点,PA切⊙O于A,从PA中点M引⊙O割线MNB,∠PNA=138°.求∠PBA的度数.
23.已知:如图7-162,DC切⊙O于C,DA交⊙O于P和B两点,AC交⊙O于Q,PQ为⊙O直径交BC于E,∠BAC=17°,∠D=45°.求∠PQC与∠PEC的度数.
24.已知:如图 7-163,QA切⊙O于点A,QB交⊙O于B
25.已知:如图7-164,QA切⊙O于A,QB交⊙O于B和C
26.已知:在图7-165中,PA切⊙O于A,AD平分∠BAC,PE平分∠APB,AD=4cm,PA=6cm.求EP的长.
27.已知;如图7-166,PA为△ABC外接圆的切线,A 为切点,DE∥AC,PE=PD.AB=7cm,AD=2cm.求DE的长.
28.已知:如图 7-167,BC是⊙O的直径,DA切⊙O于A,DA=DE.求∠BAE的度数.
29.已知:如图 7-168,AB为⊙O直径,CD切⊙O于CAE∠CD于E,交BC于F,AF=BF.求∠A的度数.
30.已知:如图7-169,PA,PB分别切⊙O于A,B,PCD为割线交⊙O于C,D.若 AC=3cm,AD=5cm,BC= 2cm,求DB的长.
31.已知:如图7-170,ABCD的顶点A,D,C在圆O上,AB的延长线与⊙O交于M,CB的延长线与⊙O交于点N,PD切⊙O于D,∠ADP=35°,∠ADC=108°.求∠M的度数.
32.已知:如图7-171,PQ为⊙O直径,DC切⊙O于C,DP交⊙O于B,交CQ延长线于A,∠D=45°,∠PEC=39°.求∠A的度数.
33.已知:如图 7-172,△ABC内接于⊙O,EA切⊙O于A,过B作BD∥AE交AC延长线于D.若AC=4cm,CD= 3cm,求AB的长.
34.已知:如图7-173,△ABC内接于圆,FB切圆于B,CF⊥BF于F交圆于 E,∠1=∠2.求∠1的度数.
35.已知:如图7-174,PC为⊙O直径,MN切⊙O于A,PB⊥MN于B.若PC=5cm,PA=2cm.求PB的长.
36.已知:如图7-175,AD为⊙O直径,CBE,CD分别切⊙
37.已知:如图7-176,圆内接四边形ABCD的AB边经过圆心,AD,BC的延长线相交于E,过C点的切线CF⊥AE于F.求证:
(1)△ABE为等腰三角形;
(2)若 BC=1cm,AB=3cm,求EF的长.
38.已知:如图7-177,AB,AC切⊙O于B,C,OA交⊙O于F,E,交BC于D.
(1)求证:E为△ABC内心;
(2)若∠BAC=60°,AB=a,求OB与OD的长.
(四)证明
39.已知:在△ABC中,∠C=90°,以C为圆心作圆切AB边于F点,AD,BC分别与⊙C切于D,E两点.求证:AD∥BE.
40.已知:PA,PB与⊙O分别切于A,B两点,延长OB到C,41.已知:⊙O与∠A的两边分别相切于D,E.在线段AD,AE(或在它们的延长线)上各取一点B,C,使DB=EC.求证:OA⊥BC.
⊥EC于H,AO交BC于D.求证:
BC·AH=AD·CE.
*43.已知:如图7-178,MN切⊙O于A,弦BC交OA于E,过C点引BC的垂线交MN于D.求:AB∥DE.
44.已知:如图7-179,OA是⊙O半径,B是OA延长线上一点,BC切⊙O于C,CD⊥OA于D.求证:CA平分∠BCD.
45.已知:如图7-180,BC是⊙O直径,EF切⊙O于A点,AD⊥BC于D.求证:AB平分∠DAE,AC平分∠DAF.
46.已知:如图7-181,在△ABC中,AB=AC,∠C= 2∠A,以 AB为弦的圆 O与 BC切干点 B,与 AC交于 D点.求证:AD=DB=BC.
47.已知:如图7-182,过△ADG的顶点A作直线与DG的延长线相交于C,过G作△ADG的外接圆的切线二等分线段AC于E.求证:AG=DG·CG.
48.已知:如图7-183,PA,PB分别切⊙O于A,B两点,PCD为割线.求证:AC·BD=BC·AD.
BC=BA,连结AC交圆于点E.求证:四边形ABDE是平行四边形.
50.已知:如图7-185,∠1=∠2,⊙O过A,D两点且交AB,AC于E,F,BC切⊙O于D.求证:EF∥BC.
51.已知:如图7-186,AB是半圆直径,EC切半圆于点C,BE⊥CE交AC于F.求证:AB=BF.
52.已知:如图7-187,AB为半圆直径,PA⊥AB,PC切半圆于C点,CD⊥AB于D交PB于M.求证:CM=MD.
(五)作图
53.求作以已知线段AB为弦,所含圆周角为已知锐角∠α(见图7-188)的弧(不写作法,写出已知、求作,答出所求).
54.求作一个以α为一边,所对角为∠α,此边上高为h的三角形.
55.求作一个以a为一边,m为此边上中线,所对角为∠α的三角形(不写作法,答出所求).
切线长定理及弦切角练习题(答案)
(一)填空
1.36° 2.28° 3.50° 4.32° 5.22° 6.等腰 7.54°
(二)选择
8.C 9.D 10.B 11.C
(三)计算 12.30°,30°.
13.45°.提示:连接AB交PD于E.只需证明∠ADE=∠AED,证明时利用三角形外角定理及弦切角定理.
14.30°.提示:因为PQ=QC,所以∠QCP=∠QPC.连接OQ,则知∠POQ与∠QCP互余.又∠OAQ=∠OQA与∠QPC互余,所以∠POQ=∠OAQ=∠OQA.而它们的和为90°(因为∠AOC=90°).所以∠OAQ=30°
16.67.5°.提示:解法一 连接AC,则∠PAC=∠PCA.又∠P=45°,所以∠PAC=∠PCA=67.5°.从而∠B=∠PAC=67.5°.
解法二 连接OA,OC,则∠AOC=180°-∠P=135°,所以
17.24°.提示:连接OA,则∠POA=66°.
18.60°.提示:连接BD,则∠ADB=40°,∠DBC=20°.设∠ABD=∠BDC(因为AB//CD)=x°,则因∠B+∠D=180°,所以2x°+60°=180°,x°=60°,从而∠ADE=∠ABD=60°.
19.100°或80°.提示: M可在弦AB对的两弧的每一个上.
从而
22.42°.提示:∠ABM=∠NAM.于是显然△ABM∽△NAM,NMP,所以△PMB∽△NMP,从而∠PBM=∠NPM.再由∠ABM=∠NAM,就有 ∠PBA=∠PBM+∠NAM=∠NPM+∠NAM =180°-∠PNA=42°.
23.28°,39°.提示:连接PC.
24.41°.提示:求出∠QAC和∠ACB的度数. 25.100°.
以DB=9.因为2DP=2×9,由此得DP=9.又DP>0,所以DP=3,从而,DE=2×3=6(cm). 2
228.45°.提示:连接AC.由于DA=DE,所以∠ABE+∠BAE=∠AED=∠EAD=∠CAD+∠CAE,但∠ABE=∠CAD,所以∠BAE=∠CAE.由于∠BAE+∠CAE=90°,所以∠BAE=45°.
29.60°.提示:解法一 连接AC,则AC⊥BC.又AF⊥CE,所以∠ACE=∠F.又DC切⊙O于C,所以∠ACE=∠B.所以∠F=∠B.因为AF=BF,所以∠BAF=∠B=∠F.所以∠BAF=60°.
31.37°.提示:连接AC,则∠M=∠ACN=∠CAD. 32.17°.提示:连接PC,则∠QPC+∠PBC=90°. 45°=∠D=(∠BPQ+∠QPC)∠DCP =(∠BPQ+∠QPC)-∠PBC =[∠BPQ+(90°-∠PBC)]-∠PBC. 所以
2∠PBC-∠BPQ=45°.
又
∠PBC+∠BPQ=39°,从而∠PBC=28°,∠BPQ=11°.于是∠A=∠PBC-∠BPQ=17°.
1)
2)
((34.30°.提示:连接BE,由∠1=∠2,可推出∠EBF=∠ECB=∠EBC,而这三个角的和为90°,所以每个角为30°.
36.60°.提示:连接OB,则OB⊥CE,从而∠C=∠BOE= 60°.
37.(1)提示:连接OC,则∠E=∠OCB=∠OBC=∠CDE,所以△ABE为等腰三角形.
38.(1)提示:连接BE.只需证明∠ABE=∠DBE.
(四)证明
39.提示:AC,BC各平分∠A,∠B.设法证出∠A+∠B=180°. 40.提示:连接OP,设法证出∠BPC=∠BPO.
42.提示:在△BCE和△DAH中,∠BCE=∠DAH(它们都与∠DCH互补).又A,D,C,H共圆,所以∠CEB=∠ACB=∠AHD,从而△BCE∽△DAH.这就得所要证明的比例式.
43.提示:连接AC.先证明A,E,C,D四点共圆.由此得∠ADE=(∠ACE=)∠MAB,所以AB//DE.
44.提示:证法一 延长AO交⊙O于点E,连接EC,则∠BCA=∠E,且∠ACD=∠E.所以∠BCA=∠ACD.
证法二 连接OA,则∠BCA与∠OCA互余;又∠ACD与∠OAC互余,而∠OCA=∠OAC,所以∠BCA=∠ACD.
46.提示:由已知得∠A=36°,∠B=∠C=72°,∠DBC=∠A=36°,所以∠ABD=36°,从而AD=BD.又∠C=∠CDB=72°,所以BD=BC.
47.提示:过A作CD的平行线交BC于H,则AH=CG.然后证
AG=DG·AH=DG·CG.
49.提示:因为BC=BA,所以∠A=(∠C=)∠D;又∠CED=∠DBF(BF是AB的延长线),所以它们的补角∠DEA=∠ABD.从而四边形ABDE是平行四边形.
50.提示:连接DE,则∠BDE=∠1=∠2=∠FED.所以EF//BC.
51.提示:连接BC,则∠ACB=90°=∠FCB.因为CE⊥BE,所以∠F=∠ECB.因为EC切半圆于C,所以∠ECB=∠A,所以∠A=∠F,因此AB=BF.
52.提示:连接AC,BC并延长BC交AP延长线于点N.首先
所以CM=MD.
第五篇:弦切角学案
弦切角学习学案
教学目标:使学生了解弦切角的概念,掌握弦切角定理及其推理,进一步使学生了解分情况证明数学命题的思想和方法
教学难点、重点:弦切角定理的证明 教学过程:
一、复习引入
1、前面学习过有关于圆的角度有__________、_____________。
2、当圆周角的一边BC绕着点B旋转,使得BC为圆O 的切线,这个时候就形成了一个新的角,我们称之为弦切角。
BB
C
OO CAA
二、新知学习
1、弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
2、观察下图,你能发现弦切角和弦切角所夹的弧所对的圆周角的关系吗?
C
O P ABE
猜想:______________________ 证明:
CPEOCOPABEAB
弦切角定理: 弦切角等于它所夹的弧所对的圆周角
三、典型例题
例题1, 如图,已知AB是圆O的直径,AC是弦,直线CE和圆O切于点C,AD⊥CE,垂直为D,求证:AC平分∠BAD
B
O
A
CED
练习
1、如图,AB是圆O的弦,CD是经过圆O上一点M 的切线,求证:(!)AB∥CD时,AM=MB(2)AM=MB时,AB∥CD
练习
2、在△ABC中,∠A的平分线AD交BC于D,圆O过点A且和BC切于D,和AB、AC分别交于E、F,求证:EF∥BC
A
O
j EF
B C D
CMDAOB相交弦定理和切割线定理学案
教学目标:能结合具体图形,准确地表述相交弦定理、切割线定理及其推论。教学难点、重点:相交弦定理和切割线定理的证明 教学过程:
1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等。
数学表达式:___________________________
A证明:
D
O P B
C
练习:
已知圆中两条弦相交,第一条弦被交点分为12和16两段,第二条弦的长为32,求第二条弦被交点分成的两段的长
2、切割线定理:从圆外一点引圆的切线和割线,切线长是这个点到割线与圆交点的两条线段长的比例中项。数学表达式: PT2=PA•PB
A证明:
B
O P
T3、切割线定理推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
C数学表达式:PA•PB=PC•PD
D
P BA
练习
1、如图:圆O的割线PAB交圆O于点A和B。PA=6,AB=8,PO=10.9,求圆O的半径
BAPCO
2、如图:两个以O为圆心的同心圆,AB切大圆于BAC切小圆与C,交大圆于D、E,AB=12,AO=15,AD=8。求两圆的半径
B
O
A
D
C
E
思考题:如图,点I是三角形ABC的内心,AI交边BC于点D,交三角形ABC外接圆于点E,求证:IE2=AE*DE
A
IBEDC