弦切角的性质学案[大全]

时间:2019-05-12 19:12:28下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《弦切角的性质学案[大全]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《弦切角的性质学案[大全]》。

第一篇:弦切角的性质学案[大全]

弦切角的性质学案

班级姓名等级

学习目标:

1.理解弦切角的概念;

2.掌握弦切角定理及推论,并会运用它们解决有关问题;

3.理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.学习重点和难点

弦切角定理及其应用是重点;弦切角定理的证明是难点.学习过程:

一、创设情境,以旧探新

1.提问:什么样的角是圆周角?

2.圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,停止旋转,得∠BAE.(图7-132)

思考:这时∠BAE还是圆周角吗?为什么?

归纳总结出弦切角的特点:(1);(2);(3).3.弦切角定义:

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.4.判断下列各图形中的角是不是弦切角,并说明理由:(图7-133)

由此发现,弦切角可分为三类:

(1)圆心在角的外部;(2)圆心在角的一边上;

(3)圆心在角的内部.二、观察联想、发现规律

1.当弦切角一边通过圆心时,(如图7-135)。

(1)弦切角∠CAB是多少度?为什么?

(2)∠CAB所夹弧所对的圆周角是多少度?为什么?

(3)此时,弦切角与它所夹弧所对的圆周角有什么关系?

观察图形,不难发现,此时弦切角与其所夹弧所对的圆周角都是直角.2.以A为端点.旋转AC边,使弦切角增大或减小,观察它与所夹弧所对圆周角之间的关

系,猜想:弦切角是否等于它所夹的弧对的圆周角.(图7-134)

让学生完成弦切角为直角的证明过程

三、类比联想,尝试论证

1.回忆联想:

(1)圆周角定理的证明采用了什么方法?

(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?

2.前面证明了特殊情况,下面考虑圆心在弦切角的外部和内部两种情况.讨论:

怎样将一般情况的证明转化为特殊情况。如图7-136(1),圆

心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠1=∠APQ-∠2=∠APC.证明:

如图7-136(2),圆心O在∠CAB内,作⊙O的直径AQ,连结PQ,则∠BAC=∠QAB+∠1=∠QPA+∠2=∠APC.证明:

弦切角定理:弦切角等于它所夹的弧对的圆周角.3.看书并思考:课本上关于定理的证明与我们现在的证明方

法有何异同?

四、巩固知识、初步应用

例1(课本p33)如图7-139,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D.求证:AC平分∠BAD.思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相

似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.(图7-139)

证明:(学生自己完成证明)

思路二:连结OC,由切线性质,可得OC∥AD,于是有∠1=∠3,又由于∠1=∠2,可证

得结论.(图

7-140)

思路三:过C作CF⊥AB,交⊙O于F,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定

理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.(图7-141)

[课堂练习]:

1.如图7-142,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=度.(口答)

2.AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3∶1,则夹劣弧的弦切角

∠BAC=.3.已知:经过⊙O上的点T的切线和弦AB的延长线相交于点C.求证:∠ATC=∠TBC.② CT=CBCA

五、归纳小结

① 在证明弦切角定理时,我们是从特殊情况入手,通过猜想、分析、证明和归纳,从

而证明了弦切角定理.通过弦切角概念的引入和定理的证明过程,逐步学会用运动变化的观点观察问题,进而理解从一般到特殊,从特殊到一般的认识规律.②学习了分类讨论的思想和完全归纳的证明方法.在这里一定要注意为什么要对弦

切角进行分类和如何进行分类.③弦切角定理:弦切角等于它所夹的弧对的圆周角.六:课后小结与反思:

预习提示:相交弦定理

割线定理

切割线定理及切线长定理

第二篇:弦切角学案

弦切角学习学案

教学目标:使学生了解弦切角的概念,掌握弦切角定理及其推理,进一步使学生了解分情况证明数学命题的思想和方法

教学难点、重点:弦切角定理的证明 教学过程:

一、复习引入

1、前面学习过有关于圆的角度有__________、_____________。

2、当圆周角的一边BC绕着点B旋转,使得BC为圆O 的切线,这个时候就形成了一个新的角,我们称之为弦切角。

BB

C

OO CAA

二、新知学习

1、弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

2、观察下图,你能发现弦切角和弦切角所夹的弧所对的圆周角的关系吗?

C

O P ABE

猜想:______________________ 证明:

CPEOCOPABEAB

弦切角定理: 弦切角等于它所夹的弧所对的圆周角

三、典型例题

例题1, 如图,已知AB是圆O的直径,AC是弦,直线CE和圆O切于点C,AD⊥CE,垂直为D,求证:AC平分∠BAD

B

O

A

CED

练习

1、如图,AB是圆O的弦,CD是经过圆O上一点M 的切线,求证:(!)AB∥CD时,AM=MB(2)AM=MB时,AB∥CD

练习

2、在△ABC中,∠A的平分线AD交BC于D,圆O过点A且和BC切于D,和AB、AC分别交于E、F,求证:EF∥BC

A

O

j EF

B C D

CMDAOB相交弦定理和切割线定理学案

教学目标:能结合具体图形,准确地表述相交弦定理、切割线定理及其推论。教学难点、重点:相交弦定理和切割线定理的证明 教学过程:

1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等。

数学表达式:___________________________

A证明:

D

O P B

C

练习:

已知圆中两条弦相交,第一条弦被交点分为12和16两段,第二条弦的长为32,求第二条弦被交点分成的两段的长

2、切割线定理:从圆外一点引圆的切线和割线,切线长是这个点到割线与圆交点的两条线段长的比例中项。数学表达式: PT2=PA•PB

A证明:

B

O P

T3、切割线定理推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

C数学表达式:PA•PB=PC•PD

D

P BA

练习

1、如图:圆O的割线PAB交圆O于点A和B。PA=6,AB=8,PO=10.9,求圆O的半径

BAPCO

2、如图:两个以O为圆心的同心圆,AB切大圆于BAC切小圆与C,交大圆于D、E,AB=12,AO=15,AD=8。求两圆的半径

B

O

A

D

C

E

思考题:如图,点I是三角形ABC的内心,AI交边BC于点D,交三角形ABC外接圆于点E,求证:IE2=AE*DE

A

IBEDC

第三篇:2.4 弦切角的性质

2.4、弦切角的性质

教学目标:

1、使学生知道弦切角的定义,会在图形中识别弦切角;

2、会叙述弦切角定理及其推论;

3、能运用弦切角定理及其推论证明有关几何问题;

4、培养学生分类讨论的思想方法和辩证唯物主义的观点。教学的重点、难点:

教学重点:探索弦切角定理的证明方法;运用弦切角定理证明有关的几何问题。

教学难点:用分类的思想方法证明弦切角定理。

教学方法

探究、讨论、讲授

教学准备

课件多媒体

教学过程:

一、创设情境,以旧探新

1、复习:什么样的角是圆周角?

2、弦切角的概念:

圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,得∠BAE.提问:∠EAC有何特点?

C

B

A(B)

IE

I

弦切角的定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.注意引导学生发现弦切角的三个要点,使学生在形象、直观的学习活动中掌握新的概念。

练习1右面各图中,哪一个角是弦切角?

练习2:图3中有几个弦切角?()

二、观察、猜想 观察图形,提问:

(1)、图7(1)中,∠A与∠P有何关系?为什么?(2)、图7(2)中,∠EAC与∠P有何共同点?

B

3分析比较:既然图7(1)中∠A=∠P,那么图7(2)中,∠EAC=∠P吗?

B

E

A(B)

图7

这一结论是否能成立呢?我们不妨从最特殊的情形考虑一下.圆心O在弦切角∠BAC的边AC上,此时显然有∠BAC=∠P=90°.由此我们完全有信心提出一个猜想:弦切角等于它所夹的弧所对的圆周角.三、类比联想、论证

1、已经证明了最特殊的情形,下面考虑圆心在角内与角外两种情形.2、圆心在角外,作⊙O的直径AQ,连接PQ(如图9),则∠BAC=∠BAQ-∠1=∠APQ-∠2=∠APC.3、圆心在角内,作⊙O的直径AQ,连接PQ(如图10),P

A

B

BB

图9图9

图10

图10

则∠BAC=∠BAQ+∠1=∠APQ+∠2=∠APC.4、回顾证明的方法:将情形(2)、(3)都归至情形(1),利用角的合成,对三种情形进行完全归纳,从而证明了上述的猜想,我们把所证得的结果取名为

弦切角定理:弦切角等于它所夹的弧所对的圆周角.【设计意图】弦切角定理是这节课的重点也是难点,通过创设问题情境,引导学生在解决问题的过程中学习新的知识。利用问题激发学生探索弦切角定理证明的其他情况。学生进行思考和探索,锻炼学生的动手能力,激发学生学习的积极性。在总结弦切角定理量要注意对“所夹”与“所对”两个关键词的理解。

三、例题分析

例1.如图已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D.求证:AC平分∠BAD.证明:略

课堂练习课后小结

1、弦切角-------顶点在圆上,一边与圆相交,另一边与圆相切的角。

2、弦切角定理: 弦切角等于它所夹的弧所对的圆周角.作业布置

教科书习题2.4 第1、2题 课后反思

第四篇:2.4《弦切角的性质》

弦切角的性质

学习目标:

1.理解弦切角的概念;

2.掌握弦切角定理及推论,并会运用它们解决有关问题; 3.理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.教学重点和难点

弦切角定理及其应用是重点;

弦切角定理的证明是难点.教学过程:

一、创设情境,以旧探新 1.提问:什么样的角是圆周角? 2.圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A旋转至与圆相切时,停止旋转,得∠BAE.(图7-132)

思考:这时∠BAE还是圆周角吗?为什么? 归纳总结出弦切角的特点:

(1)顶点在圆周上;(2)一边与圆相交;(3)一边与圆相切.3.弦切角定义:

顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.4.判断下列各图形中的角是不是弦切角,并说明理由:(图7-133)

/ 5

由此发现,弦切角可分为三类:

(1)圆心在角的外部;(2)圆心在角的一边上;

(3)圆心在角的内部.二、观察联想、发现规律

1.当弦切角一边通过圆心时,(如图7-135)(1)弦切角∠CAB是多少度?为什么?(2)∠CAB所夹弧所对的圆周角∠D是多少度?为什么?(3)此时,弦切角与它所夹弧所对的圆周角有什么关系? 观察图形,不难发现,此时弦切角与其所夹弧所对的圆周角都是直角.2.以A为端点.旋转AC边,使弦切角增大或减小,观察它与所夹弧所对圆周角之间的关系,猜想:弦切角是否等于它所夹的弧对的圆周角.(图7-134)

三、类比联想,尝试论证

1.回忆联想:

(1)圆周角定理的证明采用了什么方法?(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢? 2.前面证明了特殊情况,下面考虑圆心在弦切角的外部和内部两种情况.讨论:怎样将一般情况的证明转化为特殊情况。如图7-136(1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠1=∠APQ-∠2=∠APC.2 / 5

如图7-136(2),圆心O在∠CAB内,作⊙O的直径AQ,连结PQ,则∠BAC=∠QAB+∠1=∠QPA+∠2=∠APC.你能写出完整的证明过程吗?

弦切角定理:弦切角等于它所夹的弧对的圆周角.3.看书并思考:课本上关于定理的证明与我们现在的证明方法有何异同?

四、巩固知识、初步应用

例1(课本p33)如图7-139,已知AB是⊙O的直径,AC是弦,直线CE和⊙O切于点C,AD⊥CE,垂足为D.求证:AC平分∠BAD.思路一:要证∠BAC=∠CAD,可证这两角所在的直角三角形相似,于是连结BC,得Rt△ACB,只需证∠ACD=∠B.(图7-139)证明:(学生自己完成证明)思路二:连结OC,由切线性质,可得OC∥AD,于是有∠1=∠3,又由于∠1=∠2,可证得结论.(图7-140)

思路三:过C作CF⊥AB,交⊙O于F,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.(图7-141)[课堂练习]: 1.如图7-142,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=

度.(口答)2.AB切⊙O于A点,圆周被AC所分成的优弧与劣弧之比为3∶1,则夹劣弧的弦切角∠BAC=

.3 / 5

3.已知:经过⊙O上的点T的切线和弦AB的延长线相交于点C.求证:∠ATC=∠TBC.② CT2=CBCA

五、归纳小结

① 在证明弦切角定理时,我们是从特殊情况入手,通过猜想、分析、证明和归纳,从

而证明了弦切角定理.通过弦切角概念的引入和定理的证明过程,逐步学会用运动变化的观点观察问题,进而理解从一般到特殊,从特殊到一般的认识规律.②学习了分类讨论的思想和完全归纳的证明方法.在这里一定要注意为什么要对弦

切角进行分类和如何进行分类.③弦切角定理:弦切角等于它所夹的弧对的圆周角.六.反馈练习

练习1 直线AB和圆相切于点P,PC,PD为弦,指出图中所有的弦切角以及它们所夹的弧.(图7-137)

/ 5

练习2 如图7-138,DE切⊙O于A,AB,AC是⊙O的弦,若AB=AC,那么∠DAB和∠EAC是否相等?为什么? 分析,由于AB和AC分别是两个弦切角∠DAB和∠EAC所夹的弧,而AB和AC.连结B,C,易证∠B=∠C.于是得到∠DAB=∠EAC.推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.5 / 5

第五篇:讲等比数列性质学案doc

2.4等比数列性质

学习目标:

1、理解等比数列的主要性质, 能推导证明有关性质;

2、能运用有关性质进行计算和证明.【温故知新】

1.已知数列{an}的前4项为2,6,18,54,则它的一个通项公式为.2.若数列{an}的通项公式为an-1n=2),则其前4项依次为,第10项为.3.若{an}满足a1=5,an+1=-2an,则该数列的前4项依次为,a2a=,a3a=,a

4=,其通项公式为.12a

3A【使用说明】

通过不完全归纳,类比等方法得出结论,再利用概念,已有公式证明结论,由感性认识到理性认识,完成以下的内容,做好疑难标记。【自学园地】

类比等差数列性质的学习,自学等比数列的常用性质:

1、等比数列{an},推广式(项与项间关系式):思路:

2、若b是a和c的等比中项,则b=,推广式:

思路:(参考教科书53页练习4)

3、等比数列{an}中,当m+n=p+q(m、n,p,q∈N+)时,有aman=apaq,成立吗? 思路:

4、等比数列{an}中,当m,n,p,q…(m、n,p,q…∈N+)成等差数列时,am,an,ap,aq…

成等比数列。(即:下标成等差,对应项成等比)思路:(参考书上53页练习3)

5.先判断是否为等比数列,再计算公比。(1)若{an}是公比为q的等比数列,则

①{c·an}(c是非零常数)是公比为的等比数列; ②{|an|}是公比为的等比数列;

③{am

n}(m是整数常数)是公比为的等比数列;

④{1a}是等比数列吗?

n

⑤{lnan}是等比数列吗?

⑥每隔k项抽取一项组成的新数列是公比为的等比数列。

(2)若{an}、{bn}分别是公比为q1、q2,项数相同的等比数列,则数列{an·bn}是公比为的等比数列.an

b

是等比数列吗?

n

B【使用说明】

1、将自学中遇到的问题组内交流,标记好疑难点;

2、组内解决不了的问题直接提出来作为全班展示。例1:(等比数列的判定和证明)

数列{an}中,an73n,求证:数列{an}是等比数列。

【题后感悟】证明和判断数列是等比数列的常用方法:

【变式训练】

1.(1){an

}是各项均为正数的等比数列,是等比数列吗?为什么?

(2)已知aan,bn是项数相同的等比数列,n是等比数列吗?

bn

例2:(等比数列的通项公式)

已知等比数列{an},若a1a2a37,a1a2a38,求an。

【题后感悟】

【变式训练】

2.在等比数列中:(1)若a1a2a321,a1a2a3216,求an;

(2)若a3a518,a4a872,求公比q.例3:已知等比数列{an}中,a2a6a10=1,求a3·a9.【题后感悟】

【变式训练】

3.(1)在各项均为正数的等比数列{an}中,若a5·a6=9,则log3a1+log3a2+…+log3a10=

()

(2){an}为等比数列,且a1a9=64,a3+a7=20,求a1

1例4:应用问题

某工厂2008年1月的生产总值为a万元,计划从2008年2月起,每年生产总值比上个月增长m ﹪,那么到2009年8月底该厂的生产总值为多少万元?

【题后感悟】

【变式训练】

4、完成书上53页2、5【课时小结】

【课堂检测】

1、在等比数列{an}中,已知a2= 5,a4 = 10,则公比q的值为________

2、2与8的等比中项为G,则G的值为_______

3、在等比数列{an}中,an>0, a2a42a3a5a4a636, 那么a3a5 =_________

4、已知数列1,a2,a3,4是等比数列,则a2a3=_________

5、在等比数列中a76,a109,那么a4=_________.1、已知{an}是等比数列a2=2,a6=18,则公比 q=()A、11

2B、-

2C、或-

2D、1

42.若2a,b,2c成等比数列,则函数y=ax2+bx+c的图象与x轴的交点的个数是(A.0B. 1C.2D.0或

23、已知等差数列的公差不为0,且第2,3,6项构成等比数列,则公比为()A、1B、2C、3D、44、已知等差数列a,b,c,三项之和为12,且a,b,c+2成等比数列,则a=(A、2或8

B、2C、8

D、-2或-85、在等比数列{an}中,a3a4a5=3,a6a7a8=24,则a9a10a11的值为()A、48

B、7

2C、14

4D、1926、在等比数列an中,a3+a10=a(a≠0),a19+a20=b,则a99+a100等于()9

A、b9

a

8B、ba

C、b10

a

9D、ba))

下载弦切角的性质学案[大全]word格式文档
下载弦切角的性质学案[大全].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平行四边形性质1学案

    19.1.1 平行四边形的性质(第一课时)学案 一、学习目标: 1.加深对平行四边形定义的理解 2.探究后理解平行四边形的对边相等;对角相等的性质并能够进行有关的推理和计算. 二、......

    平行四边形的性质学案

    ☆☆平行四边形的性质学案☆☆平行四边形的性质 练习1(边:平行四边形的对边相等,邻边之和=______周长) (1)在□ABCD中,AB=8,BC=4,其余各边长为多少?其周长等于多少? (2)若□ABCD的周长是......

    怎样证明弦切角

    怎样证明弦切角设圆心为O,连接OC,OB,OA。过点A作Tp的平行线交BC于D,则∠TCB=∠CDA∵∠TCB=90-∠OCD∵∠BOC=180-2∠OCD∴,∠BOC=2∠TCB(弦切角的度数等于它所夹的弧的圆心角的度......

    弦切角的教案设计

    1、教材分析(1)知识结构(2)重点、难点分析重点:定理是本节的重点也是本章的重点内容之一,它在证明角相等、线段相等、线段成比例等问题时,有重要的作用;它与圆心角和圆周角以及......

    不等式的性质互动学案(大全)

    《不等式的性质》互动学案 一、 目标导学: (一)导学前测: 1、什么叫不等式?不等式的解是什么? 2、用不等式表示 (1)a是正数; (2)a是非负数; (3)a与6的和小于5; (4)x与2的差小于-1; (5)x的4倍大......

    第五章、平行线的性质学案

    学科:数学年级:七年级下(人教版)主备教师:审阅:时间:温馨提示: 课题:第五章第二节平行线的性质——平行线的性质(2)NO.8同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度叫做这......

    平行线的性质导学案

    平行线的性质(第1课时)导学案学校:于集中学教师:黄杨业班级:学生姓名学习目标:1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。毛2.经......

    线面平行面面平行性质学案

    必修22.2.3—2.2.4直线与平面平行及平面与平面平行的性质多听、多思、多做,成功就在那里等你。2.2.3-2.2.4直线与平面平行及平面与平面平行的性质【学习目标】1、探究直线与......