第一篇:不等式的性质互动学案(大全)
《不等式的性质》互动学案
一、目标导学:
(一)导学前测:
1、什么叫不等式?不等式的解是什么?
2、用不等式表示
(1)a是正数;(2)a是非负数;
(3)a与6的和小于5;(4)x与2的差小于-1;(5)x的4倍大于7;(6)y的一半小于3.(二)
教学目标:
1、掌握不等式的基本性质;理解不等式与等式性质的联系与区别.2、通过对比不等式的性质和等式的性质,培养学生的思考问题的能力.3、通过对不等式性质的探索,培养学生合作与交流的精神.二、互动导学:
1、我们学习了等式,并掌握了等式的基本性质,等式的基本性质有哪些?(学生思考回答)
不等式与等式只有一字之差,那么它们的性质是否也有相似之处呢?本节课我们将加以验证.2.设问质疑,探究尝试 等式的性质我们已经掌握了,那么不等式的性质是否和等式的性质一样呢?请大家探索后发表自己的看法.学生发表不同意见,请互相讨论后举例说明.∵3<5 ∴3+2<5+2 3-2<5-2 3+a<5+a
3-a<5-a
如3<4 3×3<4×3 3× <4×
3×(-3)>4×(-3)3×(-)>4×(-)3×(-5)>4×(-5)3.归纳总结,概括知识
不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边同乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边同乘以(或除以)同一个负数,不等号的方向改变.4.发散思维,解决问题
(1)将下列不等式化成“x>a”或“x<a”的形式:
① x-5>-1;
② -2x>3;
③ 3x<-9.解:①根据不等式的基本性质1,两边都加上5,得
x>-1+5 即x>4;
②根据不等式的基本性质3,两边都除以-2,得
x<-;
③根据不等式的基本性质2,两边都除以3,得
x<-3.说明:在不等式两边同时乘以或除以同一个数(除数不为0)时,要注意数的正、负,从而决定不等号方向的改变与否.练习:
1、讨论下列式子的正确与错误 ①如果a<b,那么a+c<b+c
②如果a<b,那么a-c<b-c
③如果a<b,那么ac<bc
④如果a<b,且c≠0,那么 >
2、根据不等式的性质.把下列不等式化为x>a或x<a的形式.(1)2x-15<5(2)3x>2x+1(3)3x+1<5x-2
(4)x> x+1.(5)x-2<3;(6)6x<5x-1;
三、友情提示:比较等式和不等式的性质的区别和联系
区别:在等式的两边同时乘以或除以同一个数(除数不为0)时,所得结果仍是等式;在不等式的两边同时乘以或除以同一个数(除数不为0)时会出现两种情况,若为正数则不等号方向不变,若为负数则不等号的方向改变.联系:不等式的基本性质和等式的基本性质,都讨论的是在两边同时加上(或减去),同时乘以(或除以,除数不为0)同一个数时的情况.且不等式的基本性质1和等式的基本性质1相类似.四、学后反思:
《不等式的性质》互动学案
设计人:李庆华 审核人:崔金玲 时间:2008、3 序号:15
五、当堂检测:
一.请你选一选
1.若a+3>b+3,则下列不等式中错误的是()A.- B.-2a>-2b
C.a-2<b-2 D.-(-a)>-(-b)2.若a>b,c<0,则下列不等式成立的是()A.ac>bc B.C.a-c<b-c D.a+c<b+c 3.有理数a、b在数轴上的位置如图1.2(1)所示,在下列各式中对a、b之间的关系表达不正确的是()
A.b-a>0 B.ab>0 C.c-b<c-a D.4.已知4>3,则下列结论正确的是()①4a>3a ②4+a>3+a ③4-a>3-a
A.①② B.①③ C.②③ D.①②③ 二.请你填一填
1.在下列横线上填上适当的不等号(>或<=(1)如果a>b,则a-b__________0(2)如果a<b,则a-b__________0(3)如果2x<x,则x__________0(4)如果a>0,b<0,则ab__________0(5)如果a+b>a,则b__________0(6)如果a>b,则2(a-b)__________3(a-b)
2.在横线上列出不等式(1)若a为非负数,则a__________(2)若a为非正数,则a__________.(3)若a不小于3,则a__________.(4)若a不大于-3,则a__________.三.请你来计算
1.根据不等式的性质.把下列不等式化为x>a或x<a的形式.(1)x>5;(2)-4x>3.(3)x+7>9(4)6x<5x-3(5)x<(6)- x>-1
2.比较a与-a的大小.
第二篇:1.1.2不等式的基本性质导学案
兰州新区永登县第五中学高二数学(文)导学案
班级:小组名称:姓名:得分:
导学案 §1.1.2不等式的基本性质
设计人:薛东梅审核人:梁国栋、赵珍
学习目标:
1.了解两个正数的算术平均与几何平均;2.理解定理1和定理2;3.掌握利用基本不等式求一些函数的最值及解决实际的应用问题。学习重点:对两个定理的理解
学习难点:应用基本不等式求最值问题
学习方法:六动感悟法(读,想,记,思,练,悟)
一、自学评价 1.定理1:
2.定理2:(基本不等式)
3.如果a,b都是正数,我们就称为a,b的为a,b的,于是,基本不等式可以表述为:思考:利用基本不等式
ab
ab求最值的条件?
注意:利用基本不等式求最值的方法与步骤:(1)变正:通过提取“负号”变为正数;
(2)凑定:利用拆项、添项的方法,凑出“和”或“乘积”为定值;(3)求最值:利用基本不等式求出最值;(4)验相等:验证等号能否成立;(5)结论:得出最大值或最小值。
4.已知x,yyx
xy
2二、检测交流
1.用篱笆围一个面积为100m2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?
2.一段长为36m的篱笆围城一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积时多少?
三、拓展探究
1.设a,bR2ab
,且ab,求证ab
ab
2.当x>0时,x1x存在最值,最值为x<0时,x1
x
存在最
3.设x,y为正数,求(xy)(14
xy)的最小值
4.已知x54,求函数y4x214x5的最值
5.猜想对于3个正数a,b,c,abc3
abc成立吗?
第三篇:9、1、2不等式的性质学案
9、1、2不等式的性质(2)
一、自学范围:p126-p127练习上。
二、自学目标:
1、认识“≥”“≤”
2、能根据实际问题列出不等关系式。
3、会求不等式的解集,并能在数轴上表示不等式的解集
三、自学重点:
1、能根据实际问题列出不等关系式。
2、会求不等式的解集,并能在数轴上表示不等式的解集
四、自学过程
1、自学例2上一段,完成填空。
“≥”读作,也可以说是 ;“≤”读作,也可以说是。
2、自学例2 练:解不等式χ+3≥6,并把它的解集在数轴上表示出来。
3、自学例3
五、学效测试
1、由mx<my得到x<y的条件是()
A、m>0 B、m<0 C、m≥0 D、m≤0
2、若a<0,关于x的不等式ax+1>0的解集是()A、x>1/a B、x<1/a C、x>-1/a Dx<-1/a
3、已知A=2x+3y,B=1,则○1当2x+3y-1=0时,A B;
2当2x+3y-1>0时,A B; ○
3当2x+3y-1<0时,A B; ○
4、解不等式5x-12≤2(4x-3),并把它的解集在数轴上表示出来。
5解不等式(x-3)/2≥x-2
第四篇:不等式性质练习题
﹤不等式性质
一、选择题
1、已知ab0,下列不等式恒成立的是()
A.a2
b2
B.ab1C.1111
abD.ab2、已知a0,b1,下列不等式恒成立的是()
A.a
ababB.aaaaaab2baC.bb2aD.bab3、若a,b,c,d四个数满足条件:1dc;2abcd;3adbc,则()
Ab.cdaB.adc bC.dba cD.bdc a4、如果a,b,c满足cba,且ac0,则以下选项中不一定成立的是()
A.abacB.cba0C.cb2ab2D.acac05、下列命题中正确的是()
Aa.b,kN*akbkB.ab,c1
c1c1
ba
C.ab,cdab
cd2
D.ab0,cd0abdc6、如果a,b是满足ab0的实数,则()
A.ababB.aa bC.aa b
D.abab
7、若a0,b0,则不等式b1
x
a的解为()
A.1bx0或0x1aB.111111axbC.xa或xbD.xb或xa
二、填空题
8、若m0,n0,mn0,则m,n,m,n的大小关系为
9、若1ab1,2c3,则abc的取值范围是
10、若0a1,给出下列四个不等式,其中正确的是
1○
1log111a111a1aloga1a○2loga1alogaa
a1a
○3aa○4aaa11、已知三个不等式:1ab02
cad
b
3bcad,以其中两个作为条件,余下一个作为结论,可以组成个正确的命题。、设x,y为实数,且满足3xy2
8,4x2y9,则x3
12y
4的取值范围是
三、解答题、(1)设2a3,4b3,求ab,ab,ab2
13b,ab,a的取值范围。
(2)设二次函数fx的图像关于y轴对称,且3f11,2f23,求f3的最大值和最小值。
14、(1)已知
1a0,A1a2,B1a211
2,C1a,D1a,试将A,B,C,D按从小到大的顺序排列,并说明理由。
bc0,比较aabbcc
与abc
abc
(2)已知a3的大小。
15、火车站有某公司待运的甲种货物1530t,乙种货物1150t。现用A,B两种型号车厢共50节
运送这批货物。已知35t甲种货物和
15t乙种货物可装满一节A型货厢;25t甲种货物和35t乙种货物可装满一节B型货箱,据此安排A,B两种货箱的节数,共有几种方案?若每节A型货箱运费是0.5万元,每节B型货箱运费是0.8万元,哪种方案的运费最少?
第五篇:不等式的性质
《不等式的性质》的教学设计与反思
庆阳市西峰区彭原乡彭原初级中学
马
杰
[教材分析]
《不等式的性质》的内容属于初中数学“数与代数”部分。数量之间除有相等关系外,还有大小不等的关系。正如方程和方程组是讨论等量关系的有利数学工具一样,不等式与不等式组是讨论不等关系的有利数学工具。不等式是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习,有着重要的实际意义。研究不等式在整个初中数学学习中有着承上启下的作用。解决不等式问题对不等关系的研究起着画龙点睛的作用。掌握不等式的性质是顺利解决不等式的重要依据。不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容作理论基础,起到重要的奠基作用。
[学情分析]
1.授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学;充分调动学生的积极性,注重课堂教学的有效性,在练习设计上要针对学生差异采取分层设计的方法。
2.本节课主要研究不等式的性质和简单应用。他与前面学过的等式的性质有联系也有区别,为渗透类比、分类讨论的数学思想提供了很好的素材。由于学生的认知结构是建立在等式的知识基础上对不等式进行学习,所以,在学习的过程中学生容易延续的等式性质的理解,产生惯性的思维定势,尤其体现在对不等式性质3的理解与应用。
[教学目标]
1.经历不等式基本性质的探索过程,掌握不等式的基本性质。
2.经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同。
3.通过创设问题情境和实验探究活动,积极引导学生参与解决数学问题,提高学生学习数学的兴趣,增强学习数学的信心,发展学生的符号表达能力、代数变形能力,在自主探索、合作交流中让学生感受学习的乐趣。[教学重难点]
重点:理解并掌握不等式的性质。
难点:不等式性质的理解应用(特别是性质3的理解应用)。[教学过程]
一、回顾旧知,类比新知
[问题1]我们学习过等式的相关性质,你能说出等式的性质吗?(性质1„„,性质2„„。)
学生回答问题,教师演示天平实验。(等式)
[问题2]我们学习了不等式,它是否也有类似的性质呢? 教师继续演示天平实验。学生观察老师的操作后思考:①.天平被调整到什么状况;②.给不平衡的天平两边同时加入(拿掉)相 同质量的砝码,天平会有什么变化?③.如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?
本环节中,教师应重点关注:
(1).学生能否准确表达等式的性质;(2).学生是否积极参与类比的思考之中。
(通过回顾等式的性质,演示等式性质的产生过程,为不等式性质的研究以及不等式的性质的归纳作好铺垫。培养学生善于运用类比、迁移学习方法的良好习惯。)
二、探索新知,归纳结论
[问题3] 用“>”或“<”填空,并总结其中的规律: ①
5>3, 5+2——3+2,5-2——3-2; ②
-1<3,-1+2____3+2,-1-3——3-3;
③
6<2,6*5——2*5,6*(-5)——2*(-5);④
-2<3,(-2)*6___3*6,(-2)*(-6)____3*(-6).学生填空,师生展示正确结果。
(通过对一组练习的延伸探究,培养学生发现、归纳问题的能力)
[问题4]从以上一组练习种你发现了什么?请你把你的发现与合作小组的同学交流。
通过学生小组合作交流,学生把自己的“发现”进行充分讨论,探究不等式的性质。
[问题5]请用你发现的规律填空: 当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向——。当不等式两边乘同一个数正数时,不等号的方向——;而乘同一个数负数时,不等号的方向——。
[问题6]请大家换一些其他数,验证这个发现。
教师掌握各小组情况,适当引导,尤其(3)(4)是不等式两边同乘以正数、负数,所得结果截然不同,因此要有针对的区别开。
(通过类比等式性质,引导学生探究不等式的性质,培养学生用类比的方法学习知识。)
[问题7]你能用自己的语言概括不等式有哪些性质吗?请小组讨论。
性质1::不等式两边加上或减去同一个数(式子)时,不等号的方向不变;性质2:不等式两边乘(或除以)同一个正数时,不等号的方向不变;性质3:: 不等式两边乘(或除以)同一个负数时,不等号的方向改变;(学生观察对比、探索发现,清晰地掌握性质2和性质3的区别,有利于正确理解和应用;培养学生的概括能力和数学语言表达能力。)
[问题8]你能用字母表示不等式的性质吗?请小组讨论交流。(1).若a>b, 则 : a±c>b±c;
(2).若a>b,c>0 则 : ac>bc或a/c>b/c;(3).若a>b,c<0 则 : ac 等式的性质有2条,进行加减乘除运算时相等关系不变;不等式的性质有3条,加减不等关系不变,乘除要分正、负分别讨论,两个结果不同。 学生合作交流,教师深入指导。本环节中,教师应重点关注: (1).交流合作中,学生是否积极参与类比的思考;(2).学生能否全面地考虑不等式性质2和性质3的区别;(3).学生能否准确表达不等式的性质; (4).学生能否用数学符号语言表达不等式的性质。(培养学生使用符号语言表达数学现象,培养数学文字与符号语言的相互转化能力,提升数学表达能力。) 三、基础训练,巩固应用 1.如果a>b,判断下列不等式是否正确: -4+a>-4+b;()a-3 a+2__b+2; 3a__3b;-2a__-2b; a-3__b-3; a/2__b/2; a-8__b-8; 2a-5__2b-5;-3.5a__-3.5b;-8.5a+2__-8.5b+2; 若a>0,b<0,c<0 则(a-b)c___0; 若a 0 则ac+c___bc+c.3.① a>0 x>y则:ax____ay; ② a<0 x ax___ay.(加深学生对新知识的理解,建立对不等式性质的正确的认识) 四、应用拓展,解决问题 例1:利用不等式的性质解下列不等式: ① x-7>26;② 3x<2x+1; ③ 2/3x>50; ④-4x>3.(学生分组讨论,研究上述不等式的解法,并总结其中的规律,要求学生类比解方程,用准确的数学语言表达。特别是移项表述,类比解方程,用准确的数学语言表达。) 教师深入小组,适当点拨指导,帮助学生总结不等式结构特点,有针对性的总结规律。 师生共同展示讨论结果。 教师板书其中一题,统一要求对不等式解题过程的规范书写,解集在数轴上的正确表示,展示数形结合的整体美感。 本环节中,教师应重点关注: (1).学生能否抓住不等式的结构特点,合理使用不等式性质解不等式; (2).学生能否准确地在数轴上表示不等式的解集;(强调“<”与“≤”在意义上和数轴表示上的区别。) (3).学生能否认真参与小组讨论;是否通过讨论掌握不等式解法; (4).学生能否通过对比解方程的方法,发现解方程与解不等式的方法的区别与联系。练习:教材第119页练习第1题。 (培养学生积极思考,参与交流合作的习惯,建立良好的合作意识,提高学生运用所学知识解决问题的能力。类比解方程的方法解不等式注意性质3,并类比解法的异同,帮助严谨规范的书写习惯。) 五、归纳小结,收获感悟 谈一谈本节课你有什么收获? 学生归纳总结(1)不等式性质1、2、3;(2)简单不等式的解法 本环节中,教师应重点关注: (1).学生是否积极参与总结归纳,是否养成对知识进行及时归纳整理的习惯; (2).学生对本节课所研究的问题的理解程度。(积累数学经验,加强记忆和应用能力。) 六、作业 习题9.1第4、5题。[教学反思] 为创设宽松民主的学习氛围,激发学生思维的主动性,顺利完成教学目标,本节课坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,给学生充分的自主探索时间,引导学生联系已有知识学习新知识,减少学生获取新知识的难度,通过教师的引导,调动学生的积极性,组织学生参与“探究—讨论—交流—总结”的学习过程,让学生在课堂上多活动、多观察,主动参与到了整个教学活动中来,从本节课的设计上看,我自认为知识全面,讲解透彻,条例清晰,系统性强,讲练结合,训练到位,但一节课下来后没有为学生“减负”,忽略了实效性。在今后的教学中我要多问多听、多思多想,真正为学生减轻课业负担,增强教学的实效性。 另外,在今后的教学中要注重学生学习习惯的培养。 作 者:马 杰 甘肃省庆阳市西峰区彭原乡彭原初级中学教师 通讯地址:甘肃省庆阳市西峰区彭原乡彭原初级中学 邮 编:745000