不等式的概念和性质

时间:2019-05-13 21:42:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不等式的概念和性质》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不等式的概念和性质》。

第一篇:不等式的概念和性质

不等式的概念和性质

1、实数的大小比较法则:

设a,b∈R,则a>b;a=b;a

定理1(对称性)a>b 

定理2(同向传递性)a>b,b>c

定理3a>ba+c > b+c推论a>b,c>d

定理4a>b,c>0a>b,c<0

推论1(非负数同向相乘法)a>b≥0,c>d≥0

推论2a>b>0 anbn(nN且n>1)

定理5a>b>0(nN且n>1)

例1.(2010 黄冈模拟)设f(x)=1+logx3,g(x)=2logx2,其中x>0,x≠1.比较f(x)与g(x)的大小.训练1:不等式log2x+3x2<1的解集是____________.例2.设f(x)=1+logx3,g(x)=2logx2,其中x>0,x≠1.比较f(x)与g(x)的大小.例3.函数f(x)=ax2+bx满足:1≤f(1)≤2,2≤f(1)≤4,求f(2)的取值范围.

训练3:若1<α<3,-4<β<2,则α-|β|的取值范围是.例4.已知函数f(x)=x2+ax+b,当p、q满足p+q=1时,试证明:pf(x)+qf(y)≥f(px+qy)对于任意实数x、y都成立的充要条件是o≤p≤1.变式训练4:已知a>b>c,a+b+c=0,方程ax2+bx+c=0的两个实数根为x1、x2.

(1)证明:-<12b22222<1;(2)若x1+x1x2+x22=1,求x1-x1x2+x2;(3)求| x1-x2|.a

算术平均数与几何平均数

1.a>0,b>0时,称为a,b的算术平均数;称为a,b的几何平均数.

2.定理1如果a、bR,那么a2+b22ab(当且仅当 取“=”号)

3.定理2如果a、bR,那么ab≥(当且仅当a=b时取“=”号)即两个数的算

2术平均数不小于它们的几何平均数.

4.已知x、yR,x+y=P,xy=S.有下列命题:

(1)如果S是定值,那么当且仅当x=y时,x+y有最小值 .

(2)如果P是定值,那么当且仅当x=y时,xy有最大值.

211ab≤ab≤a2b2abab2≤(当且仅当a=b时取“=”号).说明:题中的、ab、、11222ab

a2b2分别叫做正数的调和平均数,几何平均数,算术平均数,平方平均数.

222abab例11)设a,bR,已知命题p:ab;命题q:,则p是q成 222

立的A.必要不充分条件

C.充分必要条件B.充分不必要条件 D.既不充分也不必要条件

(2)若a,b,c为△ABC的三条边,且Sa2b2c2,pabbcac,则()

A.S2pB. pS2pC.SpD.pS2p

(3)设x > 0, y > 0,axyxy, b,a 与b的大小关系()1xy1x1y

A.a >bB.a

(4)b克盐水中,有a克盐(ba0),若再添加m克盐(m>0)则盐水就变咸了,试根据这一事实提炼一个不等式.例2.已知a,b,x,y∈R+(a,b为常数),a

xb1,求x+y的最小值.y

ab1,若 x+y的最小值xy训练2:已知a,b,x,y∈R+(a,b为常数),a+b=10,为18,求a,b的值.

例3.已知a, b都是正数,并且a  b,求证:a5 + b5 > a2b3 + a3b2

变式训练3:比较下列两个数的大小:(1)21与23;(2)23;

(3)从以上两小项的结论中,你否得出更一般的结论?并加以证明

例4.甲、乙两地相距S(千米),汽车从甲地匀速行驶到乙地,速度最大不得超过c(千米

/小时).已知汽车每小时的运输成本(元)由可变部分与固定部分组成.可变部分与速度v

(千米/小时)的平方成正比,且比例系数为正常数b;固定部分为a元.

(1)试将全程运输成本Y(元)表示成速度V(千米/小时)的函数.(2)为使全程运输成本最省,汽车应以多大速度行驶?

变式训练4:为了通过计算机进行较大规模的计算,人们目前普遍采用下列两种方法:

第一种传统方法是建造一台超级计算机.此种方法在过去曾被普遍采用.但是人们逐渐发现

建造单独的超级计算机并不合算,因为它的运算能力和成本的平方根成正比.

另一种比较新的技术是建造分布式计算机系统.它是通过大量使用低性能计算机(也叫工作

站)组成一个计算网络.这样的网络具有惊人的计算能力,因为整个网络的计算能力是各个

工作站的效能之和.

假设计算机的计算能力的单位是MIPS(即每秒执行百万条指令的次数),一台运算能力为

6000MIPS的传统巨型机的成本为100万元;而在分布式系统中,每个工作站的运算能力为

300MIPS,其价格仅为5万元.需要说明的是,建造分布式计算系统需要较高的技术水平,初期的科技研发及网络建设费用约为600万元.

请问:在投入费用为多少的时候,建造新型的分布式计算系统更合算?

不等式证明

(一)1.比较法是证明不等式的一个最基本的方法,分比差、比商两种形式.

ab0ab

(1) ab0ab ab0ab

它的基本步骤:作差——变形——判断,差的变形的主要方法有配方法,分解因式法,分子有理化等.

(2)作商比较法,它的依据是:若a>0,b>0,则

a1abba1ab ba1abb

基本步骤是:作商——变形——判断商与1的大小.它在证明幂、指数不等式中经常用到.

2.综合法:综合法证题的指导思想是“由因导果”,即从已知条件或基本不等式出发,利用不等式的性质,推出要证明的结论.

3.分析法:分析法证题的指导思想是“由果索因”,即从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够确定这些充分条件都已具备,那么就可以判定所要证的不等式成立.

例1.已知a0,b0,求证:a

bb

aa

训练1:已知a、b、x、y∈R+且xy11>,x>y.求证:>. abxayb

例2.已知a、b∈R+,求证:(ab)(ab1)22(abba)

训练2:已知a、b、cR,求证:a2b2c24ab3b2c

例3.已知△ABC的外接圆半径R=1,SABC

sabc,t1,a、b、c是三角形的三边,令4111.求证:ts abc

222变式训练3:若a,b,c为△ABC的三条边,且Sabc,pabbcac,则()

A.S2pB. pS2pC.SpD.pS2p

1. a

x1. 2例4.设二次函数f(x)ax2bxc(a0),方程f(x)x0的两个根x1、x2满足0x1x21)当x∈(0,x1)时,证明:x

训练4:设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:(1)a>0且-2<a<-1;(2)方程f(x)=0在(0,1)内有两个实根.b

不等式证明

(二)证明不等式的其它方法:反证法、换元法、放缩法、判别式法等.

反证法:从否定结论出发,经过逻辑推理导出矛盾,证实结论的否定是错误的,从而肯定原命题是正确的证明方法.

换元法:对结构较为复杂,量与量之间关系不甚明了的命题,通过恰当引入新变量,代换原命题中的部分式子,简化原有结构,使其转化为便于研究的形式的证明方法.

放缩法:为证明不等式的需要,有时需舍去或添加一些代数项,使不等式的一边放大或缩小,利用不等式的传递性,达到证题的目的,这种方法叫放缩法.

判别式法:根据已知的式子或构造出来的一元二次方程的根,一元二次不等式的解集,二次函数的性质等特征,确定其判别式所应满足的不等式,从而推出所证的不等式成立. 例1.已知f(x)=x2+px+q,(1)求证:f(1)+f(3)-2f(2)=2;

(2)求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于.

训练1:设a、b、cR,那么三个数a111、b、c()bca1

2A.都不大于2B.都不小于2

C.至少有一个不大于2D.至少有一个不小于2

解:D

例2.(1)已知x2+y2=1,求证:a2yaxa2.(2)已知a、b∈R,且a2+b2≤1,求证:a22abb22.训练2: 设实数x,y满足x2+(y-1)2=1,当x+y+c≥0时,c的取值范围是())A.[21,)D.(21] B.(21] C.[1,解:A

例3.若nN,且n2,求证:

1211111 n123n1,则f(n),g(n),(n)的大小顺2n训练3:若f(n)=n21-n,g(n)=n-n21,(n)=

序为____________.

解:g(n)>φ(n)>f(n)

1x2x13. 例4.证明:22x1

2训练4:设二次函数f(x)ax2bxc(a、b、cR且a0),若函数yf(x)的图象与直线yx和yx均无公共点.

(1)求证:4acb21

(2)求证:对于一切实数x恒有|ax2bxc|1 4|a|

第二篇:不等式性质练习题

﹤不等式性质

一、选择题

1、已知ab0,下列不等式恒成立的是()

A.a2

b2

B.ab1C.1111

abD.ab2、已知a0,b1,下列不等式恒成立的是()

A.a

ababB.aaaaaab2baC.bb2aD.bab3、若a,b,c,d四个数满足条件:1dc;2abcd;3adbc,则()

Ab.cdaB.adc bC.dba cD.bdc a4、如果a,b,c满足cba,且ac0,则以下选项中不一定成立的是()

A.abacB.cba0C.cb2ab2D.acac05、下列命题中正确的是()

Aa.b,kN*akbkB.ab,c1

c1c1

ba

C.ab,cdab

cd2

D.ab0,cd0abdc6、如果a,b是满足ab0的实数,则()

A.ababB.aa bC.aa b

D.abab

7、若a0,b0,则不等式b1

x

a的解为()

A.1bx0或0x1aB.111111axbC.xa或xbD.xb或xa

二、填空题

8、若m0,n0,mn0,则m,n,m,n的大小关系为

9、若1ab1,2c3,则abc的取值范围是

10、若0a1,给出下列四个不等式,其中正确的是

1○

1log111a111a1aloga1a○2loga1alogaa

a1a

○3aa○4aaa11、已知三个不等式:1ab02

cad

b

3bcad,以其中两个作为条件,余下一个作为结论,可以组成个正确的命题。、设x,y为实数,且满足3xy2

8,4x2y9,则x3

12y

4的取值范围是

三、解答题、(1)设2a3,4b3,求ab,ab,ab2

13b,ab,a的取值范围。

(2)设二次函数fx的图像关于y轴对称,且3f11,2f23,求f3的最大值和最小值。

14、(1)已知

1a0,A1a2,B1a211

2,C1a,D1a,试将A,B,C,D按从小到大的顺序排列,并说明理由。

bc0,比较aabbcc

与abc

abc

(2)已知a3的大小。

15、火车站有某公司待运的甲种货物1530t,乙种货物1150t。现用A,B两种型号车厢共50节

运送这批货物。已知35t甲种货物和

15t乙种货物可装满一节A型货厢;25t甲种货物和35t乙种货物可装满一节B型货箱,据此安排A,B两种货箱的节数,共有几种方案?若每节A型货箱运费是0.5万元,每节B型货箱运费是0.8万元,哪种方案的运费最少?

第三篇:不等式的性质

《不等式的性质》的教学设计与反思

庆阳市西峰区彭原乡彭原初级中学

[教材分析]

《不等式的性质》的内容属于初中数学“数与代数”部分。数量之间除有相等关系外,还有大小不等的关系。正如方程和方程组是讨论等量关系的有利数学工具一样,不等式与不等式组是讨论不等关系的有利数学工具。不等式是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习,有着重要的实际意义。研究不等式在整个初中数学学习中有着承上启下的作用。解决不等式问题对不等关系的研究起着画龙点睛的作用。掌握不等式的性质是顺利解决不等式的重要依据。不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容作理论基础,起到重要的奠基作用。

[学情分析]

1.授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学;充分调动学生的积极性,注重课堂教学的有效性,在练习设计上要针对学生差异采取分层设计的方法。

2.本节课主要研究不等式的性质和简单应用。他与前面学过的等式的性质有联系也有区别,为渗透类比、分类讨论的数学思想提供了很好的素材。由于学生的认知结构是建立在等式的知识基础上对不等式进行学习,所以,在学习的过程中学生容易延续的等式性质的理解,产生惯性的思维定势,尤其体现在对不等式性质3的理解与应用。

[教学目标]

1.经历不等式基本性质的探索过程,掌握不等式的基本性质。

2.经历通过类比、猜测、验证发现不等式性质的探索过程,初步体会不等式与等式的异同。

3.通过创设问题情境和实验探究活动,积极引导学生参与解决数学问题,提高学生学习数学的兴趣,增强学习数学的信心,发展学生的符号表达能力、代数变形能力,在自主探索、合作交流中让学生感受学习的乐趣。[教学重难点]

重点:理解并掌握不等式的性质。

难点:不等式性质的理解应用(特别是性质3的理解应用)。[教学过程]

一、回顾旧知,类比新知

[问题1]我们学习过等式的相关性质,你能说出等式的性质吗?(性质1„„,性质2„„。)

学生回答问题,教师演示天平实验。(等式)

[问题2]我们学习了不等式,它是否也有类似的性质呢? 教师继续演示天平实验。学生观察老师的操作后思考:①.天平被调整到什么状况;②.给不平衡的天平两边同时加入(拿掉)相 同质量的砝码,天平会有什么变化?③.如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?

本环节中,教师应重点关注:

(1).学生能否准确表达等式的性质;(2).学生是否积极参与类比的思考之中。

(通过回顾等式的性质,演示等式性质的产生过程,为不等式性质的研究以及不等式的性质的归纳作好铺垫。培养学生善于运用类比、迁移学习方法的良好习惯。)

二、探索新知,归纳结论

[问题3] 用“>”或“<”填空,并总结其中的规律: ①

5>3, 5+2——3+2,5-2——3-2; ②

-1<3,-1+2____3+2,-1-3——3-3;

6<2,6*5——2*5,6*(-5)——2*(-5);④

-2<3,(-2)*6___3*6,(-2)*(-6)____3*(-6).学生填空,师生展示正确结果。

(通过对一组练习的延伸探究,培养学生发现、归纳问题的能力)

[问题4]从以上一组练习种你发现了什么?请你把你的发现与合作小组的同学交流。

通过学生小组合作交流,学生把自己的“发现”进行充分讨论,探究不等式的性质。

[问题5]请用你发现的规律填空: 当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向——。当不等式两边乘同一个数正数时,不等号的方向——;而乘同一个数负数时,不等号的方向——。

[问题6]请大家换一些其他数,验证这个发现。

教师掌握各小组情况,适当引导,尤其(3)(4)是不等式两边同乘以正数、负数,所得结果截然不同,因此要有针对的区别开。

(通过类比等式性质,引导学生探究不等式的性质,培养学生用类比的方法学习知识。)

[问题7]你能用自己的语言概括不等式有哪些性质吗?请小组讨论。

性质1::不等式两边加上或减去同一个数(式子)时,不等号的方向不变;性质2:不等式两边乘(或除以)同一个正数时,不等号的方向不变;性质3:: 不等式两边乘(或除以)同一个负数时,不等号的方向改变;(学生观察对比、探索发现,清晰地掌握性质2和性质3的区别,有利于正确理解和应用;培养学生的概括能力和数学语言表达能力。)

[问题8]你能用字母表示不等式的性质吗?请小组讨论交流。(1).若a>b, 则 : a±c>b±c;

(2).若a>b,c>0 则 : ac>bc或a/c>b/c;(3).若a>b,c<0 则 : ac

等式的性质有2条,进行加减乘除运算时相等关系不变;不等式的性质有3条,加减不等关系不变,乘除要分正、负分别讨论,两个结果不同。

学生合作交流,教师深入指导。本环节中,教师应重点关注:

(1).交流合作中,学生是否积极参与类比的思考;(2).学生能否全面地考虑不等式性质2和性质3的区别;(3).学生能否准确表达不等式的性质;

(4).学生能否用数学符号语言表达不等式的性质。(培养学生使用符号语言表达数学现象,培养数学文字与符号语言的相互转化能力,提升数学表达能力。)

三、基础训练,巩固应用

1.如果a>b,判断下列不等式是否正确:

-4+a>-4+b;()a-3b.b ;()-5a>-5b()2.如果a>b,用用“>”或“<”填空:

a+2__b+2; 3a__3b;-2a__-2b; a-3__b-3; a/2__b/2; a-8__b-8; 2a-5__2b-5;-3.5a__-3.5b;-8.5a+2__-8.5b+2; 若a>0,b<0,c<0 则(a-b)c___0; 若a 0 则ac+c___bc+c.3.① a>0 x>y则:ax____ay; ② a<0 x

ax___ay.(加深学生对新知识的理解,建立对不等式性质的正确的认识)

四、应用拓展,解决问题

例1:利用不等式的性质解下列不等式:

① x-7>26;② 3x<2x+1;

③ 2/3x>50;

④-4x>3.(学生分组讨论,研究上述不等式的解法,并总结其中的规律,要求学生类比解方程,用准确的数学语言表达。特别是移项表述,类比解方程,用准确的数学语言表达。)

教师深入小组,适当点拨指导,帮助学生总结不等式结构特点,有针对性的总结规律。

师生共同展示讨论结果。

教师板书其中一题,统一要求对不等式解题过程的规范书写,解集在数轴上的正确表示,展示数形结合的整体美感。

本环节中,教师应重点关注:

(1).学生能否抓住不等式的结构特点,合理使用不等式性质解不等式;

(2).学生能否准确地在数轴上表示不等式的解集;(强调“<”与“≤”在意义上和数轴表示上的区别。)

(3).学生能否认真参与小组讨论;是否通过讨论掌握不等式解法;

(4).学生能否通过对比解方程的方法,发现解方程与解不等式的方法的区别与联系。练习:教材第119页练习第1题。

(培养学生积极思考,参与交流合作的习惯,建立良好的合作意识,提高学生运用所学知识解决问题的能力。类比解方程的方法解不等式注意性质3,并类比解法的异同,帮助严谨规范的书写习惯。)

五、归纳小结,收获感悟 谈一谈本节课你有什么收获?

学生归纳总结(1)不等式性质1、2、3;(2)简单不等式的解法 本环节中,教师应重点关注:

(1).学生是否积极参与总结归纳,是否养成对知识进行及时归纳整理的习惯;

(2).学生对本节课所研究的问题的理解程度。(积累数学经验,加强记忆和应用能力。)

六、作业

习题9.1第4、5题。[教学反思]

为创设宽松民主的学习氛围,激发学生思维的主动性,顺利完成教学目标,本节课坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,给学生充分的自主探索时间,引导学生联系已有知识学习新知识,减少学生获取新知识的难度,通过教师的引导,调动学生的积极性,组织学生参与“探究—讨论—交流—总结”的学习过程,让学生在课堂上多活动、多观察,主动参与到了整个教学活动中来,从本节课的设计上看,我自认为知识全面,讲解透彻,条例清晰,系统性强,讲练结合,训练到位,但一节课下来后没有为学生“减负”,忽略了实效性。在今后的教学中我要多问多听、多思多想,真正为学生减轻课业负担,增强教学的实效性。

另外,在今后的教学中要注重学生学习习惯的培养。

者:马

甘肃省庆阳市西峰区彭原乡彭原初级中学教师 通讯地址:甘肃省庆阳市西峰区彭原乡彭原初级中学 邮

编:745000

第四篇:不等式的性质教案

不等式性质教案

西南大学2010级4班 孙丹 【课标要求】

1.不等关系

通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系;

2不等式的性质

了解不等式的性质,并会用其证明不等式;

【教学重难点】

1、教学重点:掌握不等式性质的三条公理,并运用公理进行比较大小。

2、教学难点:正确运用不等式的三条公理进行不等式变形。

【教学目标】

1、探索并掌握不等式的基本性质;

2、会用不等式的基本性质进行简单化简。

【教学方法】

通过观察、分析、讨论,引导学生归纳总结出不等式的三条公理,从具体上升到理论,再由理论指导具体的练习,从而加强学生对知识的理解和掌握。【命题走向】

不等式历来是高考的重点内容。对于本将来讲,考察有关不等式性质的基础知识、基本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。本将内容在复习时,要在思想方法上下功夫.预测高考命题趋势:

1.从题型上来看,选择题、填空题都有可能考察,把不等式的性质与函数、三角结合起来综合考察不等式的性质、函数单调性等,多以选择题的形式出现,解答题以含参数的不等式的证明、求解为主;2.利用基本不等式解决像函数f(x)x

考察的重点和热点,应加强训练。a,(a0)的单调性或解决有关最值问题是x

【教学过程】

一、创设情境 复习引入

(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)问题:

1、什么是等式?等式的基本性质是什么?

2、什么是不等式?

1.不等式的性质比较两实数大小的方法——求差比较法

公理: abab0;

abab0;

abab0。

性质1:若ab,则ba;若ba,则ab.即abba。

说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。性质2:若ab,且bc,则ac。

说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数,定理2称不等式的传递性。

性质3:若ab,则acbc。

说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;

(2)定理3的证明相当于比较ac与bc的大小,采用的是求差比较法;

(3)定理3的逆命题也成立;

(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。

推论1:不等式中的任意一项都可以把它的符号变成相反的符号后,从不等式的一边移到另一边。(移项法则)

推论2:若ab,且cd,则acbd。

说明:(1)推论2的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式.定理4.如果ab且c0,那么acbc;如果ab且c0,那么acbc。推论1:如果ab0且cd0,那么acbd。

证明:∵ab0,c0,acbc,又∵cd0,b0,bcbd,∴由传递性,有acbd,得证。

说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论1可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。

nn推论2:如果ab0,那么ab(nN且n1)。

推论3:如果ab0,那么ab(nN且n1)。【典例解析】

例1:应用不等式的性质,证明下列不等式:

(1)已知a>b,ab>0,求证:1/a>1/b;

(2)已知a>b,cb-d;

(3)已知a>b>0,0 b/d

证明:

(1)因为ab>0,所以 1/ab>0又因为a>b,所以 a.1/ab>b.1/ab即1/b>1/a因此 1/a>1/b

(2)因为a>b,cb,-c>-d,根据性质3的推论2,得a+(-c)>b+(-d),即a-c>b-d.(3)因为01/d>0 又因为a>b>0,所以a.1/c>b.1/d即a/c>b/d

例2.已知a>b,不等式:(1)a2>b2;(2)1/a>1/b ;(3)1/(a-b)>1/a

成立的个数是()

(A)0(B)1(C)2(D)

3答案:A

例3.设A=1+2x4,B=2x3+x2,x∈R,则A,B的大小关系是。

答案:A≥B

例4.(1)如果30

(2)若-3

答案:(1)18

(2)因为-4

例5.若-π/2 ≤a<b≤π/2,求(a +b)/2 ,(a-b)/2的取值范围。

-π/2<(a +b)/2<π/2,-π/2 ≤(a-b)/2<0

练习1已知函数f(x)= a x²-c,-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围。

解:因为f(x)= a x²-c,所以f(1)= a-c,f(2)=4 a-c解得a=1/3[f(2)=-f(1)],c=1/3f(2)-4/3f(1)

所以f(3)=9a-c=8/3f(2)-5/3f(1)

因为-4≤f(1)≤-1,-1≤f(2)≤5,所以8/3≤8/3f(2)≤40/3,5/3≤-5/3f(1)≤20/3

练习2已知-4≤a-b≤-1,-1≤4a-b≤5,求9a-b的取值范围。

解:设9a-b=m(a-b)+n(4a-b)=(m+4n)a-(m+n)b,令m+4n=9,-(m+n)=-1,解得,m=-5/3,n=8/3

所以9a-b=-5/3(a-b)+8/3(4a-b)

由-4≤a-b≤-1,得 5/3≤-5/3(a-b)≤20/3

由-1≤4a-b≤5,得由-1≤4a-b≤5,得-8/3≤8/3(4a-b)≤40/3

以上两式相加得-1≤9a-b≤20.五.【思维总结】

1.不等式证明常用的方法有:比较法、综合法和分析法,它们是证明不等式的最基本的方法。

(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述:如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证;

(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野。

2.不等式证明还有一些常用的方法:换元法、放缩法、反证法、函数单调性法、判别式法、数形结合法等。换元法主要有三角代换,均值代换两种,在应用换元法时,要注意代换的等价性。放缩性是不等式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查。有些不等式,从正面证如果不易说清楚,可以考虑反证法.凡是含有“至少”、“惟一”或含有其他否定词的命题,适宜用反证法.证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点.

第五篇:不等式的性质教案

【教学重点与难点】

教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3.

教学难点:正确应用不等式的三条基本性质进行不等式变形.

【教学目标】

1、探索并掌握不等式的基本性质

2、会用不等式的基本性质进行化简

【教学方法】

通过观察、分析、讨论,引导学生归纳总结出不等式的三条基本性质,从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.

【教学过程】

一、创设情境 复习引入

(设计说明:设置以下习题是为了温故而知新,为学习本节内容提供必要的知识准备.)

问题:

1、什么是等式?等式的基本性质是什么?

2、什么是不等式?

3、用“>”或“<”填空.

(1)3<7(2)2<3(3)2<3

3+1 7+1 2×5 3×5 2×(-1)3×(-1)

3-5 7-5 2÷2 3÷2 2×(-5)3×(-5)3+a 7+a 2÷(-2)3÷(-2)(教学说明: 复习等式的基本性质后学生自然会联想到,不等式是否有与等式相类似的性质,从而引起学生的探究欲望.接着问题3为学生探究不等式的性质提供了载体,通过观察,寻找规律,得出不等式的性质.)

二、师生互动,探索新知

1、不等式的基本性质

问题1:观察思考问题3,猜想出不等式的性质

先让学生独立思考,后合作交流,通过充分讨论,类比等式性质得出不等式的性质.观察时,引导学生注意不等号的方向,通过(1)题学生容易得出不等式性质1:

不等式基本性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.

比较(2)、(3)题,注意观察不等号方向,并思考不等号方向的改变与什么有关?由学生概括总结,教师补充完善得出:

不等式基本性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.

不等式基本性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.

问题2:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.

教师 强调指出:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.

问题3:尝试用数学式子表示不等式的三条基本性质.

学生思考出答案,教师订正,最后得出:(1)如果a>b,那么a±c>b±c

(2)如果a>b,c>0那么ac>bc(或 >)

(3)如果a>b,c<0那么ac<)

问题4:不等式的基本性质与等式的基本性质有哪些区别、联系?

学生独立思考、小组交流讨论,师生归纳得出:

区别:等式两边都乘以(或除以)同一个数(除数不为0)时,结果仍相等;不等式两边都乘以(或除以)同一个数(除数不为0)时,会出现两种情况,若是正数,不等号方向不改变,若是负数不等号方向要改变,而且不等式两边同乘以0,结果相等.联系:不等式性质和等式性质都讨论的是两边都加上或减去同一个数的情况和两边都乘以或除以同一个数(除数不为0)的情况,即研究“形式”一致.(教学说明:通过观察具体数字运算的大小比较,联系已学过的等式的性质,让学生归纳出不等式的三条基本性质,并分别用式子的形式表示它们.用式子表示是个抽象概括的过程,只有理解了相关内容才会概括表示它们.研究不等式的基本性质与等式的基本性质的区别与联系可以帮助学生用类比的方法来记忆与学习.)

2、不等式性质的应用

例1:利用不等式的性质,把下列不等式化成“x>a” 或“x

(1)x-7>26;(2)3x<2x+1;

(3)x>50;(4)-4x>3.解:(l)根据不等式基本性质1,不等式的两边都加上7,不等号的方向不变. 得

x-7+7>26 +7.x>33

(2)根据不等式基本性质1,两边都减去2x,不等号的方向不变,得

3x-2x<2x+1-2x

x<1

(3)根据不等式基本性质2,两边都乘以,不等号的方向不变,得

x>75

(4)根据不等式基本性质3,两边都除以-4,不等号的方向改变,得

x<-

(教学说明:这些不等式比较简单,可以利用不等式的性质直接求解,从而加深对这些性质的认识.教师板书(1)题解题过程.(2)(3)(4)题由学生在练习本上完成,指定三个学生板演,然后师生共同判断板演是否正确.解题时要引导学生与解一元一次方程的思路进行对比,有助于加强知识之间的前后联系,突出新知识的特点,并将原题与“x>a” 或“x

例2:三角形中任意两边之差与第三边有什么大小关系? a b

师生共析:三角形的两边之和与第三边有什么关系? c

三角形的任意两边之和大于第三边,如图,我们设三角形三边长分别为a,b,c,那么用式子如何表示前面的结果? a +b>c, a+c>b, b+c>a

我们现在求的是两边之差与第三边的关系,所以由不等式的性质1将上式变形为:

由a +b>c得a>c-b, b>c-a.同理,由a+c>b, b+c>a可得c>b-a, b>a-c,c>a-b, a>b-c.这就是说,三角形中任意两边之差小于第三边.(教学说明:此问题应用不等式的性质由“三角形的任意两边之和大于第三边”得出“三角形中任意两边之差小于第三边”这个与已有结论等价的新结论.“三角形的任意两边之和大于第三边”对应的是三个形式一样的不等式,而不是一个不等式.由这三个不等式再推出“三角形中任意两边之差小于第三边”.为了加深学生的感性认识,可以通过测量的方法验证这个结论.)

三、巩固训练,熟练技能:

1、如果a>b,那么(1)a-3 b-3,(2)2a 2b

(3)-3a-3b,(4)a-b 0

(5)(6)(6)-b_____-a.2、在下列各题横线上填入不等号,并说明是根据不等式的哪一条基本性质.

(1)若a–3<9,则a_____12;(2)若-a<10,则a_____–10;

(3)若 a>–1,则a_____–4;(4)若-a>0,则a_____0.

3、利用不等式的性质解下列不等式,并在数轴上表示解集

(解未知数为x的不等式,就是要使不等式逐步化为“x>a”或“x<a”的形式)

(1)x-1<0;(2)x>-x+6;

(3)3x>7;(4)-x<-3.(教学说明:这些练习进一步加深了学生对不等式性质的理解,做此练习题时,应让学生注意观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.做第3题时要引导学生与解一元一次方程的思路进行对比,让学生认识到应用不等式的性质1变形,相当于移项.)

四、总结反思,情意发展

1、不等式的基本性质是什么?如何用数学式子表示?

2、在本节课的学习中,你还有什么疑惑?

(教学说明:在师生共同回顾本节课所学内容的基础上,教师指出:在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题.)

五、课堂小结

1.本节主要学习了不等式的三条基本性质及应用性质解简单的不等式.2.主要用到的思想方法是类比思想.3.注意的问题:

当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,若是负数,要变两个号,一个性质符号,另一个是不等号,对于未给定范围的字母,应分情况讨论.

六、布置课后作业:

1、课本127页练习

2、课本128习题9.1的5、6、7题

(教学说明:进一步巩固本节课所学知识.)

七、拓展练习

1、指出下列各题中不等式变形的依据:

(1)由3a>2,得(2)由-5a>2,得(3)由4a>3a+ 1,得a>1

(4)由a>b,得(5)由a>b,得2-a<2-b

2、利用不等式的性质解下列不等式,并在数轴上表示解集:(1)x+2>-1(2)5x≤7x-8(3)(4)6x≥-12

3、某长方体形状的容器长5cm,宽3cm,高10cm。容器内原有水的高度为3cm,现准备向它继续注水。用V(单位:cm3)表示新注入水的体积,写出V的取值范围。

【评价与反思】及交流体会

通过具体的事例观察并归纳出不等式的三条基本性质,引导学生用数学式子表示三条基本性质,同时注意将不等式的三条基本性质与等式的基本性质进行比较,以加深学生的理解.在教学过程中,注重培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.同时培养了学生积极主动的参与意识和勇敢尝试、探索的精神.

下载不等式的概念和性质word格式文档
下载不等式的概念和性质.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式及其性质评课

    《不等式及其性质》评课稿 今天听了邓虎老师的一节《不等式及其性质》,有了很大的收获,现将我的体会和个人意见归纳如下: 一、 利用已有知识,渗透类比思想 本节课教学设计,充分尊......

    不等式性质教学设计

    2010-2011学年度第二学期关集中心校七年级数学组导学案专用纸 主备人:胡伟 审核人: 使用人: 第11周 讨论时间: 不等式的基本性质(1)教学设计 学习目标 1、理解、掌握不等式的基本......

    不等式的性质 教案

    不等式的性质 教材分析 这节的主要内容是不等式的概念、不等式与实数运算的关系和不等式的性质.这部分内容是不等式变形、化简、证明的理论依据及基础.教材通过具体实例,让学......

    票据的概念和性质

    赢了网s.yingle.com 遇到保险纠纷问题?赢了网律师为你免费解惑!访问>> http://s.yingle.com 票据的概念和性质 票据是随着商品经济的产生和繁荣而出现和发展起来的。就其历......

    幂函数的概念及其性质

    幂函数的概念及其性质 一、单选题(共12道,每道8分) 1.下列命题正确的是( ) A.幂函数在第一象限都是增函数B.幂函数的图象都经过点(0,0)和(1,1) C.若幂函数是奇函数,则是定义......

    计划的概念及其性质

    计划的概念及其性质在管理学中,计划具有两重含义,其一是计划工作,是指根据对组织外部环境与内部条件的分析,提出在未来一定时期内要达到的组织目标以及实现目标的方案途径。其二......

    不等式的性质教学反思(大全)

    教前设想这节课是一节概念课,学习不等式的性质。前面学生学习了不等式的解和解级以及等式的性质,为了解一元一次不等式,我们要引入不等式的性质来解。这节课的内容不是很多,重点......

    不等式的基本性质说课稿

    不等式的基本性质 各位老师,你们好: 我今天说课的内容是职中教材人教版基础模块上册第二章第二节不等式的基本性质 一、 分析教材(说教材) (一)教材地位和作用: 不等式是刻画现实世......