第一篇:数学思想方法与初中数学教学的学习日志1
数学思想方法与初中数学教学的学习日志1
我教学已经一年了,经验尚不足,但是在学习数学的过程中,我的体会就是学习数学不是做多少多少题,而是在学习数学的时候研究数学思想方法,只有掌握了数学方法,才能在数学学习中达到事半功倍的效果。
在实际教学中,我们教师要随时注意思想方法的渗透,数学思想有转化思想、方程思想、数形结合思想、分类讨论思想。常见的数学方法有:待定系数法、配方法、换元法、分析法、综合法、类比法等等。我任教七年级数学,在实际教学中,我觉得我接触的数学思想方法有转化思想、数形结合思想和待定系数法。比如,在老师讲的二元一次方程组的解法上,不管是代入消元法还是加减消元法,都是用的转化思想:把二元转化为一元。在实际教学中,我就是注重转化思想的,并且在后面的开拓视野中,有的学生问我:“老师,三元一次方程组的解法是不是也是把三元先转化为两元,再把两元转化为一元啊??”我回答他“非常好,看来你明白这种转化思想了。”
我觉得这个老师讲的非常好,数学思想方法在数学学习中非常重要,在实际教学中,我会认真研究,不断进步。
第二篇:初中思想方法与初中数学教学
《初中思想方法与初中数学教学》――学习心得1
通过参加这次学习,我得到了很多的启发,首先,我了解了什么是数学思想方法,并知道了数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它对数学教学有着重要的促进和指导作用,它不仅是学生形成良好认知结构的纽带,还是由知识转化为能力的桥梁,是培养学生数学意识,形成优良思维素质的关键,因此我们要有加强数学思想方法教学的意识并要在数学教学过程中不断地挖掘和渗透。其次,它也解决了我在数学教学过程中所遇到困惑与不解,使我明确了在今后的教学中应充分挖掘由数学基础知识所反映出来的数学思想方法。我们的教学实践也表明:中小学数学教育的现代化,主要不是内容的现代化,而是数学思想、方法及教学手段的现代化,加强数学思想方法的教学是基础数学教育现代化的关键,特别是对能力培养这一问题的探讨与摸索,以及社会对数学价值的要求。使我们更进一步地认识到数学思想方法对数学教学的重要性。
第三篇:数学思想方法与初中数学教学作业1
《初中数学思想方法与初中数学教学》作业:
新课程把基本的数学思想方法作为基础知识的重要组成部分,在数学课程标准中明确地提出来,这不仅是课程标准体现义务教育性质的重要表现,也是对学生实施创新教育、培养创新思维的重要保证。数学问题的解决离不开以数学思想为指导,以数学方法为手段。数学思想方法是从数学内容中提炼出来的数学学科的精髓,是数学素养的重要内容之一。在初中数学教学中,常见的数学思想有:转化思想、数形结合思想、分类讨论思想等等。数学思想方法是提高学生的数学思维能力和数学素养的重要保障。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。下面谈谈几种常见的数学思想方法在初中数学教学中的应用:
(一)转化思想
转化思想是初中数学中常见的一种数学思想,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把未知的问题转化为已知的问题,数学问题的解决过程就是一系列转化的过程,转化是化难为易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。例如:初中数学“分式方程的解法” 就是把分式方程转化为整式方程去求解,;又如 “二元一次方程组的解法”就是通过消元这个手段,化二元一次方程组为一元一次方程,把未学知识转化为已学知识来加以解决。
(二)分类讨论的思想方法
分类思想已渗透到中学数学的各个方面,如“两个直角三角形相似”,没有指明顺序,此时必须分2种情况进行讨论,2组直角边可以分别对应;还有说“一个直角三角形的两条边长为3和4则第三边长为多少?”这里也要讨论,4不一定是直角边,若它是斜边呢?所以答案也是2个;还有“等腰三角形有一个角是70 º则其他角度数为多少?”这也得分2种情况去讨论,这个角是顶角怎样,是底角又咋样?这样的例子有很多很多,不胜枚举。分类讨论思想,既能使问题得到解决,又能使学生学会多角度、多方面去分析、解决问题,从而培养学生思维的严密性、全面性。
㈢数形结合的思想方法
著名数学家华罗庚说:“数无形,少直观,形无数,难入微”,这句话阐明了数形结合思想的重要意义。例如:在数学教学中,我们借助数形结合的载体——数轴,学习研究了数与点的对应关系,相反数、绝对值的定义,有理数大小比较的法则等,利用数形结合思想大大减少了引进这些概念的难度;在初中学习函数知识的时候,更是借助于函数的图象来探讨函数的知识,这是数形结合思想的最生动的应用。解析式中k、b如何决定函数图象的,必须让学生结合图像去记忆,这样才能又准又牢;再如几何部分用的就更多了,可以说只要做几何题就离不开画草图,直观而且便于去分析。
总之,在渗透数学思想、方法的过程中,教师要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。另外,教师也必须分层次地进行渗透和教学。按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难地贯彻数学思想、方法的教学。教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处。
第四篇:初中数学思想方法及其教学.
初中数学思想方法及其教学(1)
新课程教学大纲提出:初中数学的基础知识主要是初中代数、几何中的要领法规、公式、性质、公理、定理以及其内容所反映出来的数学思想和方法。数学思想、方法反映着数学概念、原理及规律的联系和本质,是学生形成良好的认知结构和纽带,是培养学生能力的桥梁。在数学教学中渗透数学思想、方法是全面提高初中数学教学质量的重要途径。
一、初中数学思想和方法
数学思想是研究和解决数学问题时的指导思想,是在对数学知识和方法的本质认识和概括的基础上形成的一般性观点。数学方法是指具有可操作性并能具体解决数学问题的方法,数学思想来源于数学方法,是数学方法的抽象和概括,反过来又指导数学方法的实施,而数学方法是数学思想的具体体现。
(一)数学思想
初中数学中的数学思想很多,这里着重谈一谈转化思想、方程思想、数形结合思想及分类思想。
1.转化思想
转化思想是指在研究和解决数学学问题时由一种教学对象转化为另一种数学对象时所采用的数学方法的指导思想。运用转化思想可以把生疏的新的问题转化成熟悉的旧的问题,把复杂的问题转化成简单的问题,把一般问题转化成特殊的问题,从而完成数与数的转化,形与形的转化,数与形的转化。数学中的构造法、代换法、换元法、配方法等也是体现转化思想的具体的数学方法,下面看两个例子:
例1 已知:如图1,在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交AC于E,BD⊥CD。
求证:CD= BE。
分析一:要证明CS=
BE,只须证明2CD=BE
为此,需要延长CD,BA交于F点,只要证明DF=CD,△CFA≌△BEA。
分析二:要证明CD= BE,在BE上取中点G,只须证明CD=EG。
为此,需要作GH⊥BE交BC于H,连结HE(如图2)。
只要证明△CDE≌△EGH。
分析三:要证明CD=
BE,取BE中点G,连接AG、AD(如图3)。
只须证明,AG=AD=CD
为此,只要证明A、B、C、D四点共圆,∠1=∠2=45°,∠3=∠4=22.5°
说明,把证明线段的和、差、倍、分问题转化或证明两条线段相等的问题。
例2 已知:如图4,P是正方形ABCD内一点,且PA:PB:PC=1:2:3。
求证:∠APB=135°
分析一:要证明,∠APB=135°=45°+90°
为此,将△APB绕B点旋转90°,落到△CP’B的位置,只须证明∠BP’P=45°,∠PP’C=90°,只要证明BP’=BP=2X,PP’2+P’C2=9X2=PC2。
分析二:要证明∠APB=135°,只须证明tg∠APB=-1,只质证明sin∠APB=-cos∠APB,为此,设PA=X,PB=2X,PC=3X,AB=BC=a
只须证明,只要证明cos∠PBC=
,sin∠ABP=cos∠PBC
说明,分析一体现着把135°转化成两个特殊角(45°和90°),由旋转法完成数与形的转化。分析二体现着把求∠APB=135°问题转化成用正弦定理,余弦定理,同角或互为余角间的三角函数关系式来解决。
2.方程思想
方程思想是指利用方程或方程组解决数学问题的指导思想。在研究平面几何时,若所涉及到元素之间的关系,可考虑通过设辅助未知数并列出方程或方程组,使有关的几何量之间的关系显现出来,从而使所研究的问题比较简捷地加以解决。
例3,已知:如图5,AB、CD分别切⊙O于A/D点,且AB∥DC,BC切⊙O于E。
求证:OE≤
BC
分析:要证明OE≤
BC
只须证明
2OE≤BC
只须证明
4OE2≤BC2
只须证明
BC2-4OE2≥0
由已知
BE+CE=BC
只要证明
BE•CE=OE2,那么BE、CE就是方程X2-BCX+OE2=0的二根。
为此,连结OB、OC,只要证明∠BOC=90°。
说明
由分析体现几何问题可以转化成一元二次方程及其根的判别式的性质问题,例2的分析二也体现了方程思想。
3.数形结合思想
数形结合思想是通过数与形的结合来研究和解决数学问题的指导思想,数形结合思想是数学中运用最普遍的思想,它可以使抽象问题具体化、形象化,使几何的图形问题数量化,下面我们也看两上例题。
例4 K为何值时,方程
X2+2(K+3)X+2K+4=0的一个
根小于3,而另一个根大于3。
分析:为了求出K值,设y=x2+2(k+3)x+2k+4,并根据题意画出函数图象的草图(如图6),yx=3<0。
本篇论文由网友投稿,读书人只给大家提供一个交流平台,请大家参考,如有版权问题请联系我们尽快处理。
例5 已知:如图7,圆内接四边形ABCD。
求证:AC•BD=AB•CD+BC•AD
分析:要证明 AC•BD=AB•CD+BC•AD,AB•CD=AC•X,只须证明
BC•AD=AC•Y
X+Y=BD
这时的X、Y为BD上的两条线须,其长待定,在BD上设一待定点P,PD=X,PB=Y,连结CP。
只质证明
只须证明
△ABC∽△DCP,△BCP∽△ACD
为此,需作∠DCP=∠ACB交BD于P点。
说明,前例体现方程问题可以充分利用同次函数的图象和性质帮助我们分析和解决问题。后一例是利用待定的思想方法,逐步推断出辅助线CP的引法。
4.分类思想
分类思想是根据要求确定分类标准,然后将数学对象划分为不同种类加以研究的指导思想。对数学对象分类时应遵循两个原则:(1)在同一问题中分类按同一标准进行;(2)分类要做到不重、不漏。分类有利于对问题的深入研究,有助于发现解题思路和运用技能技巧,这对培养学生分析问题和解决问题的能力大有帮助。看下面例题:
例6
已知:如图8,正方形ABCD的边长为a,分别以A、B、C、D为圆心,以a为半径向正方形内作圆弧,求图中阴影部分的面积。
分析
由图形的对称性,把正方形分割为三类图形,其面积分别以x、y、z来表示
说明,把图形进行分类,将面积问题转化为解方程组,这是求面积问题的一种巧妙、简捷的解法。
(二)数学方法
初中数学所涉及到的数学方法也很多,如构造法、代换法、消元法、降次法、换元法、配方法、配方法、特定系数法、图象法、辅助元素法等等,另外还包括一些常用的推理论证方法,如归纳法、类比法、演绎法、分析法、综合法、反证法、同一法等。这些数学方法都是研究数学问题时经常用到的,因此需要很好地掌握。
二、数学思想、方法的教学
(一)认真钻研教材,充分发掘教材中蕴含的数学思想和方法
我们在备课时要认真钻研教材,充分发掘提炼在教材中的数学思想和方法,并弄清每一章节主要体现了哪些数学思想,运用了什么数学方法,做到心中有数。例如平面几何圆这一章就是用分类和联系的思想把全章分成;圆的有关性质;直线和圆的位置关系;圆和圆的位置关系;正多边形和圆四大类,在根据不同的类型研究各自图形的性质和判定,此外还要掌握四点共圆的方法,把直线形的问题转化成圆的问题,再归纳在四大类中分别运用有关性质加以解决。再如一元二次方程这一章,内容丰富,方法多样,蕴含着转化的思想,把未知转化为已知,把高次方程转化为低次方程,把多元方程转化为一元方程,把无理方程转化为有理方程,把实际问题转化为数学问题等。
(二)提高认识,把数学思想和方法的数学纳入教学目的数学思想、方法的数学是数基础知识教学的重要组成部分,为了使数学思想、方法的教学落到实处,首先要从思想上提高对数学思想、方法教学的重要性的认识,进而把数学思想、方法的教学纳入教学目的中去,并且具体落实在每节课的教学目的中。
(三)结合教材内容,加强数学思想和方法的渗透、解释和归纳
在数学教学过程中,对教材内容所反映出来的数学思想、方法要结合教学实际分别予以渗透、解释和总结归纳,以提高学生的认识,逐步培养学生运用数学思想、方法解决问题的能力。例如在代数中数形结合的思想就渗透到各个章节,适时的为学生归纳和总结利用数形结合研究代数问题的规律和方法,就成了代数教学的基本特点。同样,在几何中分类思想和转化思想也是渗透在各个章节,因此,在讲圆这一章时,有必要给学生总结出如何用分类思想和转化思想来解几何题的规律和方法。
总之。数学思想、方法的教学研究是中学数学教研的一个重要课题,是提高教学质量的关键,因此必须予以重视。
第五篇:浅谈初中数学思想方法的教学
浅谈初中数学思想方法的教学
王家河中学
唐强国
数学思想是指人们在研究数学过程中对其内容、方法、结构、思维方式及其意义的基本看法和本质的认识,是人们对数学的观念系统的认识。数学教学中必须重视思想方法的教学,其理由是显而易见的。
首先,重视思想方法的教学是数学教育教学本身的需要。数学思想方法是以数学为工具进行科学研究的方法。纵观数学的发展史我们看到数学总是伴随着数学思想方法的发展而发展的。如坐标法思想的具体应用产生了解析几何;无限细分求和思想方法导致了微积分学的诞生……,数学思想方法产生数学知识,而数学知识又蕴载着数学思想,二者相辅相成,密不可分。正是数学知识与数学思想方法的这种辩证统一性,决定了我们在传授数学知识的同时必须重视数学思想方法的教学。
其次,重视思想方法的教学是以人为本的教育理念下培养学生素养为目标的需要。著名日本数学家和数学教育家米山国藏在从事多年数学教育研究之后,说过这样一段耐人寻味的话:“学生们在初中或高中所学到的数学知识,在进入社会后,几乎没有什么机会应用,因而这种作为知识的教学,通常在出校门后不到一两年就忘掉了,然而不管他们从事什么业务工作,那种铭刻于头脑中的数学精神和数学思想方法,却长期地在他们的生活和工作中发挥着作用。” 倘若我们留意各行各业的某些专家或一般工作者,当感到他们思维敏锐,逻辑严谨,说理透彻的时候,往往可以追溯到他们在中小学所受的数学教育,尤其是数学思想方法的熏陶。理论研究和人才成长的轨迹也都表明,数学思想方法在人的能力培养和素质提高方面起着重要作用。那么,数学教学中如何进行数学思想方法的教学?笔者以为可着重从以下几个方面入手:
1、在概念教学中渗透数学思想方法
数学概念是现实世界中空间形式和数量关系及其本质属性在思维中的反映,人们先通过感觉、知觉对客观事物形成感性认识,再经过分析比较,抽象概括等一系列思维活动而抽取事物的本质属性才形成概念。因此,概念教学不应只是简单的给出定义,而要引导学生感受及领悟隐含于概念形成之中的数学思想。比如绝对值概念的教学,初一代数是直接给出绝对值的描述性定义(正数的绝对值取它的本身,负数的绝对值取它的相反数,零的绝对值还是零)学生往往无法透彻理解这一概念只能生搬硬套,如何用我们刚刚所学过的数轴这一直观形象来揭示“绝对值”这个概念的内涵,从而能使学生更透彻、更全面地理解这一概念,我们在教学中可按如下方式提出问题引导学生思考:(1)请同学们将下列各数0、3、-
3、5、-5 在数轴上表示出来;(2)3与-3;5 与-5 有什么关系?(3)3到原点的距离与-3到原点的距离有什么关系?5 到原点的距离与-5 到原点的距离有什么关系?这样引出绝对值的概念后,再让学生自己归纳出绝对值的描述性定义。(4)绝对值等于7的数有几个?你能从数轴上说明吗? 通过上述教学方法,学生既学习了绝对值的概念,又渗透了数形结合的数学思想方法,这对后续课程中进一步解决有关绝对值的方程和不等式问题,无疑是有益的。
2、在定理和公式的探求中挖掘数学思想方法
著名数学家华罗庚说过:“学习数学最好到数学家的纸篓里找材料,不要只看书上的结论。”这就是说,对探索结论过程的数学思想方法学习,其重要性决不亚于结论本身。数学定理、公式、法则等结论,都是具体的判断,其形成大致分成两种情况:一是经过观察,分析用不完全归纳法或类比等方法得出猜想,尔后再寻求逻辑证明;二是从理论推导出发得出结论。总之这些结论的取得都是数学思想方法运用的成功范例。因此,在定理公式的教学中不要过早给出结论,而应引导学生参与结论的探索、发现、推导过程。搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法。例如,在圆周角定理从度数关系的发现到证明体现了特殊到一般、分类讨论、化归以及枚举归纳的数学思想方法。在教学中我们可依次提出如下富有挑战性的问题让学生思考:(1)我们已经知道圆心角的度数定理,我们不禁要问:圆周角的度数是否与圆心角的度数存在某种关系?圆心角的顶点就是圆心!就圆心而言它与圆周角的边的位臵关系有几种可能?(2)让我们先考察特殊的情况下二者之间有何度量关系?(3)其它两种情况有必要另起炉灶另外重新证明吗?如何转化为前述的特殊情况给与证明?(4)上述的证明是否完整?为什么?
易见,由于以上引导展示了探索问题的整个思维过程所应用的数学思想方法,因而较好地发挥了定理探讨课型在数学思想方法应用上的教育和示范功能。
3、在问题解决过程中强化数学思想方法
许多教师往产生这样的困惑:题目讲得不少,但学生总是停留在模仿型解题的水平上,只要条件稍稍一变则不知所措,学生一直不能形成较强解决问题的能力。更谈不上创新能力的形成。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。使学生从中掌握关于数学思想方法方面的知识,并使这种“知识”消化吸收成具有“个性”的数学思想。逐步形成用数学思想方法指导思维活动,这样在遇到同类问题时才能胸有成竹,从容对待。如:直线y=2x―1与y=m―x的交点在第三象限,求m的取值范围。方法1:用m表示交点坐标,然后用不等式求解;方法2:利用数形结合的思想在坐标系中画出图象,根据图象作答。
显然上述的问题解决过程中,学生通过比较不同的方法,体会到了数学思想在解题中的重要作用,激发学生的求知兴趣,从而加强了对数学思想的认识。
4、及时总结以逐步内化数学思想方法
数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式溶于数学知识体系。要使学生把这种思想内化成自己的观点,应用它去解决问题,就要把各种知识所表现出来的数学思想适时作出归纳概括。概括数学思想方法要纳入教学计划,要有目的、有步骤地引导参与数学思想的提炼概括过程,特别是章节复习时在对知识复习的同时,将统领知识的数学思想方法概括出来,增强学生对数学思想的应用意识,从而有利于学生更透彻地理解所学的知识,提高独立分析、解决问题的能力。
初中数学中蕴含的数学思想方法许多,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想
“数”和“形”是数学教学中既有区别又有联系的两个对象。在数学教学中,突出数形结合思想,有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。
2、分类讨论的思想
“分类”是生活中普遍存在着的,分类思想是自然科学乃至社会科学研究中的基本逻辑方法,也是研究数学问题的重要思想方法,它始终贯穿于整个数学教学中。从整体上看,中学数学分代数、几何两大类,然后采用不同方法进行研究,就是分类思想的体现,从具体内容上看,初中数学中实数的分类、三角形的分类、方程的分类等等,在教学中就需要启发学生按不同的情况去对同一对象进行分类,帮助他们掌握好分类的方法原则,形成分类的思想,从具体的教法上看,如对初一“有理数的加法”教学中,引导学生观察、思考、探究,将有理数的加法分为三类进行研究,正确归纳出有理数加法法则,这样学生不仅掌握了具体的“法则”,而且对“分类”有了深刻的认识,那么在较为复杂的情况下,利用掌握好的分类的思想方法,正确地确定标准,不重不漏地进行分类,从而使看问题更加全面。如在判断“-a一定小于零吗”利用分类讨论就不会错。
3、转化思想
数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想。
在具体内容上,有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,在教学中首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的,其次结合具体教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。在具体教学过程中设出问题让学生去观察,探索.4、函数的思想方法
辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。虽然函数知识安排在初中后阶段学习,但函数思想已经渗透到初一、二教材的各个内容之中。因此,教学上要有意识、有计划、有目的地培养函思想方法。
例如进行新代数一册求代数式的值的教学时,通过强调解题的第一步“当……时”的依据,渗透函数的思想方法——字母每取一个值,代数式就有唯一确定的值。
通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径。
诚然,要使学生真正具备了有个性化的数学思想方法,并不是通过几堂课就能达到,但是只要我们在教学中大胆实践,持之以恒,寓数学思想方法于平时的教学中,学生对数学思想方法的认识就一定会日趋成熟。