谈小学数学教学的几种思想方法

时间:2019-05-12 20:39:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《谈小学数学教学的几种思想方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《谈小学数学教学的几种思想方法》。

第一篇:谈小学数学教学的几种思想方法

谈小学数学教学的几种思想方法

要:小学生的数学教学有一定的困难,以下介绍几种常用的数学教学方法供大家参考。

关键词:归纳;符号化;统计

小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求面积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。

一、归纳的思想方法

在研究一般性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。用的就是归纳的思想方法。

二、符号化的思想方法

数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材就十分注意符号化思想的渗透。

人教版教材从一年级就开始用“□”或“()”代替变量x,让学生在其中填数。例

如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出

□○□=□(个)。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。

三、统计的思想方法

在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定的说服力,这是一种最常用、最简单方便的统计方法。

小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。

第二篇:小学数学教学中教学思想方法探讨

小学数学教育教学思想探索

摘要:在小学教学中,教师应重视数学思想的融入,提高小学生对数学技能的掌握能力,改善小学生数学教学质量。在小学数学中渗透数学思想,提高小学生对数学知识价值的认知,提高学生思考问题并解决问题的能力成为小学数学教学的关键点。本文对小学数学教育教学的数学常用思想渗透做了简单探索。

关键词:小学数学教学;数学思想渗透;实践应用

一、渗透数学思想方法的必要性

小学数学教材是数学教育教学的显性知识系统,许多重要的公式、法则,教材中只能看到美丽的设计,大部分例题的解法,也只能看到高明的处理,而看不到由观察、试验、分析、归纳、抽象概括或探索推理的学生心理过程。因此,数学思想教育方法是数学教育教学中的隐性知识,小学数学教学应包括显性和隐性两方面知识的教学。如果教师在教育教学中,仅仅依照课本的安排,沿袭从例题、概念到公式、练习这一传统的教学过程,即使教师滔滔不绝、讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育教学的初心。

在认知心理学里思想方法它对人们的认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“难道就意味着解题”,解题关键在于找到合适的解题思路、方法,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的认知水平,是培养一名学生分析问题和解决问题能力的重要途径之一。

数学知识本身是非常重要的,有人说没有数学就没有科学。但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起关键作用,并使其终生受益的是数学思想方法。未来社会需要大量具有数学意识和数学素质的人才。21世纪国际数学教育的根本目标就是“学会做人”。因此,向学生渗透一些基本的数学思想方法,是未来社会和国际数学教育发展的必然要求。

小学数学教育教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生的学习观念,养成良好思维素质的关键。如果将学生的数学素质看作一个坐标点,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教育教学,不仅不利于学生从纵横两个维度上把握数学的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教育教学改革的新视角,是进行数学素质教育的突破口之一。

二、常见的数学思想方法在小学数学教学中的应用

1、化新为旧,给新知寻找一个合适的生长点

任何一个新知识,总是原有知识发展和转化的结果。在实际教学中,教师可以把学生感到生疏的问题转化成比较熟悉的问题,并利用已有的知识加以解决,促使其快速高效地学习新知,而已有的知识就是这个新知的生长点。

如空间与图形中的平行四边形、三角形、梯形等图形的面积公式推导,它们均是在学生认识了这些图形,掌握了长方形面积的计算方法之后安排的,是整个小学阶段平面图形面积计算的一个重点,也是整个小学阶段中能较明显体现转化思想的内容之一。教学这些内容,一般是将要学习的图形转化成已经学会的图形,再引导学生比较后得出将要学习图形的面积计算 例如,平行四边形的面积推导,当教师通过创设情境使学生产生迫切要求出平行四边形面积的需要时,可以将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生将没有学过的平行四边形的面积计算转化成已经学过的长方形的面积。其他图形的教学亦是如此。

1、推导三角形面积时,把三角形转化成平行四边形。

2、推导圆的面积公式时,把圆形转化成长方形。

3、推导圆柱体积公式时,把圆柱体转化成长方体。4。圆锥的体积公式进,把圆锥转化成圆周柱。

2、化繁为简。优化解题策略

在处理和解决数学问题时,常常会遇到一些运算或数量关系非常复杂的问题,这时教师不妨转化一下解题策略,化繁为简。反而会收到事半功倍的效果。

例如:在教学植树问题时,出示例题:同学们在全长100m的小路一边植树,每隔5m栽一棵(两端都栽)。一共要栽多少棵树?

引导学生理解题意,大胆猜测,并开始验证时。看来这个问题值得我们研究,可100米有点长,研究起来不方便,怎样才能使我们的研究更方便呢?把小路缩短,我们就将原来的复杂的问题变得简单了。那下面我们就将小路缩短到20米来研究。

这时,学生在转化思想的影响下,茅塞顿开,将一道生活中的数学问题既形象又有创意地解决了。从这里可以看出:学生掌握了转化的数学思想方法,就犹如有了一位“隐形”的教师,从根本上说就是获得了自己独立解决数学问题的能力。

3、化曲为直,突破空间障碍 “化曲为直”的转化思想是小学数学曲面图形面积学习的主要思想方法。它可以把学生的思维空间引向更宽更广的层次,形成一个开放的思维空间,为学生今后的发展打下坚实的基础。

例如,圆面积的教学,教师在教学过程中,先请学生把圆16等分以后,请他们动手拼成近似的平面图形,即用转化思想,通过“化曲为直”来达到化未知为已知。学生兴趣盎然,通过剪、摆、拼以及多种感官协同参与活动,拼出学过的图形。

4、化数为形

像画示意图、线段图解决问题就是应用了数形结合的方法。数形结合的思想方法将小学数学中一些抽象的代数问题给以形象化的原型,将复杂的代数问题赋予灵活变通的形式,从而给人们思维灵活性的思维迁移训练,这正是反映了数形结合的思想方法解决数与代数问题的有效途径所在。

三、小学数学教学中数学思想方法实现的路径

1、在钻研教材时挖掘数学思想方法

小学数学教材体系有两条基本线索:一条是明线, 既数学知识,另一条是暗线,既数学思想方法。

数学教学中无论是概念的引入、应用,还是数学问题的设计、解答,或是复习、整理已学过的知识,都体现着数学思想方法的渗透和应用。因此,教师要认真分析和研究教材,归纳和揭示其蕴含在数学知识中的数学思想方法。如在“角的分类”中,要挖掘分类的思想方法;在“平行四边形、梯形面积的计算”中,要挖掘转化、化归的思想方法。

2、在教学目标中体现数学思想方法

数学思想方法的渗透,教师要有意识地从教学目标的确定、教学过程的实施、教学效果的落实等方面来体现。在备课时就必须注意数学思想方法的梳理,并在教学目标中体现出来。例如在备“除数是小数的除法”一课时,就要突出化归的思想方法,让学生明确如何把除数是小数的除法转化成除数是整数的除法;在备“比的基本性质”一课时,就要抓住类比的思想方法,明确比的基本性质与分数的基本性质、商不变的性质的联系和区别。

3、在学生课前预习的过程中加以指导

课前预习是学生学习数学知识的必要环节,有利于学生充分利用已有的知识、经验,在自主学习、探究中初步了解知识的形成脉络、结构;了解知识中蕴含的算理、算法;理清编者的意图。在学生预习时只要稍加指导就可以将一些数学思想方法潜移默化的渗透给学生。如,北师大版数学四年级《找规律》。在课前预习时,教师提出明确的预习要求:仔细看书中的主题图,叙述出你从图中知道的信息,弄清数量是多少?你能发现哪些数量之间有关系?你能从中找到规律吗?学生在教师的提示指导下完成了以上的课前预习作业,思考了相关的问题。在课堂新授时只要教师稍加点拨,大部分学生都会理解。教师将探索规律有意识的渗透到教学之前,在教学中就可以充分为学生进行思维的深层次引领。

4结语

古语有云,“授之以鱼不如授之以渔”,在小学数学教学中,数学思想方法的渗透既是教师授学生以“渔”的过程,是提高小学生数学学习效果的有效对策,是教师教学质量的保障。对此,在小学数学教育中,教师应深入教材,提炼其中蕴含的数学思想,并在后续教学过程中渗入数学思想,提高学生的数学学习能力与解题能力,促进学生全面发展。

第三篇:谈如何在小学数学教学中渗透数学思想方法

谈如何在小学数学教学中渗透数学思想方法

作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。一位美国教育家曾指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。

那么在小学数学教学中,如何渗透数学思想方法:

一、改变一些固有教育观念,创新数学思想方法。数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰

当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。

二、课堂教学中及时渗透数学思想方法。为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,主要通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼”这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学“梯形面积”这一单元之后,可及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。

三、让学生学会自觉运用数学思想方法。数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。我们知道,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思

想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。

我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应新课改的需要。数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,有效进行数学思想方法的渗透。

第四篇:小学数学思想方法学习心得

《小学数学思想方法》学有所得

我们在老师的指导下着重学习了《小学数学教材概说》第二章的小学数学思想方法中的集合思想、对应思想、符号化思想、极限思想、统计思想、数学模型方法,并分析了这些思想方法在小学数学教材中的渗透。

通过在课堂上对小学数学思想方法的学习,我深刻地认识到学习并研究数学思想方法对于数学教学具有重大意义。首先,懂得数学思想方法有利于教师深刻地认识数学教学内容,正确把握教材体系,以较高的观点分析和处理小学教材。小学教材体系就两条主线:

一、数学知识;

二、数学思想。教师会分析教材,就能明确数学知识;而数学思想是必须掌握了它的方法才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学、灵活地设计教学方法,提高课堂教学效率。其次,懂得数学思想方法有利于提高学生的数学素养,促进学生思维能力的培养。最后,有利于对学生进行美育渗透和辩证唯物主义的启蒙教育。

正是因为我意识到懂得数学思想方法对数学学习和教学具有重大意义,所以我利用课余时间学习了小学数学的其他思想方法:类比思想、转化思想、分类思想、代换思想、可逆思想、化归思想、整体思想、比较思想、假设思想、数形结合思想。

其中我对类比思想方法颇感兴趣,对它的了解比较深刻。类比思想是把某一或几个方面彼此一致的新旧事物放在一起相比较, 让学生由旧事物的已知属性推出或猜想新事物也具有相同或类似属性的一种逻辑推理方法, 它包含特殊到特殊, 也包含一般到一般。整个思维过程是以“联想”为前提;以“相似性”为向导;以提出“猜想”为使命;以发现“新规律”为目的。在小学数学课堂教学中渗透类比思想,通过以下几个方面实现:(1)渗透类比思想探究新知(2)渗透类比思想建构知识网络

(3)渗透类比思想激发创新思维(4)渗透类比思想加深对概念的理解。在运用类比方法时应注意以下几点。

(一)类比的结论具有或然性:或者正确,或者不正确,或者不完全正确,对类比的结论能进行辩证的处理。

(二)类比推理需要相当的引导,且学生容易为表面上相似的类比所误导,有位数学家于1992年提出几个克服类比障碍的方法:(1)由学生自己类比。(2)使用多种类比。(3)教师应明确指出类比推理可能失败之处。

(三)要想让学生掌握一些类比思维,作为一名小学数学教师应该做到以下几点:

1、教师应该从自身做起,先要使自己充实起来,这样才能将思想,方法逐渐渗透到学生的思维中,因此教师迫切需要学习和掌握以下知识:(1)补充综合性知识。从今后发展来看,知识也是日趋综合化,很多问题不是只用一门学科知识就能解决和回答的。老师必须在知识上融会贯通,才能更好的在课堂上启发引导学生,实现纵横类比。(2)挖掘教材中的潜在知识。有些知识书本没有明确给出要求,但是必要时要给予补充。例如:苏教版小学数学第六册第94-95页,这部分内容讲的虽是长方形面积,但是从教材中可以发现它隐含了简单的统计思想。教师教学时要注意挖掘这部分知识。

2、老师在教学过程中也要创设一种有培养创造性思维的教学情境。如采用开放式教学。

3、要培养学生的类比思维能力,首先要注意培养学生的归纳总结能力,只有概括出不同知识的相同或相似的性质,才能引导学生进行类比。古代学者韩愈提倡读书学习先要入书,后要出书,要先把书读厚,再把书读薄。这就是说要总结,要概括,要深入认识问题的精神实质。运用类比让学生去发现,去创造,让教学充满创新与活力。懂得了数学思想方法也意识到了它的重要性,那么在教学中,如何将这些方法渗透呢?经过思考我个人有几点看法:(1)提高渗透的自觉性,在知识的形成、发展过程中,渗透数学思想与方法;(2)把握渗透的可行性,在解题思路的探索中,揭示数学思想与方法;(3)丰富数学渗透的人文性,在问题解决方法的探索过程中,激活数学思想与方法;(4)注重渗透的反复性,在知识的总结归纳过程中,概括数学思想与方法。

以上是我在小学数学思想方法这一章学习之后的心得与思考,若有不妥的的地方还请老师指点迷津,谢谢啦!

第五篇:小学数学教学中如何渗透数学思想方法

小学数学教学中如何渗透数学思想方法

摘要:数学思想是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果。《数学课程标准(2011版)》指出:通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。从“双基”扩展为“四基”,凸显数学思想在义务教育过程中的重要地位。笔者从实践层面谈在教学中如何渗透数学思想。

关键词:小学数学;渗透;数学思想方法

一、在教学预设时精心挖掘教材中的数学思想

课堂教学活动,它是复杂和多变的,受到多个因素的影响,所以精心的预设,是上好一节课的必要条件。课前,教师既要全面了解学生的学情,又要深入钻研教材,二次开发使用教材资源,挖掘教材中蕴含的数学思想,进行有效的教学预设。如:人教版义务教育课程三年级下册第八单元《解决问题》的例1《用连乘两步解决问题》的教学设计。例1出示主题图,图中突显一个大方阵。每行有8人,共10行。两旁又显示两个不完整的方阵,每个方阵只显示一列半。备课时,笔者关注到它不是3个完整的方阵,可这幅图到底是什么意思?在备课中苦苦挣扎,苦苦思索,如果只是将它理解为一个方阵来教,未必不可,可总感觉在文本解读上,缺失了一些深度。再一次读图,这个图在美术上叫二方延续,不能只看成一个方阵,也不能单纯地看成三个方阵,这里蕴含了类似于“极限思想”,(因为人数是有限的,但可以比三个方阵多得多)有很多方阵,可以让同学们发挥想象,是一个开放性的主题图,方阵的个数并不唯一。但为什么在图的结构安排上,中间这个方阵放大而且清晰地呈现,而旁边的方阵是不完整的。最后理解为教材设计的意图,是为了让同学们明白,只要先求出一个方阵的人数,其余无论有几个方阵,用一个方阵的人数去乘几个方阵,就可以很顺利地解决。于是,教师预设:同学们,看到这幅图,你想提什么问题?生答后。师又问,那么你能马上解决哪个问题?(可以知道哪一部分的人数?)用什么方法计算?接着问,为什么主题图中间的这个方阵既完整又清楚地显示,而且可以直接求出这个方阵的人数,而其它两个方阵只显示一列多的人数,这表示什么?通过问题的精心预设,学生在解决问题的过程中,思维深度得到了进一步的提升。教材中蕴含的类似于“极限思想”也在不知不觉地渗透给学生。

二、在授课中悄然渗透数学思想

数学思想方法其实就是蕴含在数学知识之中,尤其是蕴含于每一个数学知识的形成过程中。当学生在学习每一个数学新知时,教师要尽可能提炼出蕴含其中的数学思想方法。要让学生充分体验数学思想,要引导学生对解决问题的策略和依据进行不断的思考、猜想、论证,并通过合作交流,实践探究,优化方法,去感悟数学思想方法。例:《平行四边形的面积》一课,让学生围绕如何将平行四边形转化为已学过的图形这个问题独立思考、合作探究、猜想、论证。学生利用教师已经准备好的相关的平行四边形纸片材料,采取小组合作的方式进行探究活动。有的小组将它沿着平行四边形正中间的高剪下,转化为两个完全相等的梯形,再拼成一个长方形,从而根据长方形的公式推导出平行四边形的公式。也有的小组同学把它从一个角沿着高剪开,剪成一个三角形和一个梯形,再拼成一个长方形。还有的小组发现拼成的这个图形是一个正方形。最后根据已学过的正方形的面积公式推出平行四边形的面积公式。

三、在拓展运用中提炼数学思想

除新知学习外,我们还应把“提炼数学思想”的重要阵地放在练习课和复习课上。这就要求教师在练习课堂教学过程中一定要把握好时机,既不能蜻蜓点水,也不能为“渗”而“渗”,应该精心设计好每一个练习。要以促进学生的“悟”为目的,有效地预设思想、体验思想、内化思想和提升思想,最终促进学生自我学习能力的内化提升。二年级下册《观察、猜测、推理、验证》单元,新课结束后,笔者设计这样一道练习:小林、小英、小伟三位选手参加学校100米决赛。小林:我不是最慢的,小英说:我不是最快的。问题:你能判断比赛结果吗?

生:不能。因为小林不是最慢的,只能说明,他不是第三名,那可能是第一名或第二名;小英说不是最快的,那可能是第二名或第三名,这样重复了第二名。推不出来。

师:那要再增加一个什么条件,才能推出比赛结果。

生1:小伟比小林快。这样就可以推出第一名是小伟,第二名是小林,第三名是小英。

师:你们觉得,这位同学说得对吗?(生思考后,同意这位同学的观点。)

生2:还可以这样补充:小林比小伟快,小林第一名,小伟第二名,小英第三名。

生3:我不同意,因为小伟和小英并不清楚谁快。所以这个条件不行。

生4:小英比小伟快。说明小林第一名,小英第二名,小伟第三名。

生5:我同意。(全班没有不同意见。)

生6:那还可以说小林比小英快。结果小林第一名,小英第二名,小伟第三名。

生7:不行,小林第二名,小英第三名时,小林比小英快,小林第一名,小英第二名,小林也比小英快,这个条件不行。不知道和小伟的关系,不能推出比赛结果。

……

这样一道开放式的题型,学生的思维活跃了,充分地感受到数学推理思想在拓展练习中有着重要的作用。

总之,数学思想方法是数学知识的灵魂,是解决数学问题的指导思想和基本策略。数学教学过程中,应把数学思想方法的渗透做到润物细无声,而进行数学思想方法的渗透教学,应该是在启发学生进行思维的过程中通过一定的策略循序渐进地让学生获取。

下载谈小学数学教学的几种思想方法word格式文档
下载谈小学数学教学的几种思想方法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学思想方法及其教学.

    初中数学思想方法及其教学 新课程教学大纲提出:初中数学的基础知识主要是初中代数、几何中的要领法规、公式、性质、公理、定理以及其内容所反映出来的数学思想和方法。数......

    小学数学思想方法培训心得体会

    感悟思想方法 提高学生素养 ——小学数学思想方法培训心得体会 学期末结束之际,县教研室到我镇举行了以“小学数学思想方法分析梳理”为主题的培训活动。 会上,四位专家名师从......

    小学数学常见数学思想方法归纳与整理

    小学数学常见数学思想方法归纳与整理 1、 对应思想方法对应是人们对两个集合元素之间的联系的一种思想方法。小学数学一般是一一对应的直观图表,并以此孕伏函数思想 。如直线......

    浅谈数学思想方法与数学教学设计

    浅谈数学思想方法与数学教学设计 学院:数学科学院姓名:王富超学号:201240433029班级:应数(3)班 摘要:本文将说明什么是数学思想方法及教学模式设计作一介绍,并对教学模式设计利用数......

    浅谈初中数学思想方法的教学

    浅谈初中数学思想方法的教学 王家河中学 唐强国 数学思想是指人们在研究数学过程中对其内容、方法、结构、思维方式及其意义的基本看法和本质的认识,是人们对数学的观念系统......

    初中思想方法与初中数学教学

    《初中思想方法与初中数学教学》――学习心得1 通过参加这次学习,我得到了很多的启发,首先,我了解了什么是数学思想方法,并知道了数学思想是对数学知识和方法本质的认识,是解决数......

    初一数学教学如何渗透数学思想方法

    初一数学教学如何渗透数学思想方法 九年义务教育初中数学大纲指出:“初中数学的基础知识主要是初中代数、几何中概念、法则、性质、公式、公理、定理以及由其内容所反映出来......

    如何贯彻数学思想方法的教学

    如何贯彻数学思想方法的教学 内江市东兴区顺河中心校高忠全 探讨数学思想方法有关问题的最终目的是提高个体的思维品质和各种能力,提高个体的整体素质.实现这一目的主要途径......