第一篇:超声成像技术发展现状及应用
超声成像技术的发展现状及应用引言
超声成像以其使用安全、成像速度快、价格便宜和使用方便等优势在临床诊断中被大量使用,是临床诊断的重要工具之一[1]。随着超声在医学诊断领域的广泛而深入的应用,以及微电子技术、计算机技术、图像处理技术和探头技术等工程技术的进步,促进了超声诊断技术不断发展。不仅仪器的图像质量明显提高,而且诊断的模式和方法也更加丰富。国内外很多研究人员从事着超声的研究,使超声技术从模拟技术扩展到数字技术,即数字声束形成技术[2];从低帧率成像扩展到高帧率成像[3];从二维成像扩展到三维成像[4];从线性技术扩展到非线性技术[5],以适应临床不同的需求。本文着重对多普勒血流成像、三维成像技术和谐波成像技术作一下介绍,并对各自在临床方面的应用进行概括。超声多普勒成像技术
超声多普勒技术主要应用于心脏和血管疾病的诊断。它是无损诊断血管疾病的一种重要手段,对超声多普勒血流信号的分析处理可以为疾病诊断提供重要依据[6]。当超声源与人体内运动目标之间存在相对运动时,接收到的回波信号将产生多普勒频移,由此确定其运动速度大小、方向以及在断层上的分布。
2.1多普勒成像技术简介
目前应用于临床的有一维连续多普勒、一维脉冲多普勒、彩色多普勒、能量多普勒和多普勒组织成像[7]。下面就多普勒组织成像技术及其应用做一个简单的介绍。
多普勒组织成像技术[7]是将低速高振幅的心肌运动信息进行彩色编码显示心脏运动信息的图像诊断技术。该技术能够直观的观察心动周期内各时相的室壁运动方向,并定量分析心脏各节段的室壁运动速度。与传统超声目测分析室壁运动相比,能够更为客观地评价心脏的运动特点。但多普勒组织成像无法克服多普勒声束与室壁运动方向夹角所产生的影响[8]。
2.2 超声多普勒成像技术应用
关于超声多普勒成像技术的临床应用的报道有很多。学者经研究发现二维及
彩色多普勒超声对甲状腺良恶性肿瘤的鉴别有一定的诊断价值[9]。李斌采用彩色多普勒超声对子宫颈部肌瘤的声像图特征及其相应的生理、病理学基础作了相关的实验分析,得出彩色多普勒超声对子宫颈部肌瘤有很高的诊断价值[10]。也有人针对彩色多普勒超声和多层螺旋CT两种检查方式进行比较[11]。另外,超声多普勒成像技术也可用于心脏图像的动态三维图像[12]。三维超声成像技术
三维超声成像的概念最初由Baun和Greewood在1961年提出[13]。他们在采集一系列平行的人体器官二维超声截面的基础上,用叠加的方式得到了器官的三维图像。在这之后,很多人进行了这方面的研究工作。随着计算机技术和图像处理技术的发展,三维超声成像取得了明显的进展,一些实用的系统开始进入临床应用。
3.1 三维超声成像技术原理简介
三维超声成像技术包括数据获取、三维图像重建和三维图像的显示[14]。三维超声成像是在采集二维图像的基础上进行重建而成。
要获得理想而准确的三维图像,需要清楚地了解二维图像的位置及角度,还需尽快扫查以避免运动伪像。常用机械驱动扫查、自由扫查、一体化容积探头扫查等方式获取[15]。
获取二维图像数据后,便可形成三维立体数据库。当选择一个参考切面对三维立体数据库进行任意方向的切割和观察时,即可完成对感兴趣结构的三维重建与显示。常用的重建方法为[15]:基于特征的三维图像重构法、基于体素的三维图像重构方法。显示方式有:断面成像、表面成像、透明成像。
3.2 三维超声成像的优缺点
与传统二维超声成像相比,三维超声成像具有明显的优势。主要表现在以下几个方面[16]:直接显示脏器的三维解剖结构;可对三维成像的结果进行重新断层分层,从而能从传统成像方式无法实现的角度进行观察;可对生理参数进行精确测量,对病变位置精确定位。
无可厚非,三维超声成像还存在不足之处[16]。主要表现在三个方面:(1)成像速度慢;(2)空间分辨力低;(3)成像效果未达到临床诊断要求。
3.3 三维成像的应用
三维超声在产科领域的应用较早,技术也较成熟[14]。不仅可以对胎儿体表结构进行表面成像,还可利用透明成像对胎儿体内结构进行三维重建,从而对胎儿整体形态结构进行观察。在心血管疾病诊断中,可用于多种心脏疾病以及血管内疾病的检查。随着实时三维超声成像的研究成功,三维超声有望在心脏疾病检查中发挥更大的作用。另外,三维成像对慢性膀胱炎症、憩室、结石、凝血块等膀胱疾病的诊断,也显示出优越性[14]。当然,它的临床应用还有很多,如在肝脏疾病、肾脏疾病以及眼科疾病等方面的治疗中也取得不错的成效[17],再次不一一列举。谐波成像技术
在谐波成像应用于临床之前,所有超声成像系统都是按照线性超声来设计的。非线性声学的理论和实验表明,有限振幅声波在传播过程中会产生非线性效应,因此可以利用人体组织产生的高次谐波进行成像[18]。当前应用较广的有造影谐波成像,组织谐波成像等。具有谐波成像和Doppler血流成像功能成为高端超声成像仪的主要标志。
4.1 组织谐波成像和造影谐波成像
临床上,由于肥胖、胃肠气体干扰、腹壁较厚或疾病等原因,约有20%-30%此类的病人被称为超声显像困难病人[18]。对于此类病人需要较低频率的超声检查以增加穿透力从而得到进一步的诊断研究,组织谐波成像便能解决此问题。
组织谐波成像是利用超声传播过程中由人体组织自身产生的高次谐波进行成像[19]。组织谐波成像和造影谐波成像都是通过提取回波信号中的高次谐波分量进行成像,但高次谐波产生的物理原理却不相同。造影谐波成像的原理如下
[20]:超声造影剂内存在大量的微气泡,若通过静脉注射造影剂,由于造影剂中的微气泡与周围血液的声阻抗差异较大,增强了超声束的后向散射信号,从而提高超声图像的对比度,改善图像质量。这种利用造影剂反射回波的二次谐波成像的方式称为造影剂谐波成像。
4.3 谐波成像应用
目前谐波成像技术在心脏和腹部疾病超声图像诊断方面的应用较为广泛。但谐波成像发射频率较低,接受频率较高,使得靶区图像分辨力降低。因此,此项技术尚处在初级应用阶段。国内对组织谐波成像研究仅限于临床应用研究,尚缺
少对该项技术在理论和实验方面的深入研究。国外已经开展了组织谐波成像模型的理论研究,取得了一些成果。比如Yadong Li研究了用于产生谐波B型超声图像的计算模型[21]。组织谐波成像已经被证实具有较好的影像解析度,它比基波图像有着更好的对比,造影剂二次谐波成像可以增强造影剂与周围组织的对比度,使成像更为清晰。展望
从早期超声诊断技术到目前的超声多普勒成像技术、三维成像技术和谐波成像技术的发展历程来看,超声图像诊断技术的发展目的是为了提高图像质量,准确反映疾病信息。超声成像技术在过去、现在和将来都是医学影像研究的重点内容之一。随着技术的发展、研究的深入,相信将会有更多新发现和新技术用于超声成像中。
参考文献:
[1] 王艳丹, 高上凯.超声成像新技术及其临床应用[J].北京生物医学工程,2006,25(5):553-556.[2] 伍于添.超声诊断方法和设备的前沿技术[J].中国超声医学杂志,2004,20(6):470-475.[3] 彭虎,韩雪梅,杜宏伟.高帧率超声成像系统中一种高信噪比扇形成像模式的实现[J].生物医学工程学杂志,2006,23(1):25-29.[4] B.SEDGMEN, C.McMAHON.The impact of two-dimensional versus three-dimensional ultrasound exposure on maternal–fetal attachment and maternal health behavior in pregnancy[J].Ultrasound Obstet Gynecol, 2006(27): 245–251.[5] 杜宏伟,彭虎等.吸收媒质中非线性gauss聚焦超声场的仿真研究[J].中国科学技术大学学报,2007,37(9):1120-1124.[6] 张良筱,张泾周,马颖颖.超声多普勒血流信号的分析方法.北京生物医学工程,2007,26(5):548-551.[7] 吴立顺, 管喜歧.超声图像诊断技术的发展及应用现状[J].医疗卫生装备, 2007, 28(12):35-36.[8] 余薇, 胡佑伦.医学超声成像方法学进展[J].北京生物医学工程, 2001,20(3):225-228.[9] 米和伟,颜社平.彩色多普勒超声对甲状腺良恶性肿瘤的鉴别诊断[J].现代医用影像学, 2008, 17(4):211-212.[10] 李斌.彩色多普勒超声诊断子宫颈部肌瘤的价值[].现代医用影像学, 2008,17(4):187-189.[11] 兰莉,许方洪.彩色多普勒超声与多层螺旋CT成像对下肢深静脉血栓诊断的对比研究
[J].温州医学院学报, 2008, 38(5):432-434.[12] 何爱军,郑昌琼,汪天富.组织多普勒超声心脏图像的动态三维重建[J].生物医学工程学杂志,2005,22(3):570-574.[13] 郝晓辉,高上凯.三维超声成像的发展现状及若干关键技术分析[J].生物医学工程学杂志, 1998, 15(8):311-316.[14] 王建红.三维超声成像的临床应用现状与进展[J].医学影像杂志,2004,14(10):858-860.[15] 黄志远.三维超声成像的新技术及发展趋势[J].武汉科技学院学报, 2006, 19(10):5-8.[16] 刑晋放,曹铁生,杜联芳.三维超声成像研究概述[J].中华超声影像学杂志,2005,14(8):629-631.[17] 孙彦.三维超声成像诊断肝脏疾病的现状与进展[J].中国医学影像学杂志,2005,13(1):55-57.[18] 刘贵栋,沈毅,王艳等.医学超声谐波成像技术研究进展[J].哈尔滨工业大学学报,2004,36(5):600-602.[19] 刘贵栋,沈毅等.基于编码脉冲技术的医学超声组织谐波抑制[J].中国医学物理学杂志,2007,27(6):444-446.[20] Pompili M, Riccardi L.Contrast-enhanced gray-scale harmonic ultrasound in the efficacy assessment of ablation treatments for hepatocellular carcinoma[J].Liver International, 2005(25): 954-961.[21] YaDong Li.Computer model for harmonic ultrasound imaging[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2000,47(5):1259-1272.
第二篇:数控机床技术发展现状及趋势
数控机床技术发展现状及趋势
赵 学 明
(广东工业大学,广东 广州 510006)
摘要:现在世界上很多发达的工业化国家在生产中广泛应用数控机床。随着电子技术和控制技术的飞速发展,当今的数控系统功能已经非常强大,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业的发展起着越来越重要的作用。随着科学技术的发展,世界先进技术的兴起和不断成熟,对数控技术提出了更高的要求。当今数控机床正在不断采用最新成果,朝着高速化、超精度化、多功能化、智能化、系统化、网络化、高可靠性与环保等方向发展。
关键字:数控机床、技术、现状、发展趋势
引言
从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。
进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。1 数控机床的简单介绍
车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。数控系统是由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界上最大的三家厂商是:日本法拉克、德国西门子、日本三菱;其余还有法国扭姆、西
班牙凡高等。国内有华中数控、航天数控等。从目前来看,我们国家机床业最薄弱的环节就在数控系统。国内的数控系统刚刚才开始,产业化、质量、技术水平一般,故障率比较高,质量精度一般。因此,高档次的数控系统全都是依赖进口,每年国家需要在此方面花费大量的外汇。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装数控系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。我们一般所说的数控设备,主要是指数控车床和加工中心。我国数控机床的机遇与挑战
近6年来我国数控机床产量一直处于持续地以年均增长超过30%快速发展,据初步统计2004年数控机床的产量为51860台,同比年增长40.8%,数控机床的消费量约70000余台,同比年增长约30%。数控机床需求的旺盛也促进了2004年内新建的三资和民营机床厂以及数控机床品种的明显增加。但是,另一方面进口的数控机床数量也在逐年同步增加,而且进口数控机床的消费额的增长趋势更快。2004年数控机床的进口数量同比年增长30%,而进口消费额的增长却达52%,从而导致国产数控机床在国内市场消费额中的所占比例已不足30%。之所以出现这一现象,其主要原因在于国内市场对技术和附加值高的高效精密数控机床和高性能大重型数控机床需求增长,要依靠进口解决。大量的高档数控机床的进口,主要由于以下三个领域发展的需求:高新技术和国防工业领域;重大基础装备制造领域。国民经济支柱产业领域等。因此,对于高速超精密数控机床,国内还是欠缺的,主要依赖进口。
但是最近几年国家也加大了对数控机床研发的大力支持。科技部将为数控机床专项研发投入2亿元,主要围绕数控设备支撑技术和航天、交通、能源等方面需要的超大型超精密加工设备。第一个建立在企业的数控机床国家重点实验室已经进入审批阶段。科技部还将组织重大专项研究,在关键功能部件等配套技术和产品研发上取得核心技术。国家的政策支持,产业扶持,这是数控机床业的春天,将会促进我国数控机床朝向世界顶级技术迈进。3 数控机床技术发展的趋势高速度与超精度化
速度和精度是数控机床的两个重要指标,它直接关系到加工效率和产品的质量。高速度、超精度加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(CIRP)
将其确定为21世纪的中心研究方向之一。特别是在超高速切削、超精密加工技术的实施中,对机床各坐标轴位移速度和定位精度提出了更高的要求;另外,这两项技术指标又是相互制约的,也就是说要求位移速度越高,定位精度就越难提高。
目前,在超高速加工中,车削和铣削的切削速度已达到5000~8000m/min以上;主轴转数在30000转/分(有的高达10万转/分)以上;工作台的移动速度(进给速度):在分辨率为l微米时,在100m/min(有的到200m/min)以上,在分辨率为0.1um时,在24m/min以上;自动换刀速度在1秒以内;小线段插补进给速度达到12m/min。
在加工精度方面,近10年来,普通级数控机床的加工精度已由10um 提高到5um,精密级加工中心则从3~5um,提高到1~1.5um,并且超精密加工精度已开始进入纳米级(0.01um)。2 高可靠性
随着数控机床网络化应用的发展,数控机床的高可靠性已经成为数控系统制造商和数控机床制造商追求的目标。对于每天工作两班的无人工厂而言,如果要求在l6小时内连续正常工作,无故障率在P(t)>99%以上,则数控机床的平均无故障运行时间MTBF就必须大于3000小时。我们只对一台数控机床而言,如主机与数控系统的失效率之比为l0:1(数控的可靠比主机高一个数量级)。此时数控系统的MTBF就要大于33333.3小时,而其中的数控装置、主轴及驱动等的MTBF就必须大于l0万小时。当前国外数控装置的MTBF值已达6000小时以上,驱动装置达30000小时以上,但是,可以看到距理想的目标还有差距。多功能化
在零件加工过程中有大量的无用时间消耗在工件搬运、上下料、安装调整、换刀和主轴的升、降速上,为了尽可能降低这些无用时间,人们希望将不同的加工功能整合在同一台机床上,因此数控机床实现了一机多能,以最大限度地提高设备利用率。另外前台加工、后台编辑的前后台功能,充分提高其工作效率和机床利用率。数控机床还具有更高的通讯功能,现代数控机床除具有通信口,DNC功能外,还具有网络功能。多轴化
随着5轴联动数控系统和编程软件的普及,5轴联动控制的加工中心和数控铣床已经成为当前的一个开发热点,由于在加工自由曲面时,5轴联动控制对球头铣刀的数控编程比较简单,并且能使球头铣刀在铣削3维曲面的过程中始终保持合理的切速,从而显着改善加工表面的粗糙度和大幅度提高加工效率,而在3轴联动控制的机床无法避免切速接近于零的球头铣刀端部参与切削,因此,5轴联动机床以其无可替代的性能优势已经成为各大机床厂家积极开发和竞争的焦点。
数控机床的网络化,主要指机床通过所配装的数控系统与外部的其它控制系统或上位计算机进行网络连接和网络控制。数控机床一般首先面向生产现场和企业内部的局域网,然后再经由因特网通向企业外部,这就是所谓Internet/Intranet技术。随着网络技术的成熟和发展,最近业界又提出了数字制造的概念。数字制造,是机械制造企业现代化的标志之一,也是国际先进机床制造商当今标准配置的供货方式。
随着信息化技术的大量采用,越来越多的国内用户在进口数控机床时要求具有远程通讯服务等功能。机械制造企业在普遍采用CAD/CAM的基础上,越加广泛地使用数控加工设备。数控应用软件日趋丰富和具有“人性化”。虚拟设计、虚拟制造等高端技术也越来越多地为工程技术人员所追求。通过软件智能替代复杂的硬件,正在成为当代机床发展的重要趋势。在数字制造的目标下,通过流程再造和信息化改造,ERP等一批先进企业管理软件已经脱颖而出,为企业创造出更高的经济效益。柔性化、智能化
数控机床向柔性自动化系统发展的趋势是:从点(数控单机、加工中心和数控复合加工机床)、线(FMC、FMS、FTL、FML)向面(工段车间独立制造岛、FA)、体(CIMS、分布式网络集成制造系统)的方向发展,另一方面向注重应用性和经济性方向发展。柔性自动化技术是制造业适应动态市场需求及产品迅速更新的主要手段,是各国制造业发展的主流趋势,是先进制造领域的基础技术。其重点是以提高系统的可靠性、实用化为前提,以易于联网和集成为目标;注重加强单元技术的开拓、完善;CNC单机向高精度、高速度和高柔性方向发展;数控机床及其构成柔性制造系统能方便地与CAD、CAM、CAPP、MTS联结,向信息集成方向发展;网络系统向开放、集成和智能化方向发展。
智能化是21世纪制造技术发展的一个大方向。智能加工是一种基于神经网络控制、模糊控制、数字化网络技术和理论的加工,它是要在加工过程中模拟人类专家的智能活动,以解决加工过程许多不确定性的、要由人工干预才能解决的问题。智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量的智能化,如自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作的智能化,如智能化的自动编程,智能化的人机界面等;智能诊断、智能监控,方便系统的诊断及维修等。世界上正在进行研究的智能化切削加工系统很多,其中日本智能化数控装置研究会针对钻削的智能加工方案具有代表性。
21世纪的金切机床必须把环保和节能放在重要位置,即要实现切削加工工艺的绿色化。目前这一绿色加工工艺主要集中在不使用切削液上,这主要是因为切削液既污染环境和危害工人健康,又增加资源和能源的消耗。干切削一般是在大气氛围中进行,但也包括在特殊气体氛围中(氮气中、冷风中或采用干式静电冷却技术)不使用切削液进行的切削。不过,对于某些加工方式和工件组合,完全不使用切削液的干切削目前尚难与实际应用,故又出现了使用极微量润滑(MQL)的准干切削。对于面向多种加工方法/工件组合的加工中心之类的机床来说,主要是采用准干切削,通常是让极微量的切削油与压缩空气的混合物经由机床主轴与工具内的中空通道喷向切削区。在各类金切机床中,采用干切削最多的是滚齿机。结束语
总之,数控(NC)机床技术已成为制造技术的发展基础。数控机床技术的进步和发展为现代制造业的发展提供了良好的条件,促使制造业向着高效、优质以及人性化的方向发展。为了满足制造技术不断发展的需要,NC机床将朝着智能化、网络化、集成化、数字化的方向发展。今后,随着计算技术、测试技术、微电子技术、计算机技术、材料和机械结构等方面的研究和科技的进步,也必将面临着新的挑战。可以预见,随着数控机床技术的发展和数控机床的广泛应用 制造业将迎来一次足以撼动传统制造业模式的深刻革命。
参考文献:
[1] 杨学桐,李冬茹,何文立等.距世纪数控机床技术发展战略研究[M ].北京:
国家机械工业局,2000.
[2] 王贵明。数控实用技术[M].北京:机械工业出版社,2000.[3] 惠延波,沙杰等.加工中心的数控编程与操作技术[M],北京:机械工业出
版社,2003.[4] 王侃夫.数控机床控制技术与系统[M],北京:机械工业出版社,2002.
[5] 黄金秋.基于开放式结构的高性能系统的研制[J].制造技术与机床,1998(8)
[6] 曹凤.微机数控技术及其应用[M].成都:电子科技大学出版社,2000.
第三篇:医学超声影像技术发展综述
医学超声影像技术发展综述
张禄鹏
摘要:本文回顾了医学超声影像技术的发展历史,阐述了A型、B型、M型和D型超声诊断方法的历史、原理、特点、用途和发展状况,总结了医学超声影像技术的局限性,介绍了三维超声和超声造影等医学超声影像技术的新进展。
关键词:医学超声影像技术,超声诊断法,三维超声,超声造影
Abstract:This paper reviews the development history of medical ultrasound imaging technology.The history, principles, characteristics, uses and development status of A model, B model, M model and D model ultrasonic diagnostic method.This paper also sums up the limitations of medical ultrasound imaging technology and introduces three-dimensional ultrasound and ultrasound contrast and other new medical ultrasound imaging technology advances.Keyword:medical ultrasound imaging technology,ultrasonic diagnostic method,three-dimensional ultrasound,ultrasound contrast
医学超声影像技术和X-CT、MRI及核医学影像(PET、SPECT)一起被公认为现代四大医学影像技术,成为现代医学影像技术中不可替代的支柱。医学超声影像技术是指运用超声波的物理特性,通过电子工程技术对超声波发射、接收、转换及电子计算机的快速分析、处理和显象,从而对人体软组织的物理特性、形态结构与功能状态影像一种非创伤性技术。目前,由于超声显像技术具有实时动态、灵敏度高、易操作、无创伤、无特殊禁忌症、可重复性强、费用低廉和无放射性损伤等优点。从而使这一诊断技术成为了现今临床各学科疾病的检查、诊断和介入治疗中所不可缺的重要手段之一。
1.超声影像技术发展历史
1880年,两位法国科学家Jacques和Pierre Curie发现了压电现象,成为超声探头的基础。某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷,当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。根据压电效应,用压电晶体可以用来作为声波的产生器与接收器,压电效应是可逆的,这奠定了用同一超声波换能器既能发射又能吸收的基础。
直到第一次世界大战,随着声纳在军事上的应用,压电效应才得到重视。1915年,法国科学家Paul Langevin发现了超声的第一个用途:水下声波测距法探测水下目标,也就是今天大家熟知的声纳。正常人的耳朵可接听到声波频率的范围为16-20000Hz,高于2万赫兹的声波就称为超声波。
超声医学影像所用的声频率通常是300万-750万次/秒(3MHz-7.5MHz)。超声波是一种机械波,其传播是通过介质中粒子的机械振动进行的,它不同于电磁波,在真空中不能传播,但在人体复杂的介质中传播较好,同时它属直线传播,因此有良好的方向性[1]。超声诊断技术出现后获得了迅速的发展,上世纪40年代末,A型(Amplitude Mode)超声诊断仪开始应用于临床,常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,结果比较准确,为最早兴起和使用的超声诊断法,目前已多被其他方法取代,只在脑中线测量等方面还在应
用。
随后B 型(Brightness Mode)和M型(Motion Mode)和超声诊断仪相继问世。70年代灰阶和实时技术取得重大突破超声技术日趋成熟。二维灰度显示的 B 型超声诊断仪取得迅速发展,它们显示的均为人体内结构形态信息,成像基础为人体内的声阻抗变化。所谓的B超,此法是将回声信号以光点的形式显示出来,为辉度调制型,回声强则光点亮,回声弱则光点暗。B超向人体发射一组超声波,按一定的方向进行扫描。根据监测其回声的延迟时间,强弱就可以判断脏器的距离及性质,经过电子电路和计算机的处理, 形成了我们今天的B超图像。按扫描方式分类,B超已经发展了四代,包括手动直线扫描、机械扫描、电子直线扫描和电子扇形扫描。M超声诊断法是在辉度调制型中加入慢扫描锯齿波,使回声光点从左向右自行移动扫描,故也称超声光点扫描法,它是B型超声中的一种特殊的显示方式[2]。80年代出现的彩色血液显像(Color Flow Imaging , CFI),则是在实时B 型超声图像中,以彩色表示心脏或血管中的血液流动,利用多次脉冲回波相关处理技术来取得血液运动信息。
1982年,日本Aloka公司研制第一台二维彩色多普勒显像仪,建立在多普勒效应基础之上的,显示血流及心脏等运动信息D型(Doppler Mode)超声诊断仪开始出现。继而出现B型和D型相结合的双功型(Duplex Mode)超声诊断仪,它用同一探头既显示B 型图,又在图像中任一处取样显示其多普勒频谱。通常称为彩超的彩色多普勒血流成像系统是一种能同时显示 B 型图像和多普勒血流数据(血流方向、流速、流速分散)的双重超声扫描系统。超声频移诊断法,即D型超声诊断法,通称为多普勒超声,此法应用多普勒效应原理,当超声发射探头和反射体之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移。多普勒超声最适合对运动流体做检测,所以多普勒超声对心脏及大血管血流的检测。目前常用的超声多普勒有脉冲式多普勒(Pulse Waveform Doppler, PWD)、连续式多普勒(Continual Waveform Doppler, CWD)彩色多普勒显像(Color Doppler Flow Imaging, DFI)。
2.超声影像技术发展现状
随着科学技术的飞速发展,超声技术与计算机技术紧密结合,探头高频化,线路数字化。上世纪90年代经颅多普勒(Trans Cranial Doppler,TCD)诊断仪应用低频多普勒超声,通过颞部、枕部、眶部及颈部等透声窗,可以显示颅内脑动脉的血流动力学状况。而新型的彩色三维TCD则采用独特的颅脑血管扫描技术,同步对颅内血管的X、Y、Z三维空间坐标参数进行检测并馈入计算机,重建颅内血管的三维图像,并可以在颅内血管多普勒信号模拟三维图上选择样点,显示脑血管血液的流速和流向。该技术用于脑血管疾病的诊断、功能评论、危重病人的监护和预防保健等[3]。其后发展的具有三维空间超声技术的诊断仪可显示三个截面:纵截面、横截面和水平截面,并可对空间的所有平面的结果进行扫描、存储、分析。随着全自动三维超声扫描和三维图像存储技术的应用,使人体受检脏器的解剖学分析更加完善。
超声检查不是万能的,对于含气体和受骨骼遮挡的器官检查不如其它器官,对于过小目标的检查也受到仪器分辨率的限制。超声检查受检查孕周、胎儿体位及羊水影响并不能排除所有胎儿的畸形[4]。有些超声检查需要空腹,必须要空腹检查的器官:胆囊。正常胆囊在夜间空腹状态下储存了肝脏分泌的胆汁,这时胆囊呈充盈状态、壁薄光滑张力大、胆囊内无回声。餐后(尤其食用奶制品、脂肪类食物)会收缩使胆汁排出参与消化,如果餐后胆囊收缩了,难以确定是否为病理状态的超声征像,而结石息肉等可能显示不出或难以辨别。
3,超声影像技术发展趋势
近几年来 医学超声成像系统向更高层次发展 其目标主要是利用更多的声学参数作为载体以获取体内更多的生理病理信息,提高图像质量,使图形清晰显示更为细微的组织结构
[5]。从工程技术角度看,医学超声成像在三维超声等方面的发展特别引人注目。
最近几年,三维超声图像重建是超声图像处理方面的热点 已成为超声成像技术的一个
发展趋势。三维超声和实时三维超声三可以弥补二维超声检查的空间关系不强的缺点,同时可以减少因为二维超声检查过快造成的漏诊,扩大超声的观察视野。利用三维超声可以快速、全面地对各检查脏器进行评价。目前,三维和实时三维超声的应用价值已经得到临床和超声医师的认可。但随着对该技术应用的深入,其应用范围会不断的被发现,从而在产前检查中发挥更大的作用。
超声造影(Ultrasonic Enhanced Contrast)是利用造影剂使后散射回声增强,明显提高超声诊断的分辨力、敏感性和特异性的技术。借助于静脉注射造影剂和超声造影谐波成像技术,能够清楚显示微细血管和组织血流灌注,增加图像的对比分辨力,大大提高超声检出病变的敏感性和特异性。随着仪器性能的改进和新型声学造影剂的出现,超声造影已能有效的增强心、肝、肾、脑等实质性器官的二维超声影像和血流多普勒信号,反映和观察正常组织和病变组织的血流灌注情况。有人把它看作是继二维超声、多普勒和彩色血流成像之后的第三次革命。超声造影作为一种全新的影像学检查技术,目前在临床上的普及程度远远不如CT和MRI,和传统超声一样受体形影响和气体干扰大,穿透力较X线弱,空间分辨力也低于CT和MRI,但超声造影剂进行超声检测,简便、耗时短而且实时无创、无辐射,具有其他检查方法无法比拟的优点,已成为超声诊断的一个十分重要和很有前途的发展方向。
总之,三维或实时三维超声、超声造影技术在临床的应用才刚刚起步,更多的应用价值有待广大的超声医务工作者不断地探索和发现,相信随着这些新技术在临床的不断应用,其 可适用的领域会不断地扩大,并适应新的发展趋势。
参考文献:
[1] 李治安.临床超声影像学[M],人民卫生出版社,2003.11.[2] 张源祥,樊文峰.超声诊断[M],中国医药科技出版社,2007.67-73.[3] 陈思平.医学超声影像产业现状和发展[J],应用声学,2005, 24(4):201-207.[4] 鲁蓉.超声成像技术在妇产科的应用进展[J],中国医师杂志,2011,13(3):425-427.[5] 李朝伟,李晓东,张良才.医学超声影像技术的发展创新[J],中国医学装备, 2005,2(2):45 – 47.
第四篇:四维超声成像技术与方法
四维超声成像技术与方法
作者:魏晓光
来源:安太医院
近年来计算机技术革命化的进步被融入超声诊断系统,使得三维容积成像的速度在短短的几年时间里得到了极大提高,目前已经发展到能够进行动态的四维成像。
高分辨的二维超声和彩色多普勒超声的技术进步是超声诊断学发展的重要里程碑,尤其是在妇产科的应用,成为无可替代的非侵入性的诊断工具。近年来四维超声技术的发展和进步,为非侵入性的诊断技术又开辟了一个新的领域。
四维超声技术能够克服二维超声空间显像的不足,成为二维超声技术的重要辅助手段。四维超声的进步体现在能够迅速地对容积图像数据进行储存、处理和动态显示其三维立体图像,并且能够得到多平面的图像,而这一功能以往只有CT和MRI技术才具备。目前四维超声尚不可能完全替代二维超声,但它的确为一些复杂声像结构的判断提供了大量辅助信息,并对某些病变的诊断起到二维超声无法替代的作用。它的应用潜能正随着经验的积累被逐步开发出来。
一、四维超声技术简介
三维超声是将连续不同平面的二维图像进行计算机处理,得到一个重建的有立体感的图形。早期的三维重建一次必须采集大量的二维图像(10~50幅),并将其存在计算机内,进行脱机重建和联机显示,单次三维检查的图像数据所需的存储空间达数十兆字节,成像需要数小时甚至数天时间。近年来三维超声与高速的计算机技术的联合使其具备了临床实用性。三维表面成像在80年代首次应用于胎儿;90年代初期开始了切面重建和_一个互交平面成像;容积成像则开始干1991年;1994发展了散焦成像;1996年开始了实时超声束跟踪技术,而最新发展的真正的实时三维超声可以称作四维超声(four—dimensional ultrasound),数据采集和显示的速率与标准的二维超声系统相接近,即每秒15~30帧,被称作高速容积显像(high speed ultrasotlnd v01umetri clmaging,HSUVI)。真正实现实时动态三维成像,将超声技术又提高一个台阶。新景安太医院拥有4台四维彩超,专业的四维彩超检查医生,此技术已经在我院临床使用4年多,有非常丰富的经验。
四维超声成像方法有散焦镜法、计算机辅助成像和实时超声束跟踪技术。
(一)散焦镜方法(defoctJsi rlg lens metriod)也称厚层三维图像,方法简单,费用低。装置仅需在凸阵或线阵探头上套上一个散焦镜。用此方法可以对胎儿进行实时观察,然而胎体紧贴宫壁时图像就会重叠,使胎儿图像辨别困难。
(二)计算机辅助成像 是目前首选的三维成像方法,成像处理过程包括:获取三维扫查数据;建立三维容积数据库;应用三维数据进行三维图像重建。
(三)实时超声束跟踪技术 是三维超声的最新技术,其过程类似于三维计算机技术但可以立即成像。仅仅需要定下感兴趣部位的容积范围就可以住扫查过程中实时显示出三维图像,可以提供连续的宫内胎儿的实时三维图像,例如可以看到胎儿哈欠样张口动作等。
二、四维超声成像方法
四维超声的临床实用性很大程度上取决于操作人员对此技术掌握的熟练程度。只有了解四维超声的基本原理和概念,熟练掌握四维超声诊断仪的操作方法和步骤,才能充分发挥三维超声的最大作用。
(一)四维成像的主要步骤与成像模式 常规四维成像包括以下步骤:
1.自动容积扫查 以三维容积探头进行扫查,获取三维数据。三维数据是通过超声探头扫查平面的移动而获取的大量连续二维断面图。现有的三维探头都配有内置的凸阵或扇形探头,探头内电磁感应器可以感应出每一断层的相对位置和方向。每一断面的二维图像信息连同其空间方位信息都被数字化后输入电脑。实时二维扫查是基础,根据感兴趣区域的空间范围,任意调节断面的角度、扫查深度和扫查角度,确定三维容积箱(volume box)的位置和大小后进行扫查。任扫查时可以根据感兴趣区的回声和运动特征调整扫查速度。对运动的目标可选用快速扫查,但获得的图像空间分辨力低;低速扫查图像分辨力最高,但易受运动影响;正常速度扫查的空间分辨力介于两者之间。
2.三维数据库的建立 探头扫查获得的数据是由许许多多的断面组成的合成数据,作为三维数据库输入电脑,可以通过滤过干扰信息改善数据的质量。三维数据库包含一系列的体积像素,每一体积像素既是灰度值也是亮度值,见图1—2一l。
3.三维图像重建应用三维数据库可以重建出各种图像,包括三维切而重建和立体三维的观察。
(1)切面重建:成像最简单,通过旋转三维数据库可以选定任意一个平而的二维图像,进行多平面图像分析。尽管得到的是断面图,有时对诊断却非常有用,冈为许多平面(例如子宫的冠状面)是二维超声难以观察到的。
(2)容积成像(volLime rendering):是一种基十体积像素(voxel)的三维数据库的视觉工具。一个像素(pixel)是二维图像的最小的图像信息单位,一个体积像素则是三维容积数据中最小的图像信息单位。在二维的有立体感的图像L的每一个像素都代表着一组三维体积像素,沿着投射线的多个体积像素经过分析处理后
1)表面成像模式:采用此方法能够建立组织结构的表而立体图像。通过旋转三维立体数据库选择感兴趣区域进行成像,非感兴趣区可以去除;采用合适的滤过功能,可以滤过周围低回声,使图像突出,例如去除羊水内的低回声,突出眙儿表面高回声,滤过高时还可以突出胎儿骨骼结构,显示出高回声结构的立体图像;应用图像自动回放的旋转功能,可以从不同角度观察立体图像;另外还可以调节图像的明亮度和对比度,使图像立体感更强。
2)透明成像模式:将实质性的组织结构的所有三维回声数据投射到一个平面上,选择性地显示出高同声或低回声结构的特征。采用这种模式要求感兴趣结构的回声特征较周围组织回声高或低,例如骨骼、血管或囊性结构。此模式能够产生类似x线照片的效果,但与x线照片不同的是,可以通过回放旋转功能从各个角度来观察图像。
3)彩色模式:在扫查中采用多普勒方式,可以进行血管内彩色血流三维重建。三维多普勒能量图不但能够观察组织结构内的血流情况,还可以提供一定容积内血细胞量的间接资料,三维血管成像方法能够跟踪血管走向,区分重叠血管,见图2一l一
10、图2一l一19等。三维彩色直方图是最近开发出来的能够客观定量分析血流的一个新指标,是指单位体积内代表血管化程度的彩色成分的百分比和代表血流量的平均彩色幅度值,它为定量评估生理和病理情况卜的血管生成提供了一个非常重要的手段。
(二)容积成像的步骤与方法 在数秒钟内完成扫查和建立三维数据库后,可以立即进行容积成像操作,也可以把数据储存入仪器内,过后再调出分析。容积成像的基本步骤
(1)确定成像范围:在所扫查的三维容积资料中选定出感兴趣区域(即容积箱),任容积箱外的结构将不会被成像。
(2)选择成像模式:根据感兴趣区域的回声特征合理选择成像模式,以能够突出病灶特征为原则。
(3)图像的滤过处理:表面成像时利用滤过功能对周围低回声结构进行适当的抑制,以突出表面结构特征。
(4)旋转三维图像:进行图像定位,使立体图像处于最佳显示角度,从而得出最佳三维图像。
(5)立体电影回放:采用电影回放的功能可以从不同角度动态地观察图像,立体感更强。
(6)电子刀的选择:利用电子刀的功能能够去除与感兴趣结构表面无关的立体回声结构,以及不规则的周边,使图像从任何角度上看都更为清晰、重点突出。
三、四维技术的优点
最新四维超声系统在妇产科应用的主要优势在于四维容积扫查方式的进步和四维数据处理方式的进步。
四维成像技术的优点主要有以下几点:
1.能够获得任意平面的图像,并标明其在空间的方向和位置,有利于对图像进行仔细分析,减少主观因素干扰。
2.具有精确的体积计算功能。常规的二维超声只能获取一个组织结构的三个切面,通过三个切面的径线粗略地估测体积,当目标形态不规则时则无法估计。三维超声可处理多平面资料,模拟出组织的形状,利用特定的容积计算公式得出体积大小,使体积的测量更为精确,尤其对不规则形器官或病灶体积的测量更具优越性。新近应用的在体器官计算机辅助分析技术(virtual 0rgan compute卜aidedanalysis,VOCAL)具有自动测最各种形态结构之体积的功能,能够描画和显示任何形态的组织器官外形特征,并计算出其体积,为不规则形结构的体积估计提供了最佳的手段。
3.能够对感兴趣结构重建三维立体图像,使结果直观。清晰的立体图像可以产生以下效果:
(1)对胎儿异常的观察更为细致,对了解病变的全貌优干二维超声检查,例如对胎儿唇裂的诊断等。
(2)对初学超声诊断者,有助于培养空间思维能力和理解图像的能力。
(3)胎儿异常的三维立体成像使母亲及其家属容易理解,避免医务人员解释不清所造成的不便。
4.四维扫查在瞬间完成,获得的容积数据可以全部被储存起来,数据可以在患者离开后随时调出来进行研究分析,评价存储数据,由此带来的优点是:
(1)不必匆忙对疑难病例下定论,可以在充分讨沦后得出更准确的判断。
(2)减少了病人因检查时间长而造成的不适,降低了超声检查时间长对胎儿的可能损害。
(3)可使观察者之间、观察者本人的差异降到最低,减少了分析图像中的主观因素
第五篇:超声四维成像操作小技巧
超声四维成像操作小技巧----时钟法
实践总结认为四维成像的难度有
70%在于如何判断胎儿颜面部所向的“方位”并获取四维图像所需的“矢状面”,因为在二维操作中以胎儿颜面部观测最常用的是冠状面,此切面提供了很多胎儿颜面部的信息,而矢状面较少用到,所以很多医生对如何准确、快速的获取该切面有一定的难度,进而影响了四维成像的效果。而另外只有30%的难度来自于对仪器的操作各对四维的调试。时钟法的具体步骤只有两项:
1、获取胎儿丘脑平面,判断胎儿颜面方位(指向几点钟)。
2、移动探头至颜面所指的方位,旋转90度,至获取矢状面。
技巧及注意事项
1、一般情况下胎儿颜面指向8:30---12点钟,12点钟到3:30位置可成像。
2、当探头指向的钟点位置较低时(如9点前、3点后),需将探头用力向上翘以尽量获取胎儿颜面的矢状面。
3、当检查的胎儿胎龄较小,其颜面部距体表较深时,在找到钟点位置应用探头对肚皮施加一定压力,使胎儿颜面部更贴近体表,因为对于四维成像而言,部位越深效果越差。
4、当找到胎儿“钟点位置”后,如果颜面前方羊水较少,应稍施放压力,尽量腾出透声空间。
5、当胎儿颜面指向4:30--8:30时,四维颜面成像困难,一般先完成其他二维观测项目,然后看胎儿是否有移动位置,如没有,可让孕妇活动30分钟再检查。
6、巧用成像模式,大部分胎儿四维都用表面成像来获取胎儿表面立体图像。仪器成像模式中的“最大化成像(Max)”可用来实现对骨骼组织的成像,且效果满意。其中要注意的是在使用该成像模式时要将B增益调低些,而获取脊柱矢状面的方法同样使用时钟法,只是方向跟颜面的相对向。超声笔记每天分享,赞赏是正能量的动力。