定理与证明(5篇)

时间:2019-05-12 05:27:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《定理与证明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《定理与证明》。

第一篇:定理与证明

《定理与证明》学案

【学习目标】

1.了解定理,证明的定义。

2.知定理必须证明是正确的命题后才可运用。(重点)

3.会用几何语言证明一个命题。(难点)

【问题导学】

1.阅读课本55页,写下并记忆五个基本事实。

1)两点确定一条直线;2)两点之间,线段最短;3)过一点有且只有一条直线与已知直线垂直;4)过直线外一点有且只有一条直线与这条直线平行;

5)两条直线被第三条直线所截,如果同位角相等,那么这两直线平行。

2.认真阅读课本56页后回答:

① 什么是定理?定理的作用是什么?

数学中,有些命题可以从基本事实或其他真命题出发,用逻辑推理的方法判断他们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理。

作用:揭示客观事实的本质属性,作为进一步确认其他命题真假的依据。

② 认真完成“思考”的问题,参照云图中的提示,判断结论的正确与否:可知第一个结论不正确.23571113159509 第二个结论不正确.钝角三角形 第三个结论正确.对上面不正确的结论举反例说明。

③什么是证明?哪些可以作为证明的依据呢?

根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明。

3.阅读“直角三角形的两锐角互余”的证明后回答:

③ 写出这个命题的条件和结论,总结证明命题的步骤。

④ 仿照例题步骤证明定理“有一个角等于60°的等腰三角形是等边三角形”

4.阅读课本57页读一读,写出证明的依据有哪些?

定义、基本事实、已经学过的定理,等式的性质、等量代换

【课堂检测】

课本练习的第一题和第二题【学习小结】

第二篇:定理与证明

定理与证明(一)

教学建议

(一)教材分析

1、知识结构

2、重点、难点分析

重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性.

难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.

(二)教学建议

1、四个注意

(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.

(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.

(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.

(4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.

2、逐步渗透数学证明的思想:

(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为„„,所以„„”句式,“如果„„,那么„„”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.

(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法.

(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题.

教学目标:

1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.

2、能用符号语言写出一个命题的题设和结论.

3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.教学重点:证明的步骤与格式.

教学难点:将文字语言转化为几何符号语言.

教学过程:

一、复习提问

1、命题“两直线平行,内错角相等”的题设和结论各是什么?

2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)

3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)

二、例题分析

1、证明:两直线平行,内错角相等.

已知:a∥b,c是截线.

求证:∠1=∠2.

分析:要证∠1=∠2,只要证∠3=∠2即可,因为

∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2.

证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等).

∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换).

2、证明:邻补角的平分线互相垂直.

已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC.

求证:OE⊥OF.

分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.

证明:∵OE平分∠AOB,∴∠1= ∠AOB,同理 ∠2= ∠BOC,∴∠1+∠2=(∠AOB+∠BOC)= ∠AOC=90°,∴OE⊥OF(垂直定义).

三、课堂练习:

1、平行于同一条直线的两条直线平行.

2、两条平行线被第三条直线所截,同位角的平分线互相平行.

四、归纳小结

主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.

五、布置作业

课本P143

5、(2),7.六、课后思考:

1、垂直于同一条直线的两条直线的位置关系怎样?

2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?

3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?

第三篇:定理与证明

定理与证明(二)

一、教学目标

1.了解“证明”的必要性和推理过程中要步步有据.

2.了解综合法证明的格式和步骤.

3.通过一些简单命题的证明,初步训练学生的逻辑推理能力.

4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何图形的能力.

5.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.

二、学法引导

1.教师教法:尝试指导,引导发现与讨论相结合.

2.学生学法:在教师的指导下,积极思维,主动发现.

三、重点·难点及解决办法

(-)重点

证明的步骤和格式是本节重点.

(二)难点

理解命题,分清其题设和结论,正确对照命题画出图形,写出已知、求证.

(三)解决办法

通过学生分组讨论,教师归纳得出证明的步骤和格式,再以练习加以巩固,解决重点、难点及疑点.

四、课时安排

l课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

1.通过引例创设情境,点题,引入新课.

2.通过情境教学,学生分组讨论,归纳总结及练习巩固等手段完成新授.

3.通过提问的形式完成小结.

七、教学步骤

(-)明确目标

使学生严密推理过程,掌握推理格式,提高推理能力。

(二)整体感知

以情境设计,引出课题,引导讨论,例题示范讲解新知,以练习巩固新知.

(三)教学过程

创设情境,引出课题

师:上节课我们学习了定理与证明,了解了这两个概念.并以证明“两直线平行,内错角相等”来说明什么是证明.我们再看这一命题的证明(投影出示).

例1已知:如图1,是截线,求证: .

证明:∵(已知),∴(两直线平行,同位角相等).

∵(对项角相等),∴(等量代换).

这节课我们分析这一命题的证明过程,学习命题证明的步骤和格式.

[板书]2.9定理与证明

探究新知

1.命题证明步骤

学生活动:由学生分组讨论以上命题的证明过程,按自己的理解说出证明一个命题都需要哪几步.

【教法说明】根据上一节“两直线平行,内错角相等”这一命题的证明过程让学生讨论、分析、归纳命题证明的一般步骤,一是可以加深对命题证明的理解,二是培养学生归纳总结能力。在总结步骤时,学生所说的层次不一定有逻辑性,或不太严密,教师要注意引导,使学生分清命题证明几个步骤的先后层次.

根据学生讨论,回答结果.教师归纳小结,师生共同得出证明命题的步骤(出示投影):第一步,画出命题的图形.

先根据命题的题设即已知条件,画出图形,再把命题的结论即求证的内容在图上标出.还要根据证明的需要,在图上标出必要的字母或符号,以便于叙述或推理过程的表达.第二步,结合图形写出已知、求证.

把命题的题设化为几何符号的语言写在已知中,命题的结论转化为几何符号的语言写在求证中.

第三步,经过分析,找出由已知推得求证的途径,写出推理的过程.

学生活动:结合“两直线平行,内错角相等”这一命题的证明,理解以上命题证明的一般步骤(给学生一定时间理解记忆).

【教法说明】在以上第二个步骤中,将文字语言转化为符号语言是教学中的难点,要注意在练习中加强辅导,第三步由学生独立完成有困难,要逐步培养训练,现阶段暂不要求学生独立完成.

反馈练习:(1)画出证明命题“两直线平行,同旁内角互补”时的图形,写出已知、求证.

(2)课本第112页A组第5题.

【教法说明】由学生依照例1“两直线平行,内错角相等”这一命题的证明画出图形,写出已知、求证,巩固命题证明的第一、二步.

2.命题的证明

例2证明:邻补角的平分线互相垂直.

【教法说明】此例题完全放手让学生独立完成有一定困难,但教师也不能包办代替,最好通过让学生分步讨论,同桌互相磋商,分步完成的方法,使学生对命题证明的每一步都进一步理解,教师可以给学生指明思考步骤.

(1)分析命题的题设与结论,画出命题证明所需要的图形.

邻补角用图2表示:

图2

添画邻补角的平分线,见图3:

图3

(2)根据命题的题设与结论写出已知、求证.邻补角用几何符号语言提示:,角平分线用几何符号语言表示:,求证邻补角平分钱互相垂直,用符号语言表示: .

(3)分析由已知谁出求证途径,写出证明过程.

有什么结论后可得(),由已知可以推导 吗?学生讨论思考.

【教法说明】以上步骤的完成教师只提供思路,具体结论的得出与操作要由学生独立完成.找一个学生到黑板上板演,其他同学在练习本上写出完成整过程.

已知:如图,,.

求证:

证明:∵(已知),又∵,(已知),∴ .

∴(垂直定义).

证明完成后提醒学生注意以下几点:

①要证明的是一个简单叙述的命题,题设和结论不明显,可以先根据题意画出图形.如例2,结合图形分析命题的题设和结论.

②在写已知、求证的内容时,要将文字语言转化为符号语言来表示,转化时的写法也不是惟一的,要根据使用的方便来写,如: 与 互为邻补角,在已知中写为,角平分线有几种表示方法,如 是 的平分线,,根据此题写成 较好,方便于下面的推理计算.

③对命题的分析、画图,如何推理的思考过程,证明时不必写出来,不属于证明内容.

反馈练习:按证明命题的步骤证明:“两条直线被第三条直线所截,如果同位角相等,那么内错角相等.”

【教法说明】由学生独立完成,找学生板演,发现问题教师及时纠正.

3.判定一个命题是假命题的方法

师:以上我们的推理是说明一个命题是真命题的判定方法.那么如何判定一个命题是假命题呢?如“相等的角是对项角”,同学们都知道这是一个假命题,如何说明它是一个假命题呢?谁能试着说明一下?

【教法说明】教师先不告诉学生判定一个命题是假命题的方法,而是由很明显的“相等角是对顶角”这一假命题,让学生自己尝试着去说明,体验从反面去说明一个问题的方法,然后教师归纳小结.

根据学生说明,教师小结:

判定一个命题是假命题,只要举出一个反例即可,也就是说你所举命题符合命题的题设,但不满足结论.如“同位角相等”可如图,与 是同位角但不相等就说明“同位角相等是假命题”.

反馈练习:课本第111页习题2.3A组第4题.

【教法说明】在做以上练习时一定让学生学会从反面思考问题的方法,再就是要澄清一些错误的概念.

反馈练习

投影出示以下练习:

1.指出下列命题的题设和结论

(1)两条平行线被第三条直线所截,同旁内角互补.

(2)两个角的和等于直角,这两个角互为余角.

(3)对项角相等.

(4)同角或等角的余角相等.

2.画图,写出已知,求证(不证明)

(1)同垂直于一条直线的两条直线平行.

(2)两条平行直线被第三条直线所截,同位角的平分线互相平行.

3.抄写下题并填空

已知:如图,.

求证: .

证明:∵(),∴().

∴().

【教法说明】以上练习让学生独立完成,第1题主要是训练学生分清命题的题设和结论;第2题是训练学生把命题转化为几何语言、几何图形的能力;第3题是让学生进一步体会命题证明的三个步骤.

总结、扩展

以提问的形式归纳出本节课的知识结构:

八、布置作业

(-)必做题

课本第110页习题2.3A组第3(2)、(3)、(4)题.

(二)思考题

课本第112页B组第l、2题.

作业答案

A组(略)

B组1.已知两直线平行,同旁内角互补。

(两直线平行,同旁内角互补)(同角的补角相等).

2.已知:如图,、分别平分 与 .求证: .

第四篇:老教材定理与证明

----------[初中数学]---------

初中数学 经典教材系列 老人教版

定理与证明

教学目标

1使学生理解公理和定理的意义,并能对公理与定理加以区别

2使学生理解证明命题的思路、书写的格式,使学生对几何的重要内容之一——推理论证,有初步的认识,从而初步培养学生思维的条理性和逻辑性

教学重点和难点

重点是命题证明的一般步骤,难点是探索命题证明的思路以及思维方向

教学过程设计

一、复习命题,引入公理和定理

教师提问:学生思考后回答

1什么叫命题?请你说出一个数学命题

2什么叫真命题?什么叫假命题?请你分别举出两个实例

3在前面学过的真命题中,还有什么名称?

当学生回答完第三个问题后,教师再问

4公理和定理有什么区别?

先由学生随意回答,互相补充,然后教师与学生一起归纳总结

公理:它的正确性是人们长期实践中总结出来并作为判定其它命题真假的根据 定理:它是正确性是用推理证实的,这样的真命题叫做定理

用幻灯投影命题与公理等关系

命题

真命题假命题(只需举一个反例)

公理(正确性由实践总结)

定理(正确性由推理证实)

二、证明的意义、过程和步骤

1证明的意义

请证明以下命题:三个连续奇数的和是3的整数倍

问:请学生们思考,怎样证明?

当三个连续奇数为3,5,7时,它们的和为3+5+7=15是3的整数倍,当三个数为7,8,9时,7+8+9=24,也对那么,我们能否这样试下去,能不能通过试具体数的方法,证明这个命题是真命题不能,如何证明呢?

设n为整数,三个连续奇数为2n+1,2n+3,2n+5,它们的积为(2n+1)+(2n+3)+(2n+5)=6n+9=3,因为n是整数,所以2n+3为整数,3(2 n+3)是3的整数倍。

这就是推理的过程

要判断一个命题的真假,必须要有推理论证的过程,也叫证明只有证明,才能区分命题的真假,否则就会得出错误的结论证明的意义就在于此

再问:“两个连续整数的平方差是一个奇数,这个命题是真还是假?怎样证明,学生分组讨论,选做出结果的同学板演或讲解 证明:设n为整数,n+1,n为两个连续整数

(n+1)2-n2=n2+2n+1-n2=2n+1,因为2n+1为奇数,所以得证

2命题证明的一般步骤

例求证:同角的余角相等

已知:如图2—87,∠2是∠1的余角,∠3是∠1的余角

求证:∠2=∠3

证明:因为∠2与∠1互为余角,(已知)

∠3与∠1互为余角,所以∠2+∠1=90°,∠3+∠1=90°(余角定义)

所以∠2+∠1=∠3+∠1(等量代换)

则∠2=∠3(等量减等量差相等)

同学总结步骤:

1审题:分清命题的“题设”和“结论”

2译题:结合图形中的字母及符号,写出已知,求证

3想题:用“执因索果”(综合法);用“执果索因”(分析法)寻找论证推理的逻辑思路一般是把二者结合起来思考,效果较好,这也叫综合分析法

4证题:从已知出发,每一步过程要有根据(定义,公理或定理)最后得到结论,全面推理过程要因果分明

三、命题证明的练习

1证明:“如果一条直线和两条平行线中的一条垂直,这条直线也和另一条垂直” 教师指导学生,按证明命题的四步,边讲边请学生回答如下问题:

(1)命题的“题设”和“结论”各是什么?学生回答后,教师板书:

已知:如图2—88,a∥b,a⊥c,求证:b⊥c

(2)以上译题时应注意:图形尽量准确,图中字母与译文要一致,不能随意添加或丢失条件或结论

(3)思维的逻辑路线是什么?

要证垂直,就是要证两条直线相交成90°的角,由第一条直线a与c垂直成90°角又a∥b,同位角相等,所以a与c的交角也为90°,所以b⊥c

(4)证明过程中有几对因果关系?(两对)

请学生写出证明过程,最好请两名证明顺序有所不同的学生到黑板上证,两种顺序如下证法

(一):∵a⊥c,(已知)

∴∠1=90°(垂直的定义)

∵a∥b,(已知)

∴∠1=∠2,(两直线平行,同位角相等)

∴∠2=90°,(等量代换)

∵b⊥c(垂直定义)

证法(二):

∵a∥b,(已知)

∴∠1=∠2(两直线平行,同位角相等)

∵a⊥c,(已知)

∴∠1=90°,(垂直定义)

∴∠2=90°,(等量代换)

∴b⊥c(垂直定义)

2证明:“垂直于同一直线的两条直线平行”

教师给出命题后,让学生每人都在笔记本上自己做,然后找妯两个或三个学生,让他们在黑板上写出证明的过程在学生板演的过程中,教师提问:

(1)将此命题写成“如果„„,那么„„”的形式“如果两条直线都与第三条直线垂直,那么这两条直线平行”

(2)已知,求证,及图形的画法,由学生分别写出和画出,并与板演的学生对照 已知:a⊥c,b⊥c,如图2—89,求证:a∥b

(3)师生共同探索证题的思考过程,然后找一位学生板演

证明:∵a⊥c,(已知)

∴∠1=90°(垂直定义)

∵b⊥c,(已知)

∴∠2=90°(垂直定义)

∴∠1=∠2,(等量代换)

∴a∥b(同位角相等,两条直线平行)

以上过程也可以简写为:

∵a⊥c,b⊥c,∴∠1=90°,∠2=90°

(……)

四、总结

教师以提问形式,学生回答,教师纠正。

1命题,定理之间的关系是什么?(关系图)

2公理的正确性怎样判定?定理的正确性怎样判定?

3假命题应怎样判定?

4证明命题的一般步骤是什么?(审题、译题、想题、证题)

五、作业

1将第一章的定理、公理整理出来,将第二章的定理、公理、整理出来。2复习证明命题的一般步骤。

3如图2-90,已知:∠ABC=90°,∠1+∠C=90°,求证:∠C=∠2。

4如图2-91,已知:∠1=∠2,∠2+∠3=180°,求证:a∥b,c∥d。

5(选作题)

证明:

(1)13个同学中必有2个或2个以上的同学在同一个月份出生。

(2)初一年级共有400人,必有2个或2个以上的同学的生日是同一天。

(注:以上证明可用抽屉原则。详细答案见“设计说明”。)

板书设计

定理与证明

一、公理与定理

三、证明练习

1公理例

12定理例

23关系图

四、总结

二、证明命题

五、作业

1意义例:

2一般步骤

课堂教学设计说明

1本教案的教学时间为1课时45分钟。

2关于真命题与定理的关系,可以告诉学生,在数学中经过推理论证是正确的真命题都可以作为定理。

2在前面的教学中,实际已经渗入了不少有关推理证明的问题,学生也已经熟悉。在这一节课中,对证明的过程再加以系统的总结和归纳,使学生在将来的证明中,书写和思考更加规范和合理。

3本节的例题内容和作业内容都比较简单。有些基础较好的学校和班级还可以适当补充难度大一些的题目。如抽屉原则的习题和某些代数证明题。以下几题可供参考:

(1)求证:对任意整数n,(n+5)-(n-3)(n+2)能被6整除。

(提示:化简后原式=6(n+1))

(2)求证:任意两个连续整数的平方差是一个奇数。

(3)求证:无论a取何值,代数式3(a-2)(a+2)+3(a+2)2-6a(a+2)的值永远为0。4选作题答案:

(1)将12个月作为12个抽屉,13个学生当做13个苹果,根据抽屉原则:把多于n个苹果放到n个抽屉里,至少有一个抽屉有两个或两个以上的苹果,则13个同学中必有2个或2个以上的同学在同一个月份出生。

(2)一年365天看作365个抽屉,400个同学为400个苹果。

由抽屉原则可得到答案。

第五篇:正弦定理证明

新课标必修数学5“解三角形”内容分析及教学建议

江苏省锡山高级中学杨志文

新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中“解三角形”既是高中数学的基本内容,又有较强的应用性。在历次教材改革中都作为中学数学中的重点内容,一直被保留下来。在这次新课程改革中,新普通高中《数学课程标准》(以下简称《标准》)与原全日制普通高级中学《数学教学大纲》(以下简称《大纲》)相比,“解三角形”这块内容在安排顺序上进行了新的整合。本文就《标准》必修模块数学5第一部分“解三角形”的课程内容、教学目标要求、课程关注点、内容处理上等方面的变化进行简要的分析,并对教学中应注意的几个问题谈谈自己的一些设想和教学建议,供大家参考。

一、《标准》必修模块数学5中“解三角形”与原课程中“解斜三角形”的比较

1.课程内容安排上的变化

“解三角形”在原课程中为“解斜三角形”,安排在“平面向量”一章中,作为平面向量的一个单元。而在新课程《标准》中重新进行了整合,将其安排在必修模块数学5中,独立成为一章,与必修模块数学4中的“平面向量”分别安排在不同的模块中。

2.教学要求的变化

原大纲对“解斜三角形”的教学要求是:

(1)掌握正弦定理、余弦定理,并能运用它们解斜三角形,能利用计算器解决解斜三角形的计算问题。

(2)通过解三角形的应用的教学,提高运用所学知识解决实际问题的能力。

(3)实习作业以测量为内容,培养学生应用数学知识解决实际问题的能力和实际操作的能力。《标准》对“解三角形”的教学要求是:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。由此可以看出,《标准》在计算方面降低了要求,取消了“利用计算器解决解斜三角形的计算问题”的要求,而在探索推理方面提高了要求,要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。

3、课程关注点的变化

原《大纲》中,解斜三角形内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》则关注运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。侧重点放在学生探究和推理能力的培养上。

4、内容处理上的变化

原《大纲》中,解斜三角形作为平面向量知识的应用,突出其工具性和应用性。而《标准》将解三角形作为几何度量问题来处理,突出几何的作用,为学生理解数学中的量化思想、进一步学习数学奠定基础。解三角形处理的是三角形中长度、角度、面积的度量问题,长度、面积是理解积分的基础,角度是刻画方向的,长度、方向是向量的特征,有了长度、方向,向量的工具自然就有用武之地。

二、教学中应注意的几个问题及教学建议

原《大纲》中解斜三角形的内容,比较关注三角形边角关系的恒等变换,往往把侧重点放在运算上。而《标准》将解三角形作为几何度量问题来展开,强调学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,解决简单的三角形度量问题。这就要求在教学过程中,突出几何的作用和数学量化思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。因此在教学中应注意以下几个问题。

1.要重视探究和推理

《标准》要求“通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理”。因此建议在教学中,既要重视从特殊到一般的探索学习过程的教学,又要重视数学的理性思维的培养。教学中不要直接给出定理进行证明,可通过学生对三角形边与角的正弦的测量与计算,研究边与其对角的正弦之间的比,揭示它们在数量上的规律,发现正弦定理的结论,然后再从理论上进行论证,从而掌握正弦定理。从中体会发现和探索数学知识的思想方法。

参考案例:正弦定理的探索、发现与证明

教学建议:建议按如下步骤设计教学过程:

(1)从特殊三角形入手进行发现

让学生观察并测量一个三角板的边长。

提出问题:你能发现三边长与其对角的正弦值之比之间的关系吗?

例如,量得三角板三内角300,600,900所对的三边长分别约为5cm,8.6cm,10cm,58.610,101010 000

sin30sin60sin90

abc

对于特殊三角形,我们发现规律:。

sinAsinBsinC

则有:

提出问题:上述规律,对任意三角形成立吗?(2)实验,探索规律

二人合作,先在纸上做一任意锐角(锐角或钝角)三角形,测量三边长及其三个对角,然后用计算器计算每一边与其对角正弦值的比,填入下面表中,验证前面得出的结论是否正确。(其中,角精确到分,忽略测量误差,通过实验,对任意三角形,有结论:

abc,即在一个三角形中,

sinAsinBsinC

各边和它所对的角的正弦的比相等。

提出问题:上述的探索过程所得出的结论,只是我们通过实验(近似结果)发现的一个结果,如果我们能在理论上证明它是正确的,则把它叫做正弦定理。那么怎样证明呢?

(4)研究定理证明的方法方法一:(向量法)①若△ABC为直角三角形,由锐角三角函数的定义知,定理显然成立。②若△ABC为锐角三角形,过点A做单位向量j垂直于AC,则向量j与向量的夹角为900-A,向

量j

与向量CB的夹角为900-C,(如图1),且有:ACCBAB,所以j·(+)= j·即j·+ j· = j·AB 展开|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)

ac

。

sinAsinC

cbabc

同理,过点C做单位向量j垂直于,可得:,故有。

sinCsinBsinAsinBsinC

③若△ABC为钝角三角形,不妨设角A>900(如图2),过点A做单位向量j垂直于AC,则向量j与

则得 a sinC = c sinA,即

向量AB的夹角为A-900,向量j与向量的夹角为900-C,且有:,同样可证得:

abc

。

sinAsinB

提出问题:你还能利用其他方法证明吗?

方法二:请同学们课后自己利用平面几何中圆内接三角形(锐角,钝角和直角)及同弧所对的圆周角相等等知识,将△ABC中的边角关系转化为以直径为斜边的直角三角形中去探讨证明方法。

2.要重视综合应用

《标准》要求掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。建议在正弦定理、余弦定理的教学中,设计一些关于正弦定理、余弦定理的综合性问题,提高学生综合应用知识解决问题的能力。如可设计下面的问题进行教学:

参考案例:正弦定理、余弦定理的综合应用 C 如图,在四边形ABCD中,已知ADCD,AD=10,AB=14,BDA=60,BCD=135.求BC的长.教学建议:

引导学生进行分析,欲求BC,需在△BCD中求解,∵BCD=135,BDC=30,∴需要求BD,而BD需在△ABD中求解.再引导学生将

A B

四边形问题转化为三角形问题,选择余弦定理求BD,再由正弦定理

例2图 求BC。

3.要重视实际应用

《标准》要求运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。因此建议在教学中,设计一些实际应用问题,为学生体验数学在解决问题中的作用,感受数学与日常生活及与其他学科的联系,培养学生的数学应用意识,提高学生解决实际问题的能力。在题目的设计中要注意对恒等变形降低要求,避免技巧性强的变形和繁琐的运算。

参考案例:解三角形在实际中的应用

参考案例1.航海中甲船在A处发现乙船在北偏东45,与A的距离为10海里的C处正以20海里/h的速度向南偏东75的方向航行,已知甲船速度是203海里/h,问甲船沿什么方向,用多少时间才能与

乙船相遇?

教学建议:引导学生依据题意画出示意图,将实际问题转化为解三角形问题。若设甲船与乙船经过t小时在B处相遇,构建ACB,容易计算出AB20海里,BC20海里,根据余弦定理建立关于t的方程,求出t,问题就解决了。

答: 甲船沿北偏东75的方向,经过0.5小时与乙船相遇.参考案例2.为了测量某城市电视塔的高度,在一条直道上选 择了A,B,C三点,使ABBC60m,在A,B,C三点

例1图 DA 观察塔的最高点,测得仰角分别为45,54.2,60,若测量 E

者的身高为1.5m,试求电视塔的高度(结果保留1位小数).F 教学建议:引导学生依据题意画出示意图如图,将实际问题转化为

解三角形问题。要求电视塔的高度。只要求出DE的长。将问题中的已

知量、未知量集中到有关三角形中,构造出解三角形的数学模型。在例2图 ACE中和BCE中应用余弦定理,使问题获得解决.答: 电视塔的高度约为158.3m.4.要重视研究性学习

解三角形的内容有较强的应用性和研究性,可为学生提供丰富的研究性素材。建议在教学内容的设计上探索开放,在教学形式上灵活多样。可设计一些研究性、开放性的问题,让学生自行探索解决。参考案例:研究性学习

课外研究题:将一块圆心角为120,半径为20厘米的扇形铁片裁成一块矩形,请你设计裁法,使裁得矩形的面积最大?并说明理由.

教学建议:这是一个研究性学习内容,可让学生在课外两人一组合作完成,写成研究报告,在习题课上让学生交流研究结果,老师可适当进行点评。

参考答案:这是一个如何下料的问题,一般有如图(1)、图(2)的两种裁法:即让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB

平行。从图形的特点来看,涉及到线段的长度和角度,将

这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.

NBB

PO图(2)

QM

O图(1)

按图(1)的裁法:矩形的一边OP在OA上,顶点M在圆弧上,设MOA,则:

时,Smax200.

4按图(2)的裁法: 矩形一边PQ与弦AB平行,设MOQ,在MOQ中,OQM9030120,由正弦定理,得:

sin120

又MN2OMsin(60)40sin(60),MQ

20sin

3sin. 3

MP20sin,OP20cos,从而S400sincos200sin2.即当

∴SMQMN

sinsin(60)cos(260)cos60. 33



∴当30时,Smax由于

400. 3

400平方厘米. 200,所以用第二中裁法可裁得面积最大的矩形,最大面积为33

也可以建议学生在课外自行寻找研究性、应用性的题目去做,写出研究或实验报告,在学校开设的研究性学习课上进行交流,评价。

参考文献:

①全日制普通高中级学《数学教学大纲》。人民教育出版社。2002年4 月。

②《普通高中数学课程标准(实验))》。人民教育出版社。2003年4月第一次印刷。③《普通高中数学课程标准(实验)解读》。严士健 张奠宙王尚志等主编。江苏教育出版社。2004年4月。

下载定理与证明(5篇)word格式文档
下载定理与证明(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    原创正弦定理证明

    1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=absinCacsinBbcsinA两边同除以abc即......

    数学定理证明

    一.基本定理: 1.(极限或连续)局部保号性定理(进而证明保序性定理) 2.局部有界性定理. 3.拉格朗日中值定理. 4.可微的一元函数取得极值的必要条件. 5.可积函数的变上限积分函数的连续性. 6.牛......

    几何证明定理

    几何证明定理一.直线与平面平行的(判定)1.判定定理.平面外一条直线如果平行于平面内的一条直线,那么这条直线与这个平面平行.2.应用:反证法(证明直线不平行于平面)二.平面与......

    正弦定理证明

    正弦定理证明1.三角形的正弦定理证明: 步骤1. 在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,......

    正弦定理证明范文合集

    正弦定理证明1.三角形的正弦定理证明:步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/s......

    正弦定理证明

    正弦定理 1.在一个三角形中,各边和它所对角的正弦的比相等,且等于其外接圆半径的两倍, 即abc2R sinAsinBsinC 证明:如图所示,过B点作圆的直径BD交圆于D点,连结AD BD=2R, 则 D=C,DAB......

    大数定理及其证明[大全]

    大数定理及其证明 大数定理是说,在n个相同(指数学抽象上的相同,即独立和同分布)实验中,如果n足够大,那么结论的均值趋近于理论上的均值。 这其实是说,如果我们从学校抽取n个学生算......

    正弦定理与余弦定理的证明

    在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)正弦定理(Sine theorem)(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和......