第一篇:2020高一数学公式整理
对于高一学生来说,想要学好高中数学就要先掌握好数学公式。下面给大家带来一些关于高一数学公式整理,希望对大家有所帮助。
高一数学公式整理1
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a-r a是圆心角的弧度数r >0 扇形面积公式 s=1/2-l-r
乘法与因式分 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1-X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
高一数学公式整理2
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a-r a是圆心角的弧度数r >0 扇形面积公式 s=1/2-l-r
乘法与因式分 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1-X2=c/a 注:韦达定理
高一数学公式整理3
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)
和:(a+b+c)-(a+b-c)-1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
柱形锥形体积面积公式
直棱柱侧面积S=c-h斜棱柱侧面积S=c'-h
正棱锥侧面积S=1/2c-h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi-r2
圆柱侧面积S=c-h=2pi-h圆锥侧面积S=1/2-c-l=pi-r-l
弧长公式l=a-ra是圆心角的弧度数r>0扇形面积公式s=1/2-l-r
锥体体积公式V=1/3-S-H圆锥体体积公式V=1/3-pi-r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=s-h圆柱体V=pi-r2h
圆的标准方程和一般方程
圆:体积=4/3(π)(r^3)
面积=(π)(r^2)
周长=2(π)r
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
高一数学公式整理4
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式:S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径-短半径-PAI-高
抛物线:y=ax^2+bx+c
就是y等于ax的平方加上bx再加上c
a>0时开口向上
a<0时开口向下
c=0时抛物线经过原点
b=0时抛物线对称轴为y轴
还有顶点式y=a(x+h)^2+k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2p-^2=2pyx^2=-2py
2020高一数学公式整理
第二篇:高一数学公式定理
一、公式S 圆柱表面积2r2rl2r(rl)
(rrrlrl)222 S圆台表面积
S圆锥表面积r(rl)S圆柱侧=2πrl S圆台侧=πl(r+r)S圆锥侧=πrl
S球=4πr²S直棱柱侧=ch(c为底面周长,h为高)S正棱锥侧=ch(c为底面周长,h为侧面等腰三角形底边上的高)S棱台侧=(c+c)h(c、c 为上下底面周长,h 为侧面等腰梯形的高)
V锥13R3V球
V台1
323R3SSS)h 3V柱R
二、定理(S Al
Bll① 如果一条直线上的两点在一个平面内,那么这条直线在此平面内。A
B② 过不在一条直线上的三点,有且只有一个平面。
1)过一条直线和直线外的一点,有且只有一个平面。
2)过两条相交/平行直线有且只有一个平面。
③如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
P,且Pl,且Pl
④空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
⑤平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。(线线平行→线面平行)⑥一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
⑦如果一个平面内有两条相交直线分别平行于另一个平面内两条直线,则面面平行。
⑧一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。(线面平行→线线平行)
⑨如果两个平行平面同时和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
⑩一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。(线线垂直→线面垂直)⑪一个平面过另一个平面的垂线,则这两个平面垂直。(线面垂直→面面垂直)
⑫垂直于同一个平面的两条直线平行。
⑬两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。(面面垂直→线面垂直)
第三篇:高等数学公式
高等数学公式
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数:
两个重要极限:
三角函数公式:
·诱导公式:
函数
角A
sin
cos
tg
ctg
-α
-sinα
cosα
-tgα
-ctgα
90°-α
cosα
sinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
-ctgα
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
·和差角公式:
·和差化积公式:
·倍角公式:
·半角公式:
·正弦定理:
·余弦定理:
·反三角函数性质:
高阶导数公式——莱布尼兹(Leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
定积分应用相关公式:
空间解析几何和向量代数:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:
曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:
常数项级数:
级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解
两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程
第四篇:高一下数学公式
高一下数学公式一、三角 ·平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·[1]三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:
Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/A
Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B ·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)cos(π-α)=-cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π-α)=sinα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)
余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA
角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边
斜边与邻边夹角a
sin=y/r
无论y>x或y≤x
无论a多大多小可以任意大小
正弦的最大值为1 最小值为-
1三角恒等式
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
向量计算
设a=(x,y),b=(x',y')。
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0
AB-AC=CB.即“共同起点,指向被减”
a=(x,y)b=(x',y')则 a-b=(x-x',y-y').4、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。数与向量的乘法满足下面的运算律
结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算率
a·b=b·a(交换率);
(a+b)·c=a·c+b·c(分配率);
向量的数量积的性质
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的数量积不满足消去律,即:由 a·b=a·c(a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b|,推不出 a=b或a=-b。
第五篇:初等数学公式
初等数学常用公式
一
代数
1.绝对值
(1)定义
(2)性质,,.2.指数
(1).(2).(3).(4).(5).(6).(7)
(8)
算术根
3.对数
(1)定义
.(2)性质
.(3)运算法则,.(4)换底公式
.4.排列、组合与二项式定理
(1)排列数公式,.(2)组合数公式,.(3)二项式定理
.5.数列
(1)等差数列
通项公式
.求和公式
.(2)等比数列
通项公式
.求和公式
.(3)常见数列的和,,.二
几何
在下面的公式中,S表示面积,表示侧面积,表示全面积,V表示体积.1.多边形的面积
(1)三角形的面积
(a为底,h为高);
(a,b,c为三边,);
(a,b为两边,夹角是C).(2)平行四边形的面积
(a为一边,h是a边上的高);
(a,b为两邻边,为这两边的夹角).(3)梯形的面积
(a,b为两底边,h为高).(4)正n边形的面积
(a为边长,n边数);
(r为外接圆的半径).2.圆、扇形的面积
(1)圆的面积
(r为半径).(2)扇形面积
(r为半径,n为圆心角的度数);
(r为半径,L为弧长).3.柱、锥、台、球的面积和体积
(1)直棱柱
(P为底面周长,H为高).(2)正棱锥
(P为底面周长,h为斜高,H为高).(3)正棱台,(为上、下底面周长,h为斜高,为上、下底面面积,H为高).(4)圆柱
(r为底面半径,H为高).(5)圆锥
(r为底面半径,l为母线长,H为高).(6)圆台
(为上、下底面半径,l为母线长,H为高).(7)球
(R为球的半径).三
三角
1.度与弧度的关系
.2.三角函数的符号
3.常用特殊角的三角函数值
0
0
0
0
0
0
不存在0
不存在不存在1
0
不存在0
4.同角三角函数的关系
(1)平方和关系
.(2)倒数关系
.(3)商数关系
.5.和差公式,.6.二倍角公式,.7.半角公式,.8.和差化积公式,,.9.积化和差公式,,.10.正弦、余弦定理
(1)正弦定理
.(2)余弦定理,.四
平面解析几何
1.两点间的距离
已知两点,则.2.直线方程
(1)直线的斜率
已知直线的倾斜角,则;
已知直线过两点,则.(2)直线方程的几种形式
点斜式;
斜截式;
两点式;
截距式;
参数式
.3.两直线的夹角
.4.点到直线的距离
点到直线的距离.5.二次曲线的方程
(1)圆,为圆心,为半径.(2)椭圆,焦点在x轴上.(3)双曲线,焦点在x轴上.(4)抛物线,焦点为,准线为;,焦点为,准线为;,顶点,对称轴.