初一上册数学知识点最新(最终定稿)

时间:2021-05-13 10:40:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初一上册数学知识点最新》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初一上册数学知识点最新》。

第一篇:初一上册数学知识点最新

初一上册数学知识点最新有哪些你知道吗?教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识,一起来看看初一上册数学知识点最新,欢迎查阅!

初一上册数学知识点整理

一、:代数初步知识。

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“?”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“?”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、:几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、:有理数。

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)有理数的分类:①②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;

(3)

(4)|a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.四、:有理数法则及运算规律。

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4.有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.5.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.7.有理数乘方的法则:

(1)正数的任何次幂都是正数;

五、:乘方的定义。

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)

(4)据规律底数的小数点移动一位,平方数的小数点移动二位.2.3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.六、:整式的加减。

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)是常见的两个二次三项式.5.整式:单项式和多项式统称为整式.七、:整式分类为。

1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.2.合并同类项法则:系数相加,字母与字母的指数不变.3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.八、:一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).九、:列一元一次方程解应用题。

(1)读题分析法:…………多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.十、:.列方程解应用题的常用公式。

初一上期数学知识点总结

第一章有理数

(一)正负数1.正数:大于0的数。2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)2.整数:正整数、0、负整数,统称整数。3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)2.数轴的三要素:原点、正方向、单位长度。3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。3.乘法交换律:ab=ba

4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac

(六)有理数除法

1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

(七)乘方

1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

第二章整式

(一)整式1.整式:单项式和多项式的统称叫整式。2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3.系数:一个单项式中,数字因数叫做这个单项式的系数。4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。5.多项式:几个单项式的和叫做多项式。6.项:组成多项式的每个单项式叫做多项式的项。7.常数项:不含字母的项叫做常数项。8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

初一上册数学知识点总结

有理数及其运算板块:

1、整数包含正整数和负整数,分数包含正分数和负分数。

正整数和正分数通称为正数,负整数和负分数通称为负数。

2、正整数、0、负整数、正分数、负分数这样的数称为有理数。

3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。

整式板块:

1、单项式:由数与字母的乘积组成的式子叫做单项式。

2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

3、整式:单项式与多项式统称整式。

4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。

一元一次方程。

1、含有未知数的等式叫做方程,使方程左右两边的.值都相等的未知数的值叫做方程的解。

2、移项:把等式一边的某项变号后移到另一边,叫做移项等。

其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。

大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分。

第二篇:初一数学上册知识点

初一数学上册知识点:整式的加减

本文为大家介绍的是初一数学上册知识点,是有关整式的加减法的,希望同学们熟记这些公式并能灵活的运用。

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.

第三篇:初一数学上册知识点

荣升教育----------初中数学一对一辅导中心

初一数学(上)应知应会的知识点

代数初步知识

1.代数式:用运算符号“+ - ×÷„„”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×11

2应写成a; 2

33(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; a

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做

a-b和b-a.3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是: 10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n;偶数是:2n,奇数是:2n+1;三个连续整数

是:n-

1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是: a2,非正数是:-a2.有理数

1.有理数:

(1)凡能写成q

p(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数

统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正

荣升教育----------初中数学一对一辅导中心

数;不是有理数;

正有理数

(2)有理数的分类:① 有理数零

负有理数

正整数

正分数负整数

负分数

整数

② 有理数

分数

正整数零负整数正分数

负分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a>0  a是正数;a<0  a是负数;

a≥0  a是正数或0  a是非负数;a≤ 0  a是负数或0  a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0  a+b=0  a、b互为相反数.4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(a0)a

(a0)a

(2)绝对值可表示为:a0(a0)或a ;绝对值的问题经常分类讨论;

a(a0)a(a0)

aa

aa

(3)

1a0;

1a0;

ab

ab

(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数

大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.-2-

荣升教育----------初中数学一对一辅导中心

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的倒数是;倒数是本身的a1

数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即13.有理数乘方的法则:(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n , 当

n为正偶数时:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

a0

无意义.荣升教育----------初中数学一对一辅导中心

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0  a=0,b=0;

0.10.01

2

11

(4)据规律2底数的小数点移动一位,平方数的小数点移动二位.10100

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫

科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.单项式整式整式分类为:.

多项式

荣升教育----------初中数学一对一辅导中心

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤: 整理方程 „„ 去分母 „„ 去括号 „„ 移项 „„ 合并同类项 „„ 系数化为1 „„(检验方程的解).10.列一元一次方程解应用题:

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量

荣升教育----------初中数学一对一辅导中心的关系填入代数式,得到方程.(2)画图分析法: „„„„ 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间速度

距离时间

时间

距离速度;

工作量工效

(2)工程问题:工作量=工效·工时工效

工作量工时

工时

部分比率;

(3)比率问题:部分=全体·比率比率

部分全体

全体;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·(6)周长、面积、体积问题:C

110,利润=售价-成本,利润率

售价成本

成本

100%;

S圆=πR,C长方形=2(a+b),S长方形=ab,C圆=2πR,正方形

=4a,S正方形=a,S环形=π(R-r),V长方体=abc,V正方体=a,V圆柱=πRh,V

圆锥=πRh.

第四篇:初一数学上册知识点总结

初一数学(上)应知应会的知识点

有理数

1.有理数:

(1)整数都可以写成分母为1的分数,只要能化成分数的数都是有理数。

π是无限不循环小数,不能写成分数形式,不是有理数有限小数和无限循环小数可以化成分数形式,因此是有理数。

正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数划分

有理数按有理数的意义划分:整数(正整数、0、负整数)和分数(正分数、负分数)有理数按正负划分:正有理数(正整数、正分数)、0和负有理数(负整数、负分数)

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 Û a+b=0 Û a、b互为相反数.4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数.7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

《初一数学知识点》

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n , 当n为正偶数时:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0;

(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.代数初步知识

1.代数式:用运算符号“+ - ×÷„„”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a× 应写成 a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是: 10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-

1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是: a2,非正数是:-a2.整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤: 整理方程 „„ 去分母 „„ 去括号 „„ 移项 „„ 合并同类项 „„ 系数化为1 „„(检验方程的解).10.列一元一次方程解应用题:

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: „„„„ 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间;

(2)工程问题:工作量=工效·工时;

(3)比率问题:部分=全体·比率;

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折·,利润=售价-成本,;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h.

第五篇:初一上册数学知识点总结

初一数学(上)的知识点

有理数

1.有理数:

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类:①②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数Û:0和正整数;a>0 , a是正数;a<0 , a是负数;

a≥0 , a是正数或0 , a是非负数;a≤ 0 , a是负数或0 , a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 , a+b=0 , a、b互为相反数.4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为: 或;绝对值的问题经常分类讨论;

(3)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数< 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1, a、b互为负倒数.7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对

值;

(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n , 当n为正偶数时:(-a)n =an或(a-b)n=(b-a)n.14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 , a=0,b=0;

(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤: 整理方程 „„ 去分母 „„ 去括号 „„ 移项 „„ 合并同类项 „„ 系数化为1 „„(检验方程的解).10.列一元一次方程解应用题:

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: „„„„ 多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:

(1)行程问题:距离=速度·时间

(2)工程问题:工作量=工效·工时

(3)比率问题:部分=全体·比率

(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

(5)商品价格问题:售价=定价·折·,利润=售价-成本,;

(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h.

下载初一上册数学知识点最新(最终定稿)word格式文档
下载初一上册数学知识点最新(最终定稿).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初一数学上册知识点总结

    清大学习吧--广元分校让更多的孩子受到更好的教育初一数学(上)的知识点 有理数 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;......

    初一数学上册知识点总结

    初一数学上册知识点总结(一)有理数及其运算复习一、有理数的基础知识1、三个重要的定义:(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负......

    初一数学上册知识点总结五篇

    人教版初一数学(上册)人教版 第一章有理数 1.1 正数和负数 阅读与思考 用正负数表示加工允许误差 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有......

    初一数学知识点

    初一数学知识点 第一册 第一章 有理数1.正数和负数 以前学过的0以外的数前面加上负号“-”的书叫做负数。 以前学过的0以外的数叫做正数。 数0既不是正数也不是负数,0是正数与......

    初一数学上册期中知识点(共5篇)

    高效的学习,要学会给自己定定目标(大、小、长、短),这样学习会有一个方向;然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合......

    初一数学上册知识点[优秀范文五篇]

    数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入初中,由于初中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。初......

    初一数学上册知识点2021范文合集

    初一数学上册知识点有哪些你知道吗?数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。一起来看看初一数学上册知识点2021,欢迎查......

    冀教版初一数学知识点上册

    初一数学(上)应知应会的知识点 第一章 几何图形的初步认识 几何图形包括立体图形(几何体)和平面图形。像正方体、长方体、棱柱、圆柱、圆锥、球等,它们都是立体图形;像线段、直线......