人教版七年级数学上册压轴题 附答案解析

2022-08-05 05:40:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《人教版七年级数学上册压轴题 附答案解析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版七年级数学上册压轴题 附答案解析》。

七年级数学上册压轴题精选

一.数轴上的动点问题

数轴上的动点问题离不开数轴上两点之间的距离。为了便于对这类问题的分析,不妨先明确以下几个问题:

1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。即数轴上两点间的距离=右边点表示的数—左边点表示的数。

2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。

3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。

一、相关知识准备

1.数轴上表示4和1的两点之间的距离是_____________。

2.若数轴上点A表示的数为,点B表示的数为,则A与B两点之间的距离用式子可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。

3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为,则A点运动的路程可以用式子表示为______________。

4.若数轴上点A表示的数为,A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为,则A点运动秒后到达的位置所表示的数可以用式子表示为______________。

答案:1、3;

2、,x+1;

3、2t;

4、二、例题精讲:

1、如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足

(1)

点A表示的数为

_________,点B表示的数为________。

(2)

若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。

(3)

在(2)的条件下,若点P运动到达B点后按原路原速立即返回,点Q继续按原速原方向运动,从P、Q在点C处相遇开始,再经过多少秒,P、Q两点的距离为4个单位长度?

解:(1)点A表示的数为

____,点B表示的数为___8____

(2)

设P、Q同时运动t秒在点C处相遇

3t+t=24

解得t=6

此时点C所表示的数是

答:点C所表示的数是2.(2)

再经过a秒,P、Q两点的距离为4个单位长度

分类讨论:①

从点C处相遇后反向而行,点P到达B点前相距4个单位长度

3a+a=4

解得a=1

点P到达B点后返回,此时相当于点Q在P点前4个单位长度

解得a=4

点P到达B点后返回,从后追上Q点后又相距4个单位长度,此时相当于点P在点Q前4个单位长度

解得a=8

答:再经过1秒或4秒或8秒,P、Q两点的距离为4个单位长度。

2、数轴上有A、B 两点表示—10,30,有两只蚂蚁P、Q同时分别从A、B 两点相向出发,速度分别是2单位单位长度/秒、3个单位长度/秒,当它们相距10个单位长度时,则蚂蚁P在数轴上表示的数是()

解:经过t秒,P、Q相距10个单位长度,则P点运动路程为2t,运动后P点表示数为—10+2t,Q点运动路程为3t

分类讨论:①

还未相遇前相距10个单位长度

2t+3t=40-10

解得t=6

此时P点表示数为—10+2×6=2

相遇后又相距10个单位长度

2t+3t=40+10

解得t=10

此时P点表示数为—10+2×10=10

综上所述,蚂蚁P在数轴上表示的数是2或10

挑战题:

1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

⑴问多少秒后,甲到A、B、C的距离和为40个单位?

⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?

⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。

分析:如图1,易求得AB=14,BC=20,AC=34

⑴设x秒后,甲到A、B、C的距离和为40个单位。此时甲表示的数为—24+4x。

①甲在AB之间时,甲到A、B的距离和为AB=14

甲到C的距离为10—(—24+4x)=34—4x

依题意,14+(34—4x)=40,解得x=2

②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x

依题意,20+4x)=40,解得x=5

即2秒或5秒,甲到A、B、C的距离和为40个单位。

⑵是一个相向而行的相遇问题。设运动t秒相遇。

依题意有,4t+6t=34,解得t=3.4

相遇点表示的数为—24+4×3.4=—10.4(或:10—6×3.4=—10.4)

⑶甲到A、B、C的距离和为40个单位时,甲调头返回。而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。

①甲从A向右运动2秒时返回。设y秒后与乙相遇。此时甲、乙表示在数轴上为同一点,所表示的数相同。甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y

依题意有,—24+4×2—4y=10—6×2—6y,解得y=7

相遇点表示的数为:—24+4×2—4y=—44(或:10—6×2—6y=—44)

②甲从A向右运动5秒时返回。设y秒后与乙相遇。甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y

依题意有,—24+4×5—4y=10—6×5—6y,解得y=—8(不合题意,舍去)

即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。

点评:分析数轴上点的运动,要结合数轴上的线段关系进行分析。点运动后所表示的数,以起点所表示的数为基准,向右运动加上运动的距离,即终点所表示的数;向左运动减去运动的距离,即终点所表示的数。

2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。

⑴求AB中点M对应的数;

⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;

⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。

分析:⑴设AB中点M对应的数为x,由BM=MA

所以x—(—20)=100—x,解得 x=40   即AB中点M对应的数为40

⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,依题意有,4t+6t=120,解得t=12

(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12)

相遇C点表示的数为:—20+4t=28(或100—6t=28)

⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。P、Q为同向而行的追及问题。

依题意有,6y—4y=120,解得y=60

(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60)

D点表示的数为:—20—4y=—260(或100—6y=—260)

点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。在⑵、⑶中求出相遇或追及的时间是基础。

3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。

⑴若点P到点A、点B的距离相等,求点P对应的数;

⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。若不存在,请说明理由?

⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?

分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。

依题意,3—x=x—(—1),解得x=1

⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。

①P在点A左侧,PA=—1—x,PB=3—x

依题意,(—1—x)+(3—x)=5,解得

x=—1.5

②P在点B右侧,PA=x—(—1)=x+1,PB=x—3

依题意,(x+1)+(x—3)=5,解得

x=3.5

⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。故P点总位于A点右侧,B可能追上并超过A。P到A、B的距离相等,应分两种情况讨论。

设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。

①B未追上A时,PA=PA,则P为AB中点。B在P的右侧,A在P的左侧。

PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19t

依题意有,1+4t=3—19t,解得 t=

②B追上A时,A、B重合,此时PA=PB。A、B表示同一个数。

依题意有,—1—5t=3—20t,解得

t=

即运动或分钟时,P到A、B的距离相等。

4.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.

(1)线段AC的长为14个单位长度;点M表示的数为﹣3;

(2)当t=5时,求线段MN的长度;

(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).

【分析】(1)根据两点间的距离公式可得AC=6﹣(﹣8),根据中点坐标公式可得M点表示的数为﹣8+[2﹣(﹣8)];

(2)当t=5时,可得P表示的数,再根据中点坐标公式可得N点表示的数,再根据两点间的距离公式可得线段MN的长度;

(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.

【解答】解:(1)线段AC的长为AC=6﹣(﹣8)=14个单位长度;点M表示的数为﹣8+[2﹣(﹣8)]=﹣3;

(2)当t=5时,点P表示的数为6﹣5×1=1,点N表示的数为2﹣[2﹣1]=1.5,线段MN的长度为1.5﹣(﹣3)=4.5;

(3)①当点P在点A、B两点之间运动时,点P表示的数为6﹣t,点N表示的数为2+[(6﹣t)﹣2]=4﹣t,线段MN的长度为4﹣t﹣(﹣3)=7﹣t;

②当点P运动到点B的左侧时,点P表示的数为6﹣t,点N表示的数为2﹣[2﹣(6﹣t)]=4﹣t,线段MN的长度为|4﹣t﹣(﹣3)|=|7﹣t|.

故答案为:14,﹣3.

二.方案选择问题

6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:

如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

解:方案一:获利140×4500=630000(元)

方案二:获利15×6×7500+(140-15×6)×1000=725000(元)

方案三:设精加工x吨,则粗加工(140-x)吨.

依题意得=15

解得x=60

获利60×7500+(140-60)×4500=810000(元)

因为第三种获利最多,所以应选择方案三.

7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.

(1)写出y1,y2与x之间的数量关系式(即等式).

(2)一个月内通话多少分钟,两种通话方式的费用相同?

(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

解:(1)y1=0.2x+50,y2=0.4x.

(2)由y1=y2得0.2x+50=0.4x,解得x=250.

即当一个月内通话250分钟时,两种通话方式的费用相同.

(3)由0.2x+50=120,解得x=350

由0.4x+50=120,得x=300

因为350>300

故第一种通话方式比较合算.

8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?应交电费是多少元?

解:(1)由题意,得

0.4a+(84-a)×0.40×70%=30.72

解得a=60

(2)设九月份共用电x千瓦时,则

0.40×60+(x-60)×0.40×70%=0.36x

解得x=90

所以0.36×90=32.40(元)

答:九月份共用电90千瓦时,应交电费32.40元.

9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.

(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.

(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程

1500x+2100(50-x)=90000

即5x+7(50-x)=300

2x=50

x=25

50-x=25

②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000

3x+5(50-x)=1800

x=35

50-x=15

③当购B,C两种电视机时,C种电视机为(50-y)台.

可得方程2100y+2500(50-y)=90000

21y+25(50-y)=900,4y=350,不合题意

由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.

(2)若选择(1)中的方案①,可获利

150×25+250×15=8750(元)

若选择(1)中的方案②,可获利

150×35+250×15=9000(元)

9000>8750

故为了获利最多,选择第二种方案.

三.动角问题

1.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.

(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=________;在图2中,OM是否平分∠CON?请说明理由;

(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;

(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为________(直接写出结果).

2.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF=1/3

∠AOE.(本题所涉及的角指小于平角的角)

(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;

(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;

(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.

3.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方

(1)

将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分∠BOC

求t的值

此时ON是否平分∠AOC?请说明理由

(2)

在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由

(3)

在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由

答案与解析:

1)

①OM平分∠BOC时,与OB夹角为75°

需要(90-75)÷3=5秒

此时,∠MOC=75°

∠MON=90°

∴∠CON=15°

∠AON也是15°

所以ON也平zhi分∠AOC

2)

假设∠MON的平分线为OX,则当OC与OX重合时满足要求

根据题意,开始的时候,OX领先OC的度数是90÷2-30=15°

每秒,OX顺时针转3°

OC顺时针转6°

重合需15÷(6-3)=5秒

所以经过5秒OC平分∠MON

3)

我们继续假设∠MOB的平分线为OY,则当OC与OY重合时满足要求

根据题意,开始的时候,OY领先OC的度数是90÷2+(90-30)=105°

每秒,OY顺时针转动3°÷2=1.5°

OC顺时针转动6°

重合需105÷(6-1.5)=70/3秒

所以经过70/3秒,OC平分∠MOB

下载人教版七年级数学上册压轴题 附答案解析word格式文档
下载人教版七年级数学上册压轴题 附答案解析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考数列压轴题汇总(附答案解析)

    高考数列压轴题一.解答题(共50小题)1.数列{an}满足a1=1,a2=+,…,an=++…+(n∈N*)(1)求a2,a3,a4,a5的值;(2)求an与an﹣1之间的关系式(n∈N*,n≥2);(3)求证:(1+)(1+)…(1+)<3(n∈N*)2.已知数列{xn}满足:x1=1,xn=xn+1+......

    九年级数学上册 压轴题(必看)人教新课标版范文大全

    九年级数学上册 压轴题(必看)人教新课标版 一、主观题。(共 100 分) 1. ( 6分) 如图所示,在直角三角形ABC中,∠C=90°,AC=BC=2厘米,如果以AC的中点O为旋转中心,将这个三角形旋转180......

    七年级数学压轴题(动点,几何)

    1. 已知数轴上A、B两点对应数分别为—2,4,P为数轴上一动点,对应数为x。 ⑴ P为线段AB的三等分点,求P点对应的数。⑵ ⑵数轴上是否存在P点,使P点到A、B距离和为10?若存在,求出x的 值;......

    七年级数学上册期末试卷(含解析答案)

    2015-2016学年七年级数学上学期期末试题 一、仔细选一选:每小题3分,共36分.四个选项中只有一项是正确的. 1.A. 的绝对值是 B. C. D.2.支付宝与“快的打车”联合推出优惠,“快的打车”一......

    初二上册压轴题

    1.△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度? 2.已知:如图,△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点......

    小升初数学压轴题

    经常要做数学压轴题 1. 辆车从甲地开往乙地,如果把车速提高25%,可以比原定时间提前24分钟到达.如果以原速行驶80千米后,再将速度提高1 /3 ,则可以提前10分钟到达乙地.甲、乙两地相......

    江苏省2014年高考数学压轴题答案

    江苏省2014年高考数学压轴题答案 14、由siAn2siBn2siCn,得a2b2c,c1(a2b)2, 122ab(a2b)2222abc3a22b222ab26ab22ab2cosC2ab2ab8ab8ab4 答案是62 4 20、(2) 1n(n1)d1(m1)d,2 1n1n(n......

    2018年天津高考数学真题(附答案解析)

    2018年天津高考数学真题(附答案解析) 1.选择题(每小题5分,满分40分):在每小题给出的四个选项中,只有一项是符合题目要求的. A. B. C. D. 2. A. 6 B. 19 C. 21 D. 45 3.阅读如图的......