第一篇:初二上册压轴题
1.△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度?
2.已知:如图,△ABC中,∠A的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F.求证:AB﹣AC=2CF.
3.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
4.已知:如图,点D、E分别在AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:(1)∠EGH>∠ADE;
(2)∠EGH=∠ADE+∠A+∠AEF.
5.已知A、B两市相距200千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障不能行驶,立即通知技术人员乘乙车从A市赶去维修(通知时间忽略不计),乙车到达M地后用24分钟修好甲车后以原速度原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车的行驶时间x(小时)之间的函数图象,结合图象回答下列问题:
(1)甲车提速后的速度是
千米/小时,点C的坐标是
,点C的实际意义是
;
(2)求乙车返回时y与x之间的函数关系式并写出自变量x的取值范围;(3)乙车返回A市多长时间后甲车到达B市.
6.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.
7.乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3000元购进了一批乌梅,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750元,求小李所进乌梅的数量.
8.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
9.如图,在四边形ABCD中,BA=BC,AC是∠DAE的平分线,AD∥EC,∠AEB=120°.求∠DAC的度数α的值.
10.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
11.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC. ①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
12.如图,在△ABC中,∠BAC=110°,点E、G分别是AB、AC的中点,DE⊥AB交BC于D,FG⊥AC交BC于F,连接AD、AF.试求∠DAF的度数.
13.为庆祝2015年元旦的到来,学校决定举行“庆元旦迎新年”文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少朵?
14.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:
(1)取特殊情况,探索讨论:当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你直接写出结论:AE
DB(填“>”,“<”或“=”).(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE
DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出图形,并直接写出结果). 15.如图,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.
16.我市某学习机营销商经营某品牌A、B两种型号的学习机.用10000元可进货A型号的学习机5个,B型号的学习机10个;用11000元可进货A型号的学习机10个,B型号的学习机5个.
(1)求A、B两种型号的学习机每个分别为多少元?
(2)若该学习机营销商销售1个A型号的学习机可获利120元,销售1个B型号的学习机可获利90元,该学习机营销商准备用不超过30000元购进A、B两种型号的学习机共40个,且这两种型号的学习机全部售出后总获利不低于4440元,问有几种进货方案?这几种进货方案中,该学习机营销商将这些型号的学习机全部售出后,获利最大的是哪种方案?最大利润是多少?
17.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.
18.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为点F,且AB=DE.(1)求证:BD=BC;
若BD=8cm,求AC的长.
19.在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=__________(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=__________(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:__________(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
20.(2015•徐州一模)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC. ①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
21.已知:点A、C分别是∠B的两条边上的点,点D、E分别是直线BA、BC上的点,直线AE、CD相交于点P点,D、E分别在线段BA、BC上.若∠B=60°,且AD=BE,BD=CE,求∠APD的度数.
22.如图,△ACB和△ECD都是等腰直角三角形,A、C、D三点在同一直线上,连接BD、AE,并延长AE交BD于F.(1)求证:AE=BD;
(2)试判断直线AE与BD的位置关系,并证明你的结论.
23.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂线分别与AD、BC相交于点E、F,连接AF.求证:AE=AF.
24.几个小伙伴打算去德州看音乐演出,他们准备用180元钱购买门票.下面是两个小伙伴的对话:
小红说:如果今天去看演出,我们每人一张票,正好会差一张票的钱.
小明说:过两天就是“儿童节”了,那时候去看演出,票价会打六折,我们每人一张票,还能剩36元钱呢!
根据对话的内容,请你求出小伙伴们的人数.
25.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.
(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;
(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.
26.问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是
;
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
27.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;
(2)如图2,若点O在△ABC的内部,求证:AB=AC;
(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.
28.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.
将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.
29.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
30.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.
(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.
31.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;
若CD=2,求DF的长.
32.如图已知,CE⊥AB,BF⊥AC,BF交CE于点D,且BD=CD.(1)求证:点D在∠BAC的平分线上;
若将条件“BD=CD”与结论“点D在∠BAC的平分线上”互换,成立吗?试说明理由.
33.某号台风的中心位于O地,台风中心以25千米/小时的速度向西北方向移动,在半径为240千米的范围内将受影响、城市A在O地正西方向与O地相距320千米处,试问A市是否会遭受此台风的影响?若受影响,将有多少小时?
34.感知:如图①,点E在正方形ABCD的边BC上,BF⊥AE于点F,DG⊥AE于点G,可知△ADG≌△BAF.(不要求证明)
拓展:如图②,点B、C分别在∠MAN的边AM、AN上,点E、F在∠MAN内部的射线AD上,∠
1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求证:△ABE≌△CAF.
应用:如图③,在等腰三角形ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为9,则△ABE与△CDF的面积之和为
.
35.(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:①∠AEB的度数为
;②线段AD,BE之间的数量关系为
.(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
36.如图1,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).
(1)当t为何值时,△PBQ是直角三角形?
连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
37.如图,AB=AC,AB的垂直平分线DE交BC的延长线于点E,交AC于点F,∠A=50°,AB+BC=6.求:
(1)△BCF的周长;(2)∠E的度数.
38.已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.
39.如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
(1)证明:PD=DQ.
(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.
40.四边形ABCD是由等边△ABC和顶角为120°的等腰△ABD拼成,将一个60°角顶点放在D处,将60°角绕D点旋转,该60°角两边分别交直线BC、AC于M、N.交直线AB于E、F两点,(1)当E、F分别在边AB上时(如图1),求证:BM+AN=MN;
(2)当E、F分别在边BA的延长线上时如图2,求线段BM、AN、MN之间又有怎样的数量关系
;
(3)在(1)的条件下,若AC=5,AE=1,求BM的长.
41.已知:如图,△BCE、△ACD分别是以BE、AD为斜边的直角三角形,且BE=AD,△CDE是等边三角形.求证:△ABC是等边三角形.
42.如图,在△ABC中,∠C=90°,AB的垂直平分线DE交AC于D,垂足为E,若 ∠A=30°,CD=3.
(1)求∠BDC的度数.(2)求AC的长度.
43.如图,在正方形ABCD中,E为对角线AC上一点,连接EB、ED.(1)写出图中所有的全等三角形;
(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.
44.已知:如图,在△ABC中,AD是BC边上的高,CE是中线,F是CE的中点,CD=AB,求证:DF⊥CE.
45.已知:如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,以AC为边作等边△ACD,并作斜边AB的垂直平分线EH,且EB=AB,联结DE交AB于点F,求证:EF=DF.
46.如图,正方形ABCD的边长为4厘米,(对角线BD平分∠ABC)动点P从点A出发沿AB边由A向B以1厘米/秒的速度匀速移动(点P不与点A、B重合),动点Q从点B出发沿折线BC﹣CD以2厘米/秒的速度匀速移动.点P、Q同时出发,当点P停止运动,点Q也随之停止.联结AQ,交BD于点E.设点P运动时间为t秒.(1)用t表示线段PB的长;
(2)当点Q在线段BC上运动时,t为何值时,∠BEP和∠BEQ相等;(3)当t为何值时,P、Q之间的距离为2cm.
46.如图,△ABC中,AB=AC=5,∠BAC=100°,点D在线段BC上运动(不与点B、C重合),连接AD,作∠1=∠C,DE交线段AC于点E.(1)若∠BAD=20°,求∠EDC的度数;
(2)当DC等于多少时,△ABD≌△DCE?试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数; 若不能,请说明理由.
47.如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°. 恒成立的结论有
.(把你认为正确的序号都填上)
48.如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME. 求证:①ME⊥BC;②DE=DN.
49.如图,在等腰直角三角形ABC中,∠ACB=90°,D为斜边AB上一点,连接CD,过点A、B分别向CD作垂线,垂足分别为点F、E,试判断AF、BE与EF之间的数量关系,并证明你的结论.
50.(1)如图①,在△ABC中,分别以AB,AC为边作等边△ABD和等边△ACE,猜想CD与BE有什么样的数量关系,直接写出结论,不需证明;
(2)如图②,在(1)的条件下,若△ABC中,AB=AC,连结DE分别交AB、AC于点M、N,猜想DM与EN有什么样的数量关系,证明你的结论;
(3)如图③,在(1)的条件下,若△ABC中,∠ACB=90°,∠BAC=30°,连结DE分别交AB、AC于点M、N,则有DM=EM,请证明.
51.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;
②判断△CFH的形状并说明理由.
52.如图,已知△ABC中AB=AC,BD、CD分别平分∠EBA、∠ECA,BD交AC于F,连接AD,①直接写出∠BDC与∠BAC之间的关系式; ②求证:△ABD为等腰三角形;
③当∠EBA的大小满足什么条件时,以A、B、F为顶点的三角形为等腰三角形?
第二篇:初二下压轴题13(范文模版)
初二下压轴题131、已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A、C不重合),过点P作 PE⊥PB,PE交射线DC于点E,过点E作EF⊥AC,垂足为点F.(1)当点E落在线段CD上时(如图1),① 求证:PB=PE;
② 在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;
(2)当点E落在线段DC的延长线上时,在备用图上画出符合要求的大致图形,并判断上述(1)中的结论是否仍然成立(只需写出结论,不需要证明);
(3)在点P的运动过程中,⊿PEC能否为等腰三角形?如果能,试求出AP的长,如果不能,试说明理由.
D D
E
C(图1)(备用图)A2、已知:如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与AR点、B点重合的任意一个动点,PQ⊥BC于点Q,QR⊥AC于点R。
(1)求证:PQ=BQ;
(2)设BP=x,CR=y,求y关于x的函数解析式,并写出定义域;
(3)当x为何值时,PR//BC。BQ3、已知:如图,在⊿ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.
(1)求证:AD=DB;
(2)设CE=x,BF=y,求y关于x的函数解析式;
(3)当∠DEF=90°时,求BF的长.AFCECD
第26题图B4、如图,在△ABC中,∠ACB=90°,∠A=30°,D是边AC上不与点A、C重合的任意一点,DE⊥AB,垂足为点E,M是BD的中点.(1)求证:CM=EM;
(2)如果BC=3,设AD=x,CM=y,求y与x的函数解析式,并写出函数的定义域;
(3)当点D在线段AC上移动时,∠MCE的大小是否发生变化?如果不变,求出∠MCE的大小;如果发生变化,说明如何变化.B
ME
C
DA1
第三篇:初二一次函数压轴题复习精讲
初二一次函数压轴题复习精讲
1.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.
(1)求直线l2的函数解析式;(2)求△ADC的面积.
2.如图,在平面直角坐标系中,点A的坐标为(2,3),点B在x轴的负半轴上,△ABO的面积是3.
(1)求点B的坐标;(2)求直线AB的解析式;
(3)在线段OB的垂直平分线m上是否存在点M,使△AOM得周长最短?若存在,直接写出点M的坐标;若不存在,说明理由.
(4)过点A作直线AN与坐标轴交于点N,且使AN=OA,求△ABN的面积.
3.如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0<x<3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1>y2?(2)求△COB的面积;
(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.
(4)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.
4.如图,在平面直角坐标系xOy中,长方形OABC的顶点A、C的坐标分别为(3,0),(0,5).(1)直接写出点B的坐标;
CyB(2)若过点C的直线CD交AB边于点D,且把长方形OABC的周长分为1:3两部分,求直线CD的解析式;(3)设点P沿OABC的方向运动到点C(但不与点O、C重合),求△OPC的面积变量x的取值范围
y与点P所行路程x之间的函数关系式及自
OAx
22125.已知直线ykxb经过点M3,、N0,.(1)求直线MN的解析式;
55(2)当y0时,求x的取值范围;
(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.
6.在平面直角坐标系xoy中,直线yxm经过点A(2,0),交y轴于点B,点D为x轴上一点,且SADB1
(1)求m的值(2)求线段OD的长(3)当点E在直线AB上(点E与点B不重合),BDOEDA,求点E的坐标
7.已知一次函数y=kx+b,y随x增大而增大,它的图象经过点(1,0)且与x轴的夹角为45°,(1)确定这个一次函数的解析式;
(2)假设已知中的一次函数的图象沿x轴平移两个单位,求平移以后的直线及直线与y轴的交点坐标.
8.如图①所示,直线l1:y=3x+3与x轴交于B点,与直线l2交于y轴上一点A,且l2与x轴的交点为C(1,0).
(1)求证:∠ABC=∠ACB;
(2)如图②所示,过x轴上一点D(-3,0)作DE⊥AC于E,DE交y轴于F点,交AB于G点,求G点的坐标.
(3)如图③所示,将△ABC沿x轴向左平移,AC边与y轴交于一点P(P不同于A、C两点),过P点作一直线与AB的延长线交于Q点,与x轴交于M点,且CP=BQ,在△ABC平移的过程中,线段OM的长度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.
9.设关于x一次函数y=a1x+b1与y=a2x+b2,我们称函数y=m(a1x+b1)+n(a2x+b2)(其中m+n=1)为这两个函数的生成函数.
(1)请你任意写出一个y=x+1与y=3x-1的生成函数的解析式;(2)当x=c时,求y=x+c与y=3x-c的生成函数的函数值;
(3)若函数y=a1x+b1与y=a2x+b2的图象的交点为P(a,5),当a1b1=a2b2=1时,求代数式m(a12a2+b12)+n(a22a2+b22)+2ma+2na的值.
第四篇:初二数学证明题压轴题集合
初二数学练习题
1.在矩形ABCD中,AB=6,BC=8。将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处。①求EF的长;②求梯形ABCE的面积。
2.如图,E是正方形的边AD上的动点,F是边BC延长线的一点,BF=EF,AB=12,设AE=x, BF=y.(1)求证:F2ABE;
(2)求出y和x之间的函数解析式,以及自便量的定义域;
(3)把ABE沿着直线BE翻折,点A落在A’处,试探求A,BF能否为等腰三角形?如果能,求出AE的长,如果不能,请说明理由.1F
3.在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,且PB=PD,DE⊥AC,垂足为E。(1)求证:PE=BO
(2)设AC=2a,AP=x,四边形PBDE的面积为y,求y与x之间的函数关系式,并写出定义域。
4. 已知:在RtABC中,C90,AC=BC,M是AC的中点,联结BM,CF⊥MB,F是垂足,延长CF交AB于点E.求证:
AME
C
.A
E
M
F
CB
5.如图,直线ykxb与反比例函数y
kx
'
(x<0)的图象相交于点A、点B,与x轴交于
点C,其中点A的坐标为(-2,4),点B的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.6.已知:如图,点D是△ABC的边AC上的一点,过点D作DE⊥AB,DF⊥BC,E、F为垂足,再过点D作 DG∥AB,交BC于点G,且DE=DF.(1)求证:DG=BG;(2)求证:BD垂直平分EF.
D
G
F C
7.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y的图像上,已知正方形OAPB的面积为9.
(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.
8.如图,△OAB是边长为2的等边三角形,过点A的直线y(1)求点E的坐标;(2)求 直线AE的解析式;
(3)若点P(p,q)是线段AE上一动点(不与A、E重合),设△APB的面积为S,求:S关于p的函数关系式及定义域;(4)若点P(p,q)是线段AE上一动点(不与A、E重合),且△APB是直角三角形,求:点P的坐标。
kx
xm与x轴交于点E。
第五篇:小升初数学压轴题
经常要做数学压轴题
1.辆车从甲地开往乙地,如果把车速提高25%,可以比原定时间提前24分钟到达.如果以原速行驶80千米后,再将速度提高1 /3,则可以提前10分钟到达乙地.甲、乙两地相距多少千米?
2.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有35米,丙离B还有68米;当乙跑到B时,丙离B还有40米.(1)A,B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?
3.小红在上午将近11点时出家门,这时挂钟的时针和分针重合,当天下午将近
5点时,她回到家,这时挂钟的时针与分针方向相反(在一条直线上),则小红共出去了多少小时?
4有两组数,第一组的平均数是15,第二组的平均数是9;而这两组数总的平均数是11.那么,第二组的数的个数是第一组数的几倍?
5.如图,△ABC是边长为108厘米的等边三角形,虫子甲和乙分别从A点和C点同时出发,沿△ABC的边爬行,甲顺时针爬行,乙逆时针爬行,速度比是4:5.相遇后,甲在相遇点休息10秒钟,然后继续以原来的速度沿原方向爬行;乙不休息,速度提高20%,仍沿原方向爬行,第二次恰好在BC的中点相遇.求开始时,虫子甲和乙的爬行速度.
6.12013+22013+32013+42013除以5,余数是_________
7.甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需10天,乙完成工程需16天,雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、完工.在施工期间下雨的天数是______.
8纯循环小数0.abcabcabc„„写成最简分数时分子与分母的和为58,请问这个纯循环小数是多少?
9.如图,在三角形ABC中,已知三角形ADE、三角形DCE、三角形BCD的面积分别是89、28、56,求三角形DBE的面积.10张老师带领6(1)班的学生去种树,学生恰好可以分成5组.已知师生每人种的树一样多,共种527棵,则6(1)班有学生多少人?
11.新年联欢会共有8个节目,其中有3个非歌唱类节目.排列节目单时规定,非歌唱类节目不相邻,而且第一个和最后一个节目是歌唱类节目.则节目单有______种不同的排法.
12.修一条高速公路.若甲、乙、丙合作,90天可完工;若甲、乙、丁合作,120天可完工;若丙、丁合作,180天完工.若甲、乙合作36天后,剩下的工程由甲、乙、丙、丁合作,还需要多少天完工?
13.已知长方形的长是宽的2倍,对角线的长是9,则长方形的面积是_________
14.用4根火柴,在桌面上可以拼成一个正方形;用13根火柴,可以拼成四个正方形;„如图,拼成的图形中,若最下面一层有15个正方形,则需要火柴______根.
.
15.十进制计数法,是逢10进1,如2410=2×10+4×1,36510=3×102+6×10+5×1;计算机使用的是二进制计数法,是逢2进1,如1112=1×22+1×2+1×1=,11002=1×23+1×22+0×2+0×1=,如果一个自然数可以写成m进制数45m,也可以写成n进制数54n,那么最小的m= n=
16.甲、乙、丙三人同时从A地出发到B地,他们的速度的比是4:5:12,其中甲、乙两人步行,丙骑自行车,丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B地,则甲、乙两人步行的路程之比是______.
17如图,在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有m升水时,水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的 1/8,求实心圆柱体的体积.
18.甲、乙二人分别在A、B两地同时相向而行,于C处相遇,甲继续向B地行走,乙则休息了14分钟,再继续向A地行走.甲和乙到达B和A立即折返,仍在E处相遇,已知甲每分钟行走60米,乙每分钟行走80米,则A和B两地相距______米.
19.在如图所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等.已知中=21,学=9,欢=12,则希、望、杯的和是______.
20.A、B两人同时从700米长的山坡坡底出发向上跑,跑到坡顶立即返回.他们俩的上坡速度不同,下坡速度则是两人各自上坡速度的二倍.B首先到达坡顶,立即沿原路返回,并且在离坡顶70米处与A相遇.当B到达坡底(起点)时,那么A落后B______米. 天天、Cindy、Kimi、石头、Angela 五人按顺序依次取出21 个小球.Kimi:“我取了剩下的小球的个数的三分之二”,Cindy:“我取了剩下的小球的个数的一半”,天天:“我取了剩下的小球的个数的一半”,石头:“我取了剩下的全部小球”,Angela:“大家取小球的个数都不同哎!” 请问:Kimi 是第____个取小球的,取了____个
22.某班46名学生都参加了兴趣小组.共有四个项目,每人可以参加其中的一个,两个,三个 ,或者四个兴趣小组.求该班至少有几名学生参加的项目完全一样?
23.甲乙两人同时从山脚出发开始爬山,两人下山速度都是上山速度的两倍,甲到山顶时,乙离山顶400米.甲回到山脚时,乙下山刚走完1/2,山脚到山顶的距离有多少米?
24.甲、乙、丙三人行走的速度分别为每分钟40米、50米、60米。甲、乙两人从A地,丙一人从B地他们同时相向出发,丙遇到乙后5分钟再遇到甲。A、B两地的距离是多少米?
25.甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转4圈,丙轮转6圈,这三个齿轮齿数最少应分别是多少齿
26.将3~10这八个数分别填入如图的小圆圈里,使两个大圆上的五个数的和相等,并且最小.
27.若干件商品分给100家商店,每家至少得一件,没有四家商店的商品数相同,那么最少有多少件商品?
(利润问题)
28.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应当提高售价多少元?
29.某品牌牙膏每盒15元,但销晕不大,为了促销,商店降价销售,后来销量增加2倍,收入增加了五分之三,一盒牙膏降低了多少元?
30.某商品按定价出售,每个可获得45元的利润,现在按定价的八五折出售8个所获得的利润,与按定价每个减价35元出售12个获得的利润一样,这一商品每个定价是多少元?
31.一批商品降价出售,如果减去定价的10%出售,可赢利215元,如果减去定价的20%出售,亏损125元,此商品的购入价是多少元?
液体浸物问题
32有一个圆柱形的桶(有盖)它的底面积与侧面积正好相等,如果这个圆柱形的底面不变,高增加3厘米,它的表面积就增加1130.4平方厘米,求原来圆柱体的表面积
33.有一个高8厘米容积是50毫升的圆柱体容器A,里面装满了水,现把长17厘米的圆柱体棒B垂直放入,使B的底面和A的底面接触。这时一部分水从容器A中溢出。当把B从A拿走后,A中拿走后,A中水的高度只有6厘米求圆柱体棒的体积
34.在一只底面半径是10cm的圆柱形瓶中,水深是8cm,要在瓶中放入长和宽都是8cm,高是15cm的铁块,把铁块竖放在水面上升了几厘米?
35.一个底面积为3600平方厘米的圆柱形容器,容器里直立着一个高1米、底面积是225平方厘米的长方体铁块,这是容器里的水深50厘米.现在把铁块轻轻垂直向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?
36如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体术块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降______厘米
37.一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米?
38.如图所示,厚度为0.04厘米的铜版纸被卷成一个空心圆柱,(纸卷的很紧,没有空隙),它的外直径是20厘米,内直径是8厘米.这卷铜版纸的总长是多少米
39.如图,abcd是矩形,bc=6厘米,ab=10厘米,对角线ac、bd相交o,cd旋转一周,则阴影部分扫出的立体图形的体积是多少立方厘米【π取3】
40.有一个高8厘米容积是50毫升的圆柱体容器A,里面装满了水,现把长17厘米的圆柱体棒B垂直放入,使B的底面和A的底面接触。这时一部分水从容器A中溢出。当把B从A拿走后,A中拿走后,A中水的高度只有6厘米求圆柱体棒的体积
浓度问题
42.甲桶有糖水60千克,含糖率40%,乙桶有含糖率为20%的糖水40千克,要使两桶糖水的含糖率相等,需把两桶的糖水互换多少千克?
43.从装满100克80%的盐水中倒出40克盐水后,再用清水将杯加满,搅拌后再倒出40克盐水,然后再倒出40克盐水,然后再用清水将杯加满,如此反复三次后。杯中盐水浓度是多少?
44林林倒满一杯纯牛奶,第一次喝了4分之1,然后加入豆浆,将杯子斟满并搅拌均匀,第二次,林林又喝了4分之1,如此重复,那么第3次后,林林共喝了一杯纯牛奶的总量的几分之几
45一只猴子摘一些桃子,第一天吃了这些桃子的1/7,第二天吃了余下的1/6,以后4天分别吃了余下桃子个数的1/5,1/4,1/3,和1/2,这时还余下桃子12个,那么则批桃子共有多少个?
46一杯盐水,第一次加入一定量的水后,盐水的含盐百分比变为15%;第二次又加入同样多的水,盐水的含盐百分比变为12%,第三次在加入同样多的水,盐水的含盐百分比将变为_______%.时钟问题
47从四点钟开始的一个小时内,分针与时针成60度角的时间是四点几分?
48.钟面上4点过几分,时针和分针离“3”的距离相等。
49.四点几分时,分针与4的距离是时针与4的距离的2倍。
50从4点整开始多少分钟后时针和分针夹角成90°
猎狗追兔火车过桥和间隔发车
50.猎狗前面26步远有一只野兔,猎狗追之。兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离。问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?
51.某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来。假设两个起点站的发车间隔是相同的,求这个发车间隔?
52.小峰骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰,小峰骑车到半路,车坏了,于是只好坐出租车去小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度每小峰骑车速度的5倍,那么如果这三种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车?
53铁路与公路平行.公路上有一个人在行走,速度是每小时4千米,一列火车追上并超过这个人用了6秒.公路上还有一辆汽车与火车同向行驶,速度是每小时60千米,火车追上并超过这辆汽车用了54秒,则火车速度为______,长度为______.
比例行程
54甲乙两人同时从a,b两点出发,甲每分钟行80米乙每分钟行60米,出发一段时间后,两人在距中心点的c点处相遇,如果甲出发后在途中某地停留了7分钟,两人将在距中点的d处相遇,且中点距c,d距离相等,问ab两点相距多少米?
55.小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行.已知小明步行的速度为每小时5千米,乘车速度为每小时15千米,结果去学校的时间比回家的时间多20分钟,已知小明从家到学校的路程是多少千米?
56.小明家到学校,前一半路程步行,后一半路程乘车;他从学校回家时,前1 /3 时间乘车,后2 /3 时间步行.结果去学校的时间比回家所用的时间多20分钟,已知小明步行每分钟行80米.乘车每分钟行240米.小明从家到学校的路程是多少千米?
57.一只小船从甲地到乙地往返一次共用2小时.回来时顺水,比去时每小时多行驶8千米因此第2小时比第1小时多行驶6千米,求甲乙两地距离.58.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,那么摩托车的速度应是多少?
59..同样走100米,小明要走180步,父亲要走120步.父子同时同方向从同一地点出发,如果每走一步所用的时间相同,那么父亲走出450米后往回走,还要走多少步才能遇到小明?
60红光农场原定9时来车接601班同学去劳动,为了争取时间,8时同学们就从学校步行向农场出发,在途中遇到准时来接他们的汽车,于是乘车去农场,这样比原定时间早到12分钟。汽车每小时行48千米,同学们步行的速度是每小时几千米?
61.小李现有一笔存款,他把每月支出后剩余的钱都存入银行。已知小李每月的收入相同,如果他每月支出1000元,则一年半后小李有存款8000元(不计利息);如果他每月支出800元,则两年后他有存款12800元(不计利息).小李每月的收入是______元,他现在存款_______元。
62.一次运动会上,有18名游泳运动员中,有8名参加了仰泳,有10名参加了蛙泳,有12名参加了自由泳,有4名既参加仰泳又参加蛙泳,有6名既参加蛙泳又参加自由泳,有5名既参加仰泳又参加自由泳,有2名这3个项目都参加,这18名运动员中只参加1个项目的人有多少?
37.某校有一道笔直的围墙,该校准备以围墙为一边用一道长36米的铁丝网,围成一块长方形菜地,这块地的面积最大是多少平方米
工程问题
63.某工程,甲独做要30天完成,乙独做要20天完成,现在甲乙合做,中途甲乙各休息了若干天,因此比计划推迟了8天,乙工作的天数是甲工作天数的2/3,甲乙各休息了几天?
64.甲组6人15天能完成的工作,乙组5人12天也能完成;乙组7人8天能完成的工作,丙组3人14天也能完成.现在一项工作需要甲组9人14天完成,如果丙组派人10天内完成,那么丙组至少应派多少人?
65.搬运一个仓库的货物,甲需10小时,乙需12小时,丙需15小时。有同样的仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?
66.甲乙两人同时加工一批零件,完成任务时,甲做了全部零件的5/8,乙每小时加工12个零件,甲单独加工这批零件要12小时,这批零件有多少个?
67.单独完成一项工程,甲独做可比规定时间提前一天完成,乙独做则要超过规定时间2天才能完成.甲乙两人合作一天后,剩下的由乙单独做,那么刚好在规定时间完成.这项工程如果甲乙两人合作,需多少天完成?
68两列火车同时从甲、乙两地相对开出.快车行完全程需要20小时,慢车行完全程需要30小时.开出后15小时两车相遇.已知快车中途停留4小时,慢车停了几小时?
百分数问题 69.金放在水里称,重量减轻了十九分之一;银放在水里称,重量减轻十分之一,有一块770重的金银合金,若把它放在水称,只有720千克.这块合金中金和银各有多少克
70.我校图书室去年买了科技书与文艺书共475本,今年又买了科技书与文艺书640本,其中科技书比去年增加48%,文艺书比去年增加20%,今年买的新书中科技书与文艺书各多少本?
71小玲原有图书的本数是小芳的1/5.今年“六一”儿童节,老师买来20本书平均分给两人后,这时小玲图书的本数是小芳的1/3.小玲现在有图书多少本?
72.某种童装的平均价是115元,其中男装比女装多1/5,女装平均每套比男装贵10%,这些童装中的男装平均价是多少元?
73有黑白棋子共150颗,分成50堆,每堆3颗,其中只有白棋子的有15堆,不少于2颗白棋子的有25堆,只有白棋子的堆数的2倍。问:这150颗棋子中有多少颗黑棋子?