《过程控制系统》教学大纲

时间:2019-05-12 21:54:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《过程控制系统》教学大纲》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《过程控制系统》教学大纲》。

第一篇:《过程控制系统》教学大纲

《过程控制系统》课程教学和考试大纲

一、教学基本要求

本课程主要包括三个方面的内容:实验方法对过程控制系统建模、过程检测控制仪表选型和工业过程控制系统工程设计的基本原理和基本设计方法。通过对本课程的学习,具体要求如下:

1、了解过程控制发展概况、特点和过程控制系统的组成及分类。

2、掌握用实验方法(阶跃响应和脉冲响应)建立过程数学模型的基本思路和方法;理解自平衡能力和无自平衡能力对象的有关概念,掌握阶跃响应曲线法和脉冲响应曲线实验建模方法,了解最小二乘建模方法。

3、了解检测仪表的分类、选型和过程控制仪表基本原理。理解过程变量检测和过程控制仪表的基本概念,掌握五大类参数检测与变送的传感器特性与选型的基本方法;了解PID调节器基本原理和构成。

4、掌握过程控制系统的各种工程设计方法,重点掌握单回路控制系统和串级控制系统的工程设计方法;掌握其它复杂控制系统的设计方法;了解先进过程控制系统。

二、教学内容及要求

1、过程控制系统的基本概况

(一)教学内容 1)过程控制发展概况 2)过程控制的特点

3)过程控制系统的组成及其分类

(二)教学要求

教学要求是:本章简要介绍过程控制系统发展概况、组成、分类和特点,使学生在学习后续各章内容之前,先对过程控制系统的总体情况有一个概要了解。达到了解过程控制发展经历的几个阶段的特点、理论基础、主要仪表和系统的基本结构;了解 过程控制的特点;了解过程控制系统的组成及其分类;了解“过程控制工程”课程的性质和任务。

重点是:过程控制系统的组成;过程控制系统的分类方法;过程控制系统的主要性能指标。

2、过程控制系统建模

(一)教学内容

1)被控过程的数学模型类型和表示方法 2)有自平衡过程和无自平衡过程 3)机理分析法建模

4)试验法建模(阶跃响应曲线法和矩形脉冲响应曲线法)5)最小二乘法建模

6)试验法建模的计算机编程实践

(二)教学要求

教学要求是:了解过程建模的基本概念和被控过程的数学模型类型和表示方法;理解有自平衡过程和无自平衡过程的物理意义;掌握有自平衡能力和无自平衡能力对象的机理分析建模方法;理解并熟练掌握阶跃响应曲线法和脉冲响应曲线实验建模方法的各种基本算法和验证条件;理解掌握最小二乘建模方法;能够利用MatLab或者其它编程语言实现单容或多容对象试验法建模中的几种算法(计算法、两点法、面积求系数方法)的计算机仿真实践。

3、过程检测和控制仪表

(一)教学内容

1)过程变量检测的基本概念和检测方法

2)五大类参数检测与变送的传感器分类、特性及工作原理 3)检测仪表的选型原则和方法 4)过程控制仪表的分类与基本特性

(二)教学要求

教学要求是:了解过程变量检测的基本概念和检测方法,能够计算仪表的精度和利用精度要求进行仪表选型;理解五大类参数检测与变送的传感器分类、特性及工作原理;掌握五大类参数检测与变送的传感器特性与选型的基本方法;了解过程控制仪表的分类。

4、单回路过程控制系统的工程设计

(一)教学内容

1)过程控制系统的工程设计要求和设计步骤 2)单回路控制系统方案设计和分析 3)检测、变送器选择

4)执行器(调节阀)选择,主要包括:执行器(调节阀)的基本组成、分类和气动执行器工作原理;气动执行器的理想和工作流量特性;执行器(调节阀)的选型原则和内容

5)控制器选择,主要包括:DDZ-III型PID调节器的基本构成和工作原理,PID控制规则的主要作用和基本形式;PID调节器选择(调节规则;正反作用;参数整定)6)过程控制系统的投运和控制器参数整定 7)单回路控制系统的工程实例分析

(二)教学要求

教学要求是:了解工业过程中单回路控制系统设计的一般要求和设计步骤,以及过程系统设计的主要内容和针对工程实际进行的安全防护措施;理解单回路控制系统方案设计基本内容和性能指标,熟练掌握被控量和控制量的选择原则,能够对过程进行静态和动态分析,掌握被控过程各种参数对系统特性和被控量、控制量的选取影响;了解检测、变送器的选择原则,并进行简单计算选取;理解执行器(调节阀)的基本组成和分类,掌握气动执行器的基本结构和工作原理,理解和掌握执行器的四类理想流量特性曲线、特点和应用场合,熟练掌握实际工程应用时串联和并联的工作流量特性,并根据过程控制系统要求分析和确定工作流量特性和理想流量特性,了解调节阀的结构型式和材料选择。熟练掌握根据过程控制系统要求分析和确定工作流量特性和理想流量特性;理解PID控制规律对系统性能的影响、应用场合和控制规律的选择原则;了解过程计算机控制系统的组成和特点,掌握模拟合数字PID控制算法;了解控制系统的投运,熟练掌握几种常用的控制器参数工程整定方法;能够按照上述单回路控制系统的设计内容和要求,针对实际过程控制系统进行单回路控制系统的方案设计和各种设备的选型。

5、串级控制系统工程设计

(一)教学内容

1)串级控制系统的基本结构和工作过程 2)串级控制系统的特点与性能分析 3)串级控制系统的设计 4)串级控制系统运行和参数整定 5)串级控制系统的工业应用范围

(二)教学要求

教学要求是:了解串级控制系统的基本组成和串级控制系统的工作过程;掌握串级控制系统的特点,能够针对实际工艺生产工程进行串级控制系统的设计,画出设计图、方框图,实现仪表选型、控制器选型、调节阀选型等分析;理解串级控制系统的工业应用范围;熟练掌握串级控制系统的设计要求、设计内容和串级控制系统调节器的参数整定方法,能够针对实际过程系统进行串级控制系统的主回路、副回路的选择和各种设备的选型。

6、复杂过程控制系统

(一)教学内容 1)前馈控制系统 2)大滞后补偿控制 3)比值控制 4)分程与选择性控制 5)多变量解耦控制

(二)教学要求

教学要求是:理解前馈控制系统的特点和针对的实际过程的应用情况,掌握前馈控制系统的典型结构,理解前馈控制系统的应用范围和了解前馈控制系统的参数工程整定方法;理解大滞后补偿控制基本思想,掌握常规大滞后控制方案,理解大滞后过程的Smith预估补偿控制思想,熟练掌握Smith预估补偿控制器的设计和系统分析;理解比值控制系统的基本概念,了解比值控制系统的控制方案和比值控制的设计与参数整定;理解分程与选择控制系统原理与设计,了解分程与选择控制系统工业应用;理解多变量解耦控制的基本概念,掌握相对增益的定义和计算,能够实现复杂控制通道的选择,了解解耦控制系统的设计方法、稳定性和解耦简化等问题。

三、考核及成绩评定方式

本课程考核方式为闭卷笔试,考试时间为2个小时,卷面满分85分,课程设计和平时成绩15分。平时成绩包括作业成绩、实验成绩。

第二篇:过程控制系统小结

11工业上用应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA4-20mA作为标准信号的原因作为标准信号的原因11直流:直流:传输中易于和交流感传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2

现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3例如施加一个阶跃扰动或脉冲扰动等。干扰通道的放大系数干扰通道对于调节质量的影响越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,K越小入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,不管哪一但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,越小,调节质量越高。4 个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7 增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(3)增量型算法不对偏差做累8因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有

馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10b引入前馈必须要遵循的原则:

大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。a系统中的扰动量是可测不可控的。c 11 控制通道的滞后时间较减率威典型最佳调解过程标准:在阶跃的扰动下,保证调节过程波动的衰时间最短。0.7512的前提下,使4过程的最大动态偏差,静态误差和调节被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除: 具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置u构不再作用。防止积分饱和的方法有哪些?Xmax将因积分作用的不断累加而增大,从,之后尽管答:u还在增大,但执行机1)限制PI13作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带)遇限消弱积分法。调节器δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δ就加大了调节阀的动作幅δ引起被调量来回波动,但系统仍可能是稳定的,余差相应减小;3)14具有一个临界值,此时系统处于稳定边缘的情况。

也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失成成分的影响,量程比可达15100:1 性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些下系统存在的关键。

1应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA作为标准信号的原因1直流:传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性

过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3干扰通道的放大系数干扰通道对于调节质量的影响例如施加一个阶跃扰动或脉冲扰动等。越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,K越小可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,不管哪一但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,越小,调节质量越高。4个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7 增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(8因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。3)增量型算法不对偏差做累缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有

馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10

b大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。引入前馈必须要遵循的原则:a系统中的扰动量是可测不可控的。c控制通道的滞后时间较 11减率威典型最佳调解过程标准: 时间最短。0.75的前提下,使4在阶跃的扰动下,保证调节过程波动的衰过程的最大动态偏差,静态误差和调节12

被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除: 具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置构不再作用。Xmaxu将因积分作用的不断累加而增大,从,之后尽管u防止积分饱和的方法有哪些?13答:还在增大,但执行机1)限制PI调节器作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带)遇限消弱积分法。δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δδ引起被调量来回波动,但系统仍可能是稳定的,就加大了调节阀的动作幅余差相应减小;314具有一个临界值,此时系统处于稳定边缘的情况。)也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失

成成分的影响,量程比可达15性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些100:1 下系统存在的关键。

1应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA作为标准信号的原因1直流:传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2

现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3例如施加一个阶跃扰动或脉冲扰动等。干扰通道的放大系数干扰通道对于调节质量的影响 越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,K越小入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,不管哪一越小,调节质量越高。4 个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7 增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(38因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。)增量型算法不对偏差做累 缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有

馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10

b大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。引入前馈必须要遵循的原则:a系统中的扰动量是可测不可控的。c 11减率威典型最佳调解过程标准:在阶跃的扰动下,保证调节过程波动的衰 控制通道的滞后时间较时间最短。0.75的前提下,使4过程的最大动态偏差,静态误差和调节12被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除:

具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置构不再作用。Xmaxu将因积分作用的不断累加而增大,从,之后尽管u防止积分饱和的方法有哪些?13答:还在增大,但执行机1)限制PI调节器作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δ引起被调量来回波动,但系统仍可能是稳定的,δ就加大了调节阀的动作幅余差相应减小;3)14具有一个临界值,此时系统处于稳定边缘的情况。也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失

成成分的影响,量程比可达15性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些100:1 下系统存在的关键。1应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA作为标准信号的原因1直流:传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2

现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3例如施加一个阶跃扰动或脉冲扰动等。干扰通道的放大系数干扰通道对于调节质量的影响越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,K越小入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,不管哪一但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,越小,调节质量越高。4 个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(3)增量型算法不对偏差做累8因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9

利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10b大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。引入前馈必须要遵循的原则:a系统中的扰动量是可测不可控的。

c控制通道的滞后时间较 11 减率威典型最佳调解过程标准:在阶跃的扰动下,保证调节过程波动的衰时间最短。0.7512的前提下,使4过程的最大动态偏差,静态误差和调节被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除: 具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置u构不再作用。Xmax将因积分作用的不断累加而增大,从,之后尽管u还在增大,但执行机防止积分饱和的方法有哪些?13答:1)限制PI调节器 作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带δ很大意味着调节阀的动差很大,调节时间也很长;度,2)减小比例带δ就加大了调节阀的动作幅δ引起被调量来回波动,但系统仍可能是稳定的,余差相应减小;3)14具有一个临界值,此时系统处于稳定边缘的情况。

也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失成成分的影响,量程比可达15性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些100:1 下系统存在的关键。

11工业上用应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA4-20mA作为标准信号的原因作为标准信号的原因11直流:直流:传输中易于和交流感传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2

现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3例如施加一个阶跃扰动或脉冲扰动等。干扰通道的放大系数干扰通道对于调节质量的影响越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,K越小入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,不管哪一但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,越小,调节质量越高。4 个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7 增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(3)增量型算法不对偏差做累8因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有

馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10b引入前馈必须要遵循的原则:

大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。a系统中的扰动量是可测不可控的。c 11 控制通道的滞后时间较减率威典型最佳调解过程标准:在阶跃的扰动下,保证调节过程波动的衰时间最短。0.7512的前提下,使4过程的最大动态偏差,静态误差和调节被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除: 具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置u构不再作用。防止积分饱和的方法有哪些?Xmax将因积分作用的不断累加而增大,从,之后尽管答:u还在增大,但执行机1)限制PI13作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带)遇限消弱积分法。调节器δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δ就加大了调节阀的动作幅δ引起被调量来回波动,但系统仍可能是稳定的,余差相应减小;3)14具有一个临界值,此时系统处于稳定边缘的情况。

也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失成成分的影响,量程比可达15100:1 性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些下系统存在的关键。

1应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA作为标准信号的原因1直流:传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性

过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3干扰通道的放大系数干扰通道对于调节质量的影响例如施加一个阶跃扰动或脉冲扰动等。越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,K越小可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,不管哪一但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,越小,调节质量越高。4个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7 增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(8因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。3)增量型算法不对偏差做累缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有

馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10

b大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。引入前馈必须要遵循的原则:a系统中的扰动量是可测不可控的。c控制通道的滞后时间较 11减率威典型最佳调解过程标准: 时间最短。0.75的前提下,使4在阶跃的扰动下,保证调节过程波动的衰过程的最大动态偏差,静态误差和调节12

被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除: 具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置构不再作用。Xmaxu将因积分作用的不断累加而增大,从,之后尽管u防止积分饱和的方法有哪些?13答:还在增大,但执行机1)限制PI调节器作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带)遇限消弱积分法。δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δδ引起被调量来回波动,但系统仍可能是稳定的,就加大了调节阀的动作幅余差相应减小;314具有一个临界值,此时系统处于稳定边缘的情况。)也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失

成成分的影响,量程比可达15性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些100:1 下系统存在的关键。

1应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA作为标准信号的原因1直流:传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2

现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3例如施加一个阶跃扰动或脉冲扰动等。干扰通道的放大系数干扰通道对于调节质量的影响 越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,K越小入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,不管哪一越小,调节质量越高。4 个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7 增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(38因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。)增量型算法不对偏差做累 缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有

馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10

b大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。引入前馈必须要遵循的原则:a系统中的扰动量是可测不可控的。c 11减率威典型最佳调解过程标准:在阶跃的扰动下,保证调节过程波动的衰 控制通道的滞后时间较时间最短。0.75的前提下,使4过程的最大动态偏差,静态误差和调节12被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除:

具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置构不再作用。Xmaxu将因积分作用的不断累加而增大,从,之后尽管u防止积分饱和的方法有哪些?13答:还在增大,但执行机1)限制PI调节器作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δ引起被调量来回波动,但系统仍可能是稳定的,δ就加大了调节阀的动作幅余差相应减小;3)14具有一个临界值,此时系统处于稳定边缘的情况。也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失

成成分的影响,量程比可达15性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些100:1 下系统存在的关键。1应相区别,不存在相依问题,不受传输中电感,电容和负载性质的限工业上用4-20mA作为标准信号的原因1直流:传输中易于和交流感制。传输,电流制:不受传输线及负载电阻变化的影响,适于信号的远距离零点:有利于识别仪表的断线,断电等故障,为现场变送器实现两线另外,电流信号课直接和磁场作用产生正比于信号的机械力。活制提供可能。2

现出来,在稳态下是表现不出来的,因此为了获得动态特性必须使被施加扰动的必要性过程的动态特性只有当它处于变动状态时,才会表研究的过程处于被激励的状态,3例如施加一个阶跃扰动或脉冲扰动等。干扰通道的放大系数干扰通道对于调节质量的影响越好,这样静差减小,控制精度提高。K影响着干扰加载系统上的幅值,因此,可以驾校最大动态偏差。干扰通道纯滞后对调节质量没影响。干扰进干扰通道时间常数T的增加,K越小入位置的影响:各个干扰的闭环传递函数是不一样的,而闭环传递函数的分母是相同的,即系统的特征方程式是一样的,因此,个干扰两,不管哪一但最大动态偏差则可能不同,干扰离被控量测量点越远,则动态偏差系统的稳定程度,过度过程的衰减系数,正当周期都一样,越小,调节质量越高。4 个调节系统在整个工作范围内都具有良好的品质,就应使系统在整个为什么对数阀应用最多,调节阀如何选择:从调解原理看,要保持一工作范围内的总放大倍数尽可能的保持恒定。器和执行机构的放大倍数是常数,通常,变送器,调节其放大倍数常随工作点变化,因此在选择调节阀是希望调节阀的非线但调节对象的特性往往是非线性的,性补偿调节对象的非线性,故:6 例调节立即发挥作用,以减小偏差。积分调节主要用于消除余差。微PID调节的作用:比例调节成比例的反应控制偏差偏差一旦产生,比分调节反映偏差的变化趋势,并能在偏差信号变得太大前,在系统中引入一个有效的早期校正,从而加快系统的动作速度,减少调节时间。7增量的确定仅与最近几次偏差采样值有关,计算精度对控制量的计算增量式控制相比位置式控制的优点:(1)增量型算法不需要左肋叫,影响较小,而位置型算法要用到过去偏差的累加值,容易产生大的累加误差。加,(2)得出的是控制量的增量。(3)增量型算法不对偏差做累8因而也不会引起积分饱和。4)易于实现手动到自动的无冲击切换。缩短了控制通道,使控制作用更加及时。提到了系统的工作频率,使串级控制系统的优点:由于副回路的存在,减小了对象的时间常数,振荡周期减小,调节时间缩短,系统的快速性增强了。对二次干扰具有很强的客服能力,对克服一次干扰的能力也有一定的提高。对负荷和操作条件的变化具有一定的自适应能力。9

利于对系统中的主要干扰进行前馈补偿,对系统中的其他干扰进行反前馈反馈控制系统的优点:答:1)在前馈控制中引入反馈控制,有馈控制,这样既简化了系统结构有保证了控制精度。馈控制回路,所以降低了前馈控制器的精度要求,有利于前馈控制器2)由于增加了反的设计和实现。行,因而在一定程度上解决了稳定性和控制精度之间的矛盾。3)该结构既实现高精度的控制,又能保证系统稳定运10b大或者或干扰通道的时间常数较小。系统中的扰动量的变化幅值大,频率高。引入前馈必须要遵循的原则:a系统中的扰动量是可测不可控的。

c控制通道的滞后时间较 11 减率威典型最佳调解过程标准:在阶跃的扰动下,保证调节过程波动的衰时间最短。0.7512的前提下,使4过程的最大动态偏差,静态误差和调节被调量与设定值之间有偏差,其输出就会不停的变化。当偏差始终保什么是积分饱和现象,怎么消除: 具有积分作用的调节器,只要持一个方向时,调节器的输出而使执行机构达到极限位置构不再作用。Xmaxu将因积分作用的不断累加而增大,从,之后尽管u还在增大,但执行机防止积分饱和的方法有哪些?13答:1)限制PI调节器作幅度很小,因此被调量得变化比较平稳,甚至可以没有超调,但余比例带对调节作用有什么影响。1)比例带δ很大意味着调节阀的动 差很大,调节时间也很长;度,2)减小比例带δδ引起被调量来回波动,但系统仍可能是稳定的,就加大了调节阀的动作幅余差相应减小;314具有一个临界值,此时系统处于稳定边缘的情况。)也比较小,其读数不受流体物理状态如温度,压力,密度,粘度等组旋涡式流量计的有点:测量精度高,范围广,工作可靠,压力损失

成成分的影响,量程比可达15性能的特性,是指系统的健壮性或抗干扰性,它是在异常和危险情况 鲁棒性:指只控制系统在一定的结构,大小参数摄动下。维持某些100:1 下系统存在的关键。

第三篇:过程控制系统论文

过程控制系统的发展史

“过程控制”是现代工业自动化的一个重要领域.随着各类生产工艺技术的不断改进提高,生产过程的连续化、大型化不断强化,随着对过程内在规律的进一步了解,以及仪表、计算机技术的迅猛发展,生产过程控制技术获得了更大的进展。《过程控制系统》是过程控制自动化及相关专业的一门主要专业课程。过程控制系统可分为常规仪表过程控制系统与计算机过程控制系统两大类。前者在生产过程自动化中应用最早,已有六十余年的发展历史,后者是自20世纪70年代发展起来的以计算机为核心的控制系统。从系统结构来看,过程控制已经经历了四个阶段。

1.基地式控制阶段(初级阶段)

20世纪50年代,生产过程自动化主要是凭生产实践经验,局限于一般的控制元件及机电式控制仪器,采用比较笨重的基地式仪表(如自力式温度控制器,就地式液位控制器等),实现生产设备就地分散的局部自动控制。在设备与设备之间或同一设备中的不同控制 系统之间,没有或很少有联系,其功能往往局限于单回路控制。过程控制的目的主要是几种热工参数(如温度,压力,流量及液位)的定值控制,以保证产品的质量和产量的稳定。时至今日,这类控制系统仍没有被淘汰,而且还有了新的发展,但所占的比重大为减小。

2.单元组合仪表自动化阶段

20世纪60年代出现了单元组合仪表组成的控制系统,单元组合仪表有电动和气动两大类。所谓单元组合,就是把自动控制系统仪表按功能分成若干单元,依据实际控制系统结构的需要进行适当的组合,因此单元组合仪表使用方便,灵活。单元组合仪表之间用标准统一的信号联系,气动仪表(QDZ系列)为20~100kPa气压信号,电动仪表为0~10mA直流电流信号(DDZ—Ⅱ系列)和4~20mA直流电流信号(DDZ—Ⅲ系列)。由于电流信号便于远距离传送,因而实现了集中监控与集中操纵控制系统,对提高设备效率和强化生产过程有所促进,使用那个了工业生产设备日益大型化与连续化发展的需要。随着仪表工业的迅速发展,对过程控制对象特性的认识,对仪表及控制系统的设计计算方法等都有了较大的进步。但从设计构思来看,过程控制仍处于各控制系统互不关联或关联甚少的定值控制范畴,只是控制的品质有了较大的提高。单元组合仪表已延续了几十年,目前国内还广泛应用。由单元组合仪表组成的控制系统,其控制策略主要是PID控制和常用的复杂控制系统(如串级、均匀、比值、前馈、分程和选择性控制等)。

3.计算机控制的初级阶段

20世纪70年代出现了计算机控制系统,最初是直接数字控制(DDC)实现集中控制,代替常规的控制仪表。但由于集中控制的固有缺陷,未能普及与推广就被集散控制系统(DCS)所替代。DCS在硬件上将控制回路分散化,数据显示,实时监督等功能集中化,有利于安全平稳的生产。就控制策略而言,DCS仍以简单的PID控制为主,再加上一些复杂的控制算法,并没有充分发挥计算机的功能。

4.综合自动化阶段

20世纪 80年代以后出现了二级优化控制 ,在DCS的基础上实现先进控制和优化控制。在硬件上采用上位机和DCS(或电动单元组合仪表)相结合,构成二级计算机优化控制。随着计算机及网络技术的发展,DCS出现了开放式系统,实现多层次计算机网络构成的管控一体化系统(CIPS)。同时,以现场总线为标准,实现以微处理器为基础的现场仪表与控制系统之间进行全数字化,双向和多站通信的现场总线网络控制系统(FCS)。FCS将对控制系统结构带来革命性变革 ,开辟控制系统的新纪元。

当前自动控制系统发展的主要特点是:生产装置实施先进控制成为发展主流;过程优化受到普遍关注;传统的DCS正在走向国际统一标准的开放式系统;综合自动化系统(CIPS)是发展方向。

综合自动化系统,就是包括生产计划和调度,操作优化,先进控制和基层控制等内容的递阶控制系统,亦称管理控制一体化系统(简称管控一体化系统)。这类自动化系统是靠计算机和及其网络来实现的,因此也称为计算机集成过程系统(CIPS)。这里,“计算机集成”指出了它的组成特征,“过程系统”指明了它的工作对象,正好与计算机集成制造系统(CIMS)相对应,有人也称之为过程工业的CIMS。

可以认为,综合自动化是当代工业自动化的主要潮流。它以整体优化为目标,以计算机为主要技术工具,以生产过程的管理和控制的自动化为主要内容,将各个自动化 “孤岛”综合集成为一个整体的系统。近二十几年来,工业生产规模的迅猛发展,加剧了对人类生存环境的污染,因此,减小工业生产对环境的影响也已纳入了过程控制的目标范围,综上所述,过程控制的主要目标有保障生产过程的安全和平稳,达到预期的产量和质量,尽可能减少原材料和能源消耗,把生产对环境的危害降低到最小程度。由此可见,生产过程自动化是保持生产稳定、降低消耗、降低成本、改善劳动条件、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。

以上为过程控制系统的历史,现状以及未来的发展方向。

电专111班

孟阳

120114303113

第四篇:沈阳理工大学 过程控制系统综合设计教学大纲(NEW)

课程设计教学大纲: 过程控制系统综合设计教学大纲

课程编码:030151012 学时/学分: 2周/4学分

一、大纲使用说明

本大纲根据自动化专业2010版教学计划制订

(一)适用专业

自动化专业

(二)课程设计性质

专业必修课

(三)主要先修课程和后续课程

1、先修课程:

电子技术、单片机、可编程控制器、变频器控制技术、计算机控制系统、过程总线控制系统、现场总线控制系统。

2、后续课程:

自动化控制工程设计实践

二、课程设计目的及基本要求

本课程设计是自动化专业的重要实践性课程。通过本“设计”环节,使学生在学习了“计算机控制系统”、“过程控制系统”和“现场总线控制系统”的基本理论和基础知识后,能综合运用所学知识完成简单过程控制系统的设计、调试任务,培养学生的自主学习与实践动手能力;同时使学生了解过程工业控制所采用的先进方法、先进手段和先进技术。

课程设计可一人一题,也可以2-3人为小组的方式进行,但分工与任务要明确;设计题目应结合现有的实验设备,着重锻炼学生的应用能力和动手能力,最后完成实际上机调试,完成课程设计报告。

三、课程设计内容及安排

1、设计内容

根据自己设计系统结构,分析系统的特点和系统特性,在实验室连接系统部件、构造硬件系统。在过程监控计算机编制相应监控组态程序。通过用控制器、监控计算机和实验对象的联机调试、执行、观察结果,达到预期应用功能和控制目的,比较不同方案的应用效果。设计内容主要针对过程工业常见的控制对象“温度、压力、流量、液位”来设计不同类型的控制系统。

(1)单容水箱液位定值控制系统设计;(2)双容水箱液位定值控制系统;

(3)串级系统设计I(双水槽液位串级图形监控、串级参数整定);(4)串级系统设计II(双水槽流量串级图形监控、串级参数整定);(5)干扰抑制和前馈控制设计I(单水槽单回路);(6)干扰抑制和前馈控制设计II(双水槽双回路);

(6)双输入/双输出系统设计(双水槽液位与双调节阀);

(7)组态监控系统设计(通讯/本机实验、上下位系统参数自整定);(8)单回路流量控制系统设计;(9)三水箱压力控制系统设计;(10)锅炉内胆水温定值控制系统;(11)锅炉内胆水温前馈反馈控制系统;(12)锅炉内胆水温与水流量串级控制系统。(13)基于单片机温度控制系统(14)基于温控器计算机控制系统(15)计算机模拟控制系统(16)电梯计算机监控系统(17)数控机床计算机监控系统(18)计算机过程通道板设计(19)提升机计算机监控系统

(20)带光隔计算机过程通道板设计

2、安排

课程设计是分阶段分步完成的,各阶段安排如下:

1、指导教师发放题目,学生根据各自题目查找有关资料和书籍,在同课题组的同学对于某些难点、关键问题可以互相讨论,共同研究。

2、学生根据自己的题目和有关参考资料,独立进行构思和分析,制订整体设计方案,根据自己所选的设计工具进行详细设计。

3、涉及到上机部分要上机调试,指导教师进行结果鉴定,给出上机部分成绩。书写课程设计报告,按规定时间交指导教师评审、答辩,给出课程设计综合成绩。

四、指导方式

由指导教师召开课程设计动员会,进行分组,指定课程设计的题目和内容,讲解部分题目要求。学生在规定的时间内,经过小组的协同工作和指导教师的辅导,完成题目。最后由指导教师进行验收及评定。

五、课程设计考核方法及成绩评定

1.考核方式:考查(学生上机操作演示,教师检查、提问,答辩及设计报告成绩)。

2.成绩评定:

成绩评定实行优秀、良好、中等、及格和不及格五个等级的成绩。课程设计报告成绩占总成绩的40%,答辩成绩总成绩的30%,课程设计中平时表现占总成绩的30%。

六、课程设计教材及主要参考资料

《过程控制系统》,俞金寿 孙自强编著,机械工业出版社,2009。

《过程控制》,金以慧编,清华大学出版社,1995。

《过程控制工程》,俞金寿 蒋慰孙编著,电子工业出版社,2007。《过程控制系统》,郭一楠等编著,机械工业出版社,2009。《计算机控制系统》,李正军 编著,机械工业出版社,2010。《现场总线技术》,刘泽祥 主编,机械工业出版社,2005。

编写人:纪振平 杨 青

马景富

审核人:纪振平

批准人:张焕君

第五篇:《过程设备设计》教学大纲

《过程设备设计》教学大纲

课程名称:过程设备设计

英文名称: Process Equipment Design 学分: 4.5

学时: 72

理论学时: 64

实验学时:8 教学对象:过程装备与控制工程专业本科生

先修课程:高等数学,机械制图,工程力学,机械设计,化工原理,弹性力学,专业英语

教学目的: 本课程是过程装备与控制工程专业的主干专业课程,其目的旨在使学生能综合运用基础课、技术基础课程中的基本理论及相关的工程实践知识,通过本课程的学习,基本具备从事过程设备设计和研究开发的初步能力。

教学要求: 熟悉并掌握过程设备设计的基本理论及工程实践,能采用正确、合理的方法进行过程设备的设计。从材料、设备的结构、温度、制造质量、安装、操作维护等方面对过程设备的工程设计进行综合分析和研究。

教学内容: Introductory Remarks(1学时)Chapter 1 Pressure Vessel Introduction(1学时)1.1 Gross Structure 1.2 Pressure Vessel Classification 1.3 Pressure Vessel Codes and Standards 基本要求: 压力容器分类方法,总体结构,国内外规范和标准及其比较 重点:按技术管理的分类, GB150,ASME 难点:正确理解按技术管理的分类方法

Chapter 2 Stress Analysis of Pressure Vessels(14学时)

2.1 Stress Analysis of Revolution Shells

2.1.1 Stress in Thin Walled Cylinders

2.1.2 Membrane Theory

2.1.3 Basic Equations

2.1.4 Application of Membrane Shell Theory

2.1.5 Discontinuity Analysis

2.2 Analysis of Thick Walled Cylinder

2.2.1 Elastic Stresses

2.2.2 Elastic-Plastic Stress

2.2.3 Yield Pressure and Bursting Pressure

2.3 Stress Analysis of Flat Plate

2.3.1 Introduction

2.3.2 Bending Differential Equation

2.3.3 Stresses in Circular Plate

2.3.4 Stress of Symmetrically Loaded Circular Plate with a Circular Central Hole

2.4 Stability Analysis of Shells

2.4.1 Introduction

2.4.2 Bucking Analysis of Thin Wall Cylinder under External Pressure

2.4.3 Critical Pressure of Other Revolution Shells

2.5 Typical Local Stresses 基本要求:回转壳的应力分析,二种基本理论,无力矩理论的基本方程,无力矩理论的应用,厚壁圆筒的弹性应力和弹塑性应力,屈服压力,爆破呀力,圆平板的应力计算及其应力分布,稳定性分析的基本方法,临界压力,局部应力分析的几种方法,降低局部应力的措施.重点: 回转壳的应力分析, 无力矩理论的基本方程, 厚壁圆筒的弹性应力, 临界压力, 难点: 回转壳的应力分析, 稳定性的分析方法, 弹塑性应力.Chapter 3 Pressure Vessel Materials and Properties Effected by Environment and Time(6学时)

3.1 Pressure Vessel Materials

3.1.1 Pressure Vessel Steels

3.1.2 Nonferrous Metal and Nonmetal

3.2 Pressure Vessel Steel Properties Effected by Fabrication

3.2.1 Plastic Deformation

3.2.2 Welding

3.2.3 Heat Treatment

3.3 Pressure Vessel Steel Properties Effected by Environment

3.3.1 Temperature

3.3.2 Medium

3.3.3 Loading Speed

3.4 Selection of Pressure Vessel Materials

3.4.1 Basic Requirement

3.4.2 Selection 基本要求:压力容器常用钢材,环境的影响,制造的影响,压力容器材料的选用 重点: 压力容器常用钢材,各种环境的影响,材料的正确选用 难点: 压力容器常用钢材的正确选用

Chapter 4 Design of Pressure Vessels(14学时)

4.1 Introduction

4.2 Design Criterions

4.3 Design by Rules

4.3.1 Introduction

4.3.2 Cylinder Design

4.3.3 Head Design

4.3.4 Sealing Device Design

4.3.5 Opening and Reinforcement

4.3.6 Support and Manhole(Handhole)

4.3.7 Safety Relieving Device

4,3,8 Welded Structure Design

4.3.9 Pressure Test

4.4 Design by Analysis

4.4.1 Introduction

4.4.2 Stress Categories

4.4.3 Computation of Stress Intensities

4.4.4 Stress Intensity Limiting

4.4.5 Application of Design by Analysis

4.5 Fatigue Analysis

4.6 Development of Pressure Vessel Technology 基本要求:设计文件,设计准则,圆筒设计,封头设计,密封装置设计,开孔和开孔补强设计,常用支座,安全泄放装置,焊接结构,压力试验,应力分类,应力强度计算及限制,低循环疲劳曲线,平均应力影响.重点:圆筒和封头设计,密封机理,性能参数,高压密封结构,补强计算,焊接接头分类,应力分类,应力强度.难点:设计参数确定,夹套容器设计,双锥环受力分析,应力分类,应力强度

Chapter 5 Storage Equipment(5学时)

5.1 Introduction

5.2 Horizontal Storage Tank

5.2.1 Basic Structure

5.2.2 Design Calculation

5.3 Spherical Storage Tank

5.3.1 Tank Body

5.3.2 Support

5.3.3 Manhole and Nozzle

5.3.4 Accessories 基本要求:鞍式支座的位置和数量,力学模型,内力分析,几种应力,球形储罐的罐体,支座

重点:鞍式支座的结构和确定,扁塌现象.难点:卧式容器的力学模型

Chapter 6 Heat Exchanger(8学时)

6.1 Introduction

6.2 Shell-and-Tube Heal Exchangers

6.2.1 Basic Types

6.2.2 Shell-and Tube Heat Exchanger Structure

6.2.3 Tubesheet Design

6.2.4 Expansion Joint Design

6.2.5 Tubes Vibration and Protection

6.3 Waste Heat Boiler

6.4 Forced Heat Transfer 基本要求:换热设备分类,管壳式换热器分类及选型,管程结构,壳程结构,管板设计思路,膨胀节,管束振动和防止,传热强化技术

重点: 管壳式换热器分类,换热管,换热管与管板连接,管束分程,壳程结构,管束振动,传热强化技术.难点: 管壳式换热器结构,危险工况的确定

Chapter 7 Tower(10学时)

7.1 Introduction

7.2 Packed Tower

7.2.1 Packing

7.2.2 Internals of Packed Tower

7.3 Plate Column

7.3.1 Classification

7.3.2 Structure

7.3.3 Construction of Tray

7.4 Accessories

7.4.1 Forth Remover

7.4.2 Skirt Support

7.4.3 Boom

7.5 Strength Design of Tower

7.5.1 Natural Vibration Period

7.5.2 Loading Analysis

7.5.3 Strength and Stability of Cylinder

7.5.4 Strength and Stability of Skirt

7.6 Vibration of Tower

7.6.1 Vibration induced by Wind

7.6.2 Prevention of Vibration 基本要求:塔设备选型,填料分类,塔内件结构,板式塔分类,板式塔结构,塔盘结构,塔设备附件,塔强度计算,固有周期,载荷分析,筒体强度校核,稳定性校核,风的诱导振动,卡曼旋涡,塔设备的防振

重点:填料塔结构,塔盘结构,塔设备载荷分析, 卡曼涡街 难点: 风的诱导振动机理, 载荷分析,筒体强度校核

Chapter 8 Reactors(5学时)

8.1 Introduction

8.1.1 Classification

8.1.2 Characteristics

8.2 Mechanical Agitated Reactor

8.2.1 Basic Structure

8.2.2 Agitated Vessel

8.2.3 Agitator Impeller

8.2.4 Shaft Design

8.2.5 Sealing Device

8.2.6 Gearing

8.3 Development of Mechanical Agitated Reactors 基本要求:反应器分类,机械式搅拌反应器的结构,搅拌器,搅拌容器,夹套结构,流动特性,搅拌器选型,影响搅拌功率的因素,搅拌轴的力学模型,填料密封,机械密封,传动装置.重点: 搅拌器的分类及选用,密封装置,流动类型 难点: 搅拌器的选型

实验教学

1.内压薄壁容器应力测定(3学时)实验目的及要求:(1)了解内压薄壁容器在内压作用下薄膜应力的分布规律(2)验证薄壁容器筒体应力计算的理论公式

(3)掌握用电阻应变仪测定应力的基本原理及具体操作的过程和方法 本实验的具体操作为重点,故而需3学时。2.高压容器内外壁应力测定(2学时)实验目的及要求:(1)测定高压容器筒体在内压作用下,内、外壁面的应力,并与理论公式比较(2)了解高压液压下电阻应变测量的基本方法,如电阻片的保护,内壁的引线及压力效应的校正等

本实验以内壁液压下应力测量技术为重点 3.厚壁筒体的爆破及测试实验(2学时)实验的目的和要求:(1)了解厚壁容器加载,塑性变形,应变硬化,最后大变形破坏的全过程(2)测量厚壁圆筒的爆破压力,并与各种失效理论的结果进行比较(3)了解大应变及数据采集的技术 4.外压薄壁圆筒形容器失稳试验(1学时)实验目的及要求:(1)观察薄壁圆筒形容器在外压作用下失稳的形态(2)测定圆筒形容器的临界压力并与理论值进行比较 具体实验的内容、方法详见实验指导书

参考教材: 1.郑津洋等编,过程设备设计,北京,化学工业出版社,2005年 2.自编, Process Equipment Design, 2003年(2005年 修订补充)12

下载《过程控制系统》教学大纲word格式文档
下载《过程控制系统》教学大纲.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    过程设备设计教学大纲

    过程设备设计 课程类型:专业课程 总 学 时:48 学分:3 开课系(院):机械工程系 适用专业:过程装备与控制工程 一、课程的地位、作用与任务 过程设备在生产技术领域中的应用十分广泛,是......

    过程控制系统课程设计报告(封皮)

    题目: 过程控制系统课程设计报告S7-300PLC与200PLC主-从站的单回 流量过程控制系统设计姓名:班级:自09A-2学号: 同组人:时间:2012年11月 地点:过程控制系统实验室 指导老师: 目录1.......

    《过程控制系统》期末考查论文(五篇材料)

    《过程控制系统》期末考查论文——集散控制系统简介DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。是相对于集中式控制系......

    过程控制工程课程设计教学大纲

    过程控制工程课程设计教学大纲 英文名称:Course Design of Process Control Engineering 课程编号:67112404 设计周数:2 学分数:2 一、课程设计目的和任务 《过程控制工程课程......

    过程控制系统考试知识点复习和总结----终极版(DOC)

    第五章 复杂控制系统(串级、比值、均匀、分程、选择、前馈、双重控制) 串级控制系统 定义:采用不止一个控制器,而且控制器间相串接,一个控制器的输出作为另一个控制器的设定值的......

    控制系统的工作过程和方式(教学案例)

    教学目标分析 知识目标: 1、 熟悉简单的开环控制系统的基本组成和简单的工作过程。 2、 熟悉闭环控制系统的基本组成,理解其中的控制器、执行器的作用。3、 掌握控制过程的一......

    过程检测及仪表教学大纲修正

    《过程检测及仪表》课程教学大纲 课程编号:29120025 课程类别:专业选修课程 授课对象:本科三年级 开课学期:第二学期 学分:3学分 主讲教师:高育芳 指定教材:常健生,检测及转换技术(第......

    沈阳理工大学 运动控制系统综合设计教学大纲

    《运动控制系统综合设计》教学大纲 课程代码:030151010 课程总学时:2周/4学分 一、大纲使用说明 本大纲根据自动化专业2010版教学计划制订 (一)适用专业 自动化 (二)课程性质 必......