16.3 分式方程教案

时间:2019-05-12 22:46:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《16.3 分式方程教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《16.3 分式方程教案》。

第一篇:16.3 分式方程教案

16.3 分式方程(2)

作者:孙红

教学目标:

1、使学生更加深入理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生检验解的原因,知道解分式方程须验根并掌握验根的方法 重点难点:

1.了解分式方程必须验根的原因;

2.培养学生自主探究的意识,提高学生观察能力和分析能力.教学过程: 一.复习引入 解方程:

x51 4xx4x51解: 1 x4x4(1)1方程两边同乘以得

检验:把x=5代入 x-5,得x-5≠0 所以,x=5是原方程的解.(2)

,.

x216x22 x2x4x2,得 解:方程两边同乘以

∴ .

,检验:把x=2代入 x2—4,得x2—4=0.所以,原方程无解..思考:上面两个分式方程中,为什么(1)去分母后所得整式方程的解就是(1)的解,而(2)去分母后所得整式的解却不是(2)的解呢?

学生活动:小组讨论后总结

二.总结

(1)为什么要检验根?

在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根).对于原分式方程的解来说,必须要求使方程中各分式的分母的值均不为零,但变形后得到的整式方程则没有这个要求.如果所得整式方程的某个根,使原分式方程中至少有一个分式的分母的值为零,也就是说使变形时所乘的整式(各分式的最简公分母)的值为零,它就不适合原方程,则不是原方程的解.(2)验根的方法

一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验:

将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.三.应用 例1 解方程23 x-3x解:方程两边同乘x(x-3),得 2x=3x-9 解得 x=9 检验:x=9时 x(x-3)≠0,9是原分式方程的解.例2 解方程 x3 -1x-1(x1)(x2)解:方程两边同乘(x-1)(x+2),得

x(x+2)-(x-1)(x+2)=3 化简,得

x+2=3 解得

x=1 检验:x=1时(x-1)(x+2)=0,1不是原分式方程的解,原分式方程无解.四.随堂练习五.课时小结 六.作业

第二篇:分式方程教案(推荐7篇)

篇1:初二数学分式方程教案

一,内容综述:

1.解分式方程的基本思想

在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即

分式方程 整式方程

2.解分式方程的基本方法

(1)去分母法

去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根.

产生增根的原因:

当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.

检验根的方法:

将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等.

为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去.

注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

分母为0.

用去分母法解分式方程的一般步骤:

(i)去分母,将分式方程转化为整式方程;

(ii)解所得的整式方程;

(iii)验根做答

(2)换元法

为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.

用换元法解分式方程的一般步骤:

(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数

式;

(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;

(iii)把辅助未知数的值代回原设中,求出原未知数的值;

(iv)检验做答.

注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程.

(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法.

(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤.

篇2:初二数学分式方程教案

一,内容综述:

1、解分式方程的基本思想

在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程。即

分式方程整式方程

2、解分式方程的基本方法

(1)去分母法

去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。但要注意,可能会产生增根。所以,必须验根。

产生增根的原因:

当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解。

检验根的方法:

将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。

为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去。

注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

分母为0。

用去分母法解分式方程的一般步骤:

(i)去分母,将分式方程转化为整式方程;

(ii)解所得的整式方程;

(iii)验根做答

(2)换元法

为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决。辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法。换元法是解分式方程的一种常用技巧,利用它可以简化求解过程。

用换元法解分式方程的一般步骤:

(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;

(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的.值;

(iii)把辅助未知数的值代回原设中,求出原未知数的值;

(iv)检验做答。

注意:

(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。

(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。

(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

篇3:分式方程说课稿

一 教材的地位和作用:

本节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。

跟这部分内容有关联的是后面列方程解应用题,学好这一节课,将为下节课的学习打下基础。

二、教学目标

1.使学生理解分式方程的意义.

2.使学生掌握可化为一元一次方程的分式方程的一般解法.

3.了解解分式方程时可能产生增根的原因,并掌握解分式方程的验很方法.

4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想。

三、重点分析:本节重点是可化为一元一次方程的分式方程求解中的转化。解分式方程的基本思想是:设法去掉分式方程的分母,把分式方程转化为整式方程,这是分式方程求解的关键,因此转化过程中主要是找方程两边的最简公分母。

难点分析:解分式方程学生容易出错,关键不能理解在方程变形的过程中产生增根的原因,对于八年级学生理解有一定的困难,可以结合实例让学生了解方程两边同乘的是整式,整式可能为零不能满足方程同解变换的原则,因此求解分式方程一定要验根。

四、教学方法:

本 节内容从以前所学过的分式方程的概念出发,介绍分式方程的求解方法。再加上数学学科的特点,所以本节课采用了启发式、引导式教学方法。特别注重“精讲多练 ”,真正体现以学生为主体。上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生上黑板以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决。

五、教学过程

(一)复习:

(1) 什么叫分式方程?

设计意图:主要让学生继续区分整式方程与分式方程的区别,为新授做铺垫,使学生能积极投入到下面环节的学习。

(二)新授:

(1)学生学习例题交流讨论,找两组同学到黑板上尝试解题。

设计意图:通过学生对例题的合作研究,使每个学生对分式方程的解法有一个初步的认识,在此环节,鼓励同学大胆交流、发表自己的见解,同时学会聆听。培养同学们的合作意识。教师在此时对学生的问题要做出适当的评价,给同学以鼓励和引导。

(2)、讲解例题:

解:方程两边同乘x(x-2),约去分母,得

5(x-2)=7x解这个整式方程,得

x=5.

检验:把x=-5代入最简公分母

x(x-2)=35≠0,

∴x=-5是原方程的解。

设计意图;在此环节,教师鼓励同学们亲自体验,激发学生的学习热情。在巩固解分式方程的基础上发展学生的归纳能力、张扬学生的个性。使教师真正成为学生学习的促进者。

(3)议一议

在解方程—— = —— - 2时,小亮的解法如下:

方程两边都乘以X -2,得

1 - X = -1 -2(X -2)

解这个方程,得

X = 2

你认为X = 2是原方程的根吗?与同伴交流。

教师小结:

在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根

验根的方法有:代入原方程检验法和代入最简公分母检验法.

(1)代入原方程检验,看方程左,右两边的值是否相等,如果值相等,则未知数的值是原方程的解,否则就是原方程的增根。

(2)代入最简公分母检验时,看最简公分母的值是否为零,若值为零,则未知数的值是原方程的增根,否则就是原方程的根。

前一种方法虽然计算量大,但能检查解方程的过程中有无计算错误,后一种方法,虽然计算简单,但不能检查解方程的过程中有无计算错误,所以在使用后一种检验方法时,应以解方程的过程没有错误为前提。

想一想:解分式方程一般需要经过哪几个步骤?由学生回答。

(4)教师归纳小结:

解分式方程的步骤:

1 在方程的两边都乘以最简公分母,约去分母,化为整式方程

2 解这个整式方程

3 把整式方程的根代入最简公分母,看结果是不是零,使最简公分母为零的根是原方程 的增根,必须舍去。

(5)轻松完成:课堂练习:82页1、2

(6)归纳总结、整理反思

学生自己总结本节课的收获。教师引导学生不但总结知识上的收获,也要总结合作交流上,反思整堂课的学习体验。

设计目的:引导学生从多角度对本节课归纳总结,感悟知识上的点滴收获,体验合作交流的快乐,反思自己。

篇4:分式方程说课稿

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。

教师作为数学教学主导,在设计数学活动时要遵循以下原则:

一、根据学生的年龄特征和认知特点组织教学。

二、重视培养学生的应用意识和实践能力。

1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。

2、培养学生应用数学的意识和提高解决问题的能力。

三、重视引导学生自主探索,培养学生的创新精神。

1、引导学生动手实践、自主探索和合作交流。

2、鼓励学生解决问题策略的多样化。

四、教师对教学目标,难点,重点把握要恰当、具体。

数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。

一、设计思想:初中数学说课稿

数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。

根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习总结提高

二、背景分析:

(一)学情分析:

内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

(二)内容分析:

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。

通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意

识,渗透类比转化思想。

(三)教学方式:自学导读—同伴互助—精讲精练

(四)教学媒体:Midea---Class纯软多媒体教学网 几何画板

三、教学目标:初中数学说课稿

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。

四、板书设计:

a不是分式方程的解

(二)学习方法:类比与转化

教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。

五、教学过程:

活动1:创设情境,列出方程

设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。

设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。

活动2:总结定义,探究解法初中数学说课稿

使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。

教学思考:再一次体现了对全章进行整体设计的好处,在学习16.1分式和16.2分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。

活动3:讲练结合,分析增根

活动5:布置作业,深化巩固(略)

篇5:分式方程说课稿

一、教材分析:

1、本章与本节的地位与作用: 本章是在学生已掌握了整式的四则运算,多项式的因式分解的基础上,通过对比分数的知识来学习的,包括分式的概念、分式的基本性质、分式的四则运算,这一章的内容对于今后进一步学习函数和方程等知识有着重要的作用。可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的。它既可看着是分式有关知识在解方程中的应用;也可看着是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程)。同时学习了分式方程后也为解决实际问题拓宽了路子,打破了列方程解应用题时代数式必须是整式这一限制。 解分式方程的基本思想是:“把分式方程转化为整式方程”,基本方法是:“去分母”。让学生进一步体会“转化”这一数学思想,对提高学生的数学素质是非常重要的。 2、教学目标:根据学生已有的知识基础及本节在教材中的地位与作用,依据大纲的要求确定本课时的教学目标为:

(1)了解分式方程的概念,会识别分式方程与整式方程。

(2)理解分式方程的解法,会熟练地解分式方程。

(3)体会解分式方程的“转化”思想。

3、教学重点、难点、关键:根据大纲要求及学生的认知水平,确定本节课的教学重点为:分式方程的解法。重中之重是去分母实现分式方程到整式方程的转化与验根。 由于学生去分母时涉及等式的基本性质、整式运算、分式运算等知识,学生容易出错,而一旦顺利地实现了去分母,即实现了分式方程到整式方程的转化,解整式方程是学生早已熟悉的知识。因此确定正确去分母既是教学的难点,也是教学的关键。由于解分式方程可能产生增根,学生第一次遇到,所以分式方程的验根也是难点,

二、教学方法:

(一)学生分析: 根据七年级学生的知识水平和年龄特征,考虑到素质教育的要求,结合本节课的特点,主要采用启导式教学法、讲练法,引导学生去观察、去思考、去探索,尽量让学生自己寻找、归纳出解分式方程的一般步骤。

(二)新课教学:

1、分式方程的定义。

(1)分母里含有未知数的方程叫做分式方程。

(2)提问:前面学习过的一元一次方程的分母里含有未知数吗?前面学习过的方程都是整式方程,一元一次方程是最简单的整式方程。

(3)下列方程中哪些是整式方程?哪些是分式方程? (共6个识别题,1.x+3y=1/12 2、x+1/x=5 ,3、2/3x,4、3/(x-2)-1=5/(2x+1) 5、5/(3x-2)+(x+1)/3=16、(2-7)/5+x/3=1/2

) 注意:区分整式方程与分式方程的关键是什么?分母中是否含有字母)。先学习分式方程的定义,再与已有知识进行对比,进一步强化学生对分式方程概念的本质的认识,紧接着利用几道识别题训练学生正确地区分分式方程与整式方程及分式的区别,这部分教学要求达到“了解”层次即可。)

2、解方程:回忆解方程的一般步骤中的第一步?如何去掉分母?方程的两边都乘以一个什么样的式子?这是解分式方程的关键步骤,只有通过去分母才能实现我们的转化,而这个步骤由于涉及的知识多,学生容易出错。这里应是教学的重点之一。解这个整式方程。(由学生完成)。(学生已有这部分知识,由学生独立完成,新课的教学不能教师一讲到底,凡学生能做的应由学生做,因为学生才是学习的主体。) 把解得的未知数的值代入原方程进行检验。必须强调原方程,因为有学生往往代入去了分母的整式方程中。应引导学生进行检验,得出未知数的值是否使方程两边相等,确定方程的解的正确性,得出原分式方程的解的结论。

(三)课堂练习:

通过练习强化学生对解分式方程的步骤的理解,使学生熟练地解分式方程,通过练习,及时掌握学生对所学知识的掌握情况,根据练习中反馈的信息进行教学的查缺补漏,纠正练习中出现的问题,在练习中形成解题的能力。

拓展题:

小明说:x=2是方程2/(x-2)-1=5/(2x+1)的增根?你是否赞成他的说法?

对这堂课的增根的进一步理解与巩固,说明增根是在解方程后,让公分母为零的未知数的值才叫方程的增根。

(四)课堂小结:

1、分式方程的定义。

2、解分式方程的一般步骤。

3、解分式方程应注意:(1)正确去分母,化分式方程为整式方程。(2)解分式方程必须检验。通过小结使学生学习的知识形成体系、网络。帮助学生全面地理解掌握所学知识。小结也应由学生试着完成,教师补充,有利于培养学生归纳整理知识的能力,也是学生参与学习的体现。

(五)、作业布置:练习册第52页10.5 1、2、3题。

课外作业的布置是必须的,它有利于学生巩固所学的知识,作业应精选,应适量。

1、观察以下两个题目:

(1)计算: 2/(x-1)-1

(2)解方程:2/(x-1)-1=0

这两个题目分别要求我们做什么?解题的第一步有什么不同?

五、几点说明: 1、板书设计:将黑板分成四个部分。 (1)课题、引例1、引例2。 (2)例1。 (3)例2。(学生板书的课堂练习写在例1、例2的下面) (4)小结与作业布置。 2、教学时间安排: 复习引入约3分钟;新课教学约30分钟;课堂练习约5分钟;小结约2分钟;作业布置约1分钟。 3、整堂课要体现的设计思想: 根据学生已有的知识结构和年龄特征,结合教材的特点,选择启导式教学法、讲练法,培养学生的学习兴趣,让每个学生都达到大纲的要求。注重“学生是学习的主体”这一教学思想的体现,教学中通过富有启发性的提问让学生思考、让学生试着总结、让学生试着做一做等方式尽量让学生去参与,去发现,去尝试,去总结。使学生由被动地接受知识变为主动地去获得知识。

在讨论增根问题时,通过具体例子展现了解分式方程时可能出现增根的现象,并结合例子分析了什么情况下产生增根,然后归纳出验根的方法。

篇6:分式方程说课稿

一.教学内容分析:

列分式方程解决应用问题比列一次方程(组)要稍微复杂一点,教学时候要引导学生抓住寻找等量关系,恰当选择设未知数,确定主要等量关系,用含未知数的分式或者整式表示未知量等关键环节,细心分析问题中的数量关系。对于常用的数量关系,虽然学生以前大都接触过,但是在本章的教学中仍然要注意复习、总结,并且抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验,解释所获得结果的合理性。

本章教科书呈现了大量由具体问题抽象出数量关系的实例,目的是让学生经历观察、归纳、类比、猜想等思维过程,所以,评价应该首先关注学生在这些具体活动中的投入程度-----能否积极主动地参与各种活动;其次看学生在这些活动中的思维发展水平-----能否独立思考,能否用数学(语言分式分式方程)表达自己的想法,能否反思自己的思维过程,进而发现新的问题。

教科书设置了丰富的实际例子,这些涉及工业、农业、环保、学生实际、教学本身等方面,评价中应该关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并且用分式、分式方程表示,能否表达自己解决问题的过程,能否获得问题的答案,并且检验、解释结果的合理性。

二.重点和难点

教学重点:引导学生从不同角度寻求等量关系是解决实际问题的关键。

难点:引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性。增强学生应用数学的意识。

三.教学方法

本节课采用:课前预习、课中引导分析、合作探究、自我展示等教学方法。这样可以培养学生的良好学习习惯、语言表达与分析问题的能力、思维的缜密性。

四.教学过程

本节课分四部分进行:情境导入、探究新知、应用、小结

(一)情境导入。首先,我让学生回顾了分式方程及分式方程的解法、步骤,目的是让学生进一步认识分式方程与整式方程的区别、解法的不同,为后面的学习打下基础。其次,应用几幅图片对学生进行思想教育同时顺利引出新课,目的是让学生了解水资源危机培养他们的良好品质。

(二)新知探究。例1、某市为治理水污染。这一例题只给出了情境没有具体的问题,进而让学生去分析题意及各个量间的关系找出等量关系式。然后提出自己想知道的问题,最后我在学生所提问题中选一问题进行解决。(实际功效是多少?)这样给学生的思考留下了很大的空间,也培养了学生的分析问题解决问题的能力,同时也促进了每个学生的发展。在解决问题过程中多采用了学生间的交流合作、独立完成、互帮互助、上板展示的学习方法。教学时我重点引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性,这样有利于学生养成良好的学习品质。

(三)知识应用。对例一分析解决后选择课本上的例3作为习题这样不仅巩固了新知应用,而且进一步检测了学生的分析、表达、书写等各个方面的能力,增强他们的应用意识。

(四)小结:让学生在组内交流和在班内交流,畅所欲言,这样每个学生都有回顾知识、表现自我的机会;教师补充小结使学生分析、归纳、总结的良好习惯。

五、课堂练习和课后作业

92页做一做作为学生的作业;P94问题解决的EX1-3作为学生课后习题,要求的难度适中,符合学生接受知识的能力和认知能力,可以即使反馈学生对所学知识的理解和把握程度。

六、说板书

我板书了几个等量关系式,让学生板书解题过程,这样有利于把握重点、掌握新知。

篇7:分式方程说课稿

(一)教学知识点

1.解分式方程的一般步骤。

2.了解解分式方程验根的必要性。

(二)能力训练要求

1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤。

2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。

(三)情感与价值观要求

1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信。

教学重点

1.解分式方程的一般步骤,熟练掌握分式方程的解决。

2.明确解分式方程验根的必要性。

教学难点

明确分式方程验根的必要性。

教学方法

探索发现法

学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性。

教具准备

投影片四张

第一张:例1、例2,(记作§3.4.2 A)

第二张:议一议,(记作§3.4.2 B)

第三张:想一想,(记作§3.4.2 C)

第四张:补充练习,(记作§3.4.2 D)。

教学过程

Ⅰ。提出问题,引入新课

在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型--分式方程。但要使问题得到真正的解决,则必须设法解出所列的分式方程。

这节课,我们就来学习分式方程的解法。我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法。

解方程 + =2-

(1)去分母,方程两边同乘以分母的最小公倍数6,得3(3x-1)+2(5x+2)=6×2-(4x-2)。

(2)去括号,得9x-3+10x+4=12-4x+2,

(3)移项,得9x+10x+4x=12+2+3-4,

(4)合并同类项,得23x=13,

(5)使x的系数化为1,两边同除以23,x= .

Ⅱ。讲解新课,探索分式方程的解法

刚才我们一同回忆了一元一次方程的解法步骤。下面我们来看一个分式方程。(出示投影片§3.4.2 A)

解方程: = . (1)

解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?

同学们说他的想法可取吗?

可取。

同学们可以接着讨论,方程两边同乘以什么样的整式(或数),可以去掉分母呢?

乘以分式方程中所有分母的公分母。

解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单。解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母也比较简单。

我觉得这两位同学的想法都非常好。那么这个分式方程的最简公分母是什么呢?

x(x-2)。

方程两边同乘以x(x-2),得x(x-2)· =x(x-2)· ,

化简,得x=3(x-2)。 (2)

我们可以发现,采用去分母的方法把分式方程转化为整式方程,而且是我们曾学过的一元一次方程。

再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x-6(去括号)

2x=6(移项,合并同类项)。

x=3(x的系数化为1)。

x=3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论。

(教师可参与到学生的讨论中,倾听学生的说法)

x=3是由一元一次方程x=3(x-2) (2)解出来的,x=3一定是方程(2)的解。但是不是原分式方程(1)的解,需要检验。把x=3代入方程(1)的左边= =1,右边= =1,左边=右边,所以x=3是方程(1)的解。

同学们表现得都很棒!相信同学们也能用同样的方法解出例2.

解方程: - =4

(由学生在练习本上试着完成,然后再共同解答)

解:方程两边同乘以2x,得

600-480=8x

解这个方程,得x=15

检验:将x=15代入原方程,得

左边=4,右边=4,左边=右边,所以x=15是原方程的根。

很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯。

我这里还有一个题,我们再来一起解决一下(出示投影片 §3.4.2 B)(先隐藏小亮的解法)

议一议

解方程 = -2.

(可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析)

我们来看小亮同学的解法: = -2

解:方程两边同乘以x-3,得2-x=-1-2(x-3)

解这个方程,得x=3.

小亮解完没检验x=3是不是原方程的解。

检验的结果如何呢?

把x=3代入原方程中,使方程的分母x-3和3-x都为零,即x=3时,方程中的分式无意义,因此x=3不是原方程的根。

它是去分母后得到的整式方程的根吗?

x=3是去分母后的整式方程的根。

为什么x=3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论。

(教师可参与到学生的讨论中,倾听同学们的想法)

在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程。如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了。

很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根。

在把分式方程转化为整式方程的过程中会产生增根。那么,是不是就不要这样解?或采用什么方法补救?

还是要把分式方程转化成整式方程来解。解出整式方程的解后可用检验的方法看是不是原方程的解。

怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

不用,产生增根的原因是这个根使去分母时的最简公分母为零造成的。因此最简单的检验方法是:把整式方程的根代入最简公分母。若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根。是增根,必舍去。

在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根。但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验。小亮就犯了没有检验的错误。

Ⅲ。应用,升华

1.解方程:

(1) = ;(2) + =2.

先总结解分式方程的几个步骤,然后解题。

解:(1) =

去分母,方程两边同乘以x(x-1),得

3x=4(x-1)

解这个方程,得x=4

检验:把x=4代入x(x-1)=4×3=12≠0,

所以原方程的根为x=4.

(2) + =2

去分母,方程两边同乘以(2x-1),得

10-5=2(2x-1)

解这个方程,得x=

检验:把x= 代入原方程分母2x-1=2× -1= ≠0.

所以原方程的根为x= .

2.回顾,总结

出示投影片(§3.4.2 C)

想一想

解分式方程一般需要经过哪几个步骤?

同学们可根据例题和练习题的步骤,讨论总结。

解分式方程分三大步骤:(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;

(2)解这个整式方程;

(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去。使最简公分母不为零的根才是原方程的根。

3.补充练习

出示投影片(§3.4.2 D)

解分式方程:

(1) = ;

(2) = (a,h常数)

强调解分式方程的三个步骤:一去分母;二解整式方程;三验根。

解:(1)去分母,方程两边同时乘以x(x+3000),得9000(x+3000)=15000x

解这个整式方程,得x=4500

检验:把x=4500代入x(x+3000)≠0.

所以原方程的根为4500

(2) = (a,h是常数且都大于零)

去分母,方程两边同乘以2x(a-x),得

h(a-x)=2ax

解整式方程,得x= (2a+h≠0)

检验:把x= 代入原方程中,最简公分母2x(a-x)≠0,所以原方程的根为

x= .

Ⅳ。课时小结

同学们这节课的表现很活跃,一定收获不小。

我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可。

我明白了分式方程转化为整式方程为什么会产生增根。

我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程。

……

Ⅴ。课后作业

习题3.7

第三篇:《分式方程(一)》参考教案

16.3分式方程(一)

一、教学目标:

1.了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检 验一个数是不是原方程的增根.二、重点、难点

1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.三、例、习题的意图分析

1. P26思考提出问题,引发学生的思考,从而引出解分式方程的解法以及产生增根的原因.2.P27的归纳明确地总结了解分式方程的基本思路和做法.3.P27思考提出问题,为什么有的分式方程去分母后得到的整式方程的解就是原方程的解,而有的分式方程去分母后得到的整式方程的解就不是原方程的解,引出分析产生增根的原因,及P27的归纳出检验增根的方法.4. P28归纳提出P27的归纳出检验增根的方法的理论根据是什么? 5. 教材P32习题第2题是含有字母系数的分式方程,对于学有余力的学生,教师可以点拨一下解题的思路与解数字系数的方程相似,只是在系数化1时,要考虑字母系数不为0,才能除以这个系数.这种方程的解必须验根.四、课堂引入

1.回忆一元一次方程的解法,并且解方程2.提出本章引言的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

分析:设江水的流速为v千米/时,根据“两次航行所用时间相同”这一等

/ 2

x22x31 46量关系,得到方程10060.20v20v像这样分母中含未知数的方程叫做分式方程.五、例题讲解

(P28)例1.解方程

[分析]找对最简公分母x(x-3),方程两边同乘x(x-3),把分式方程转化 为整式方程,整式方程的解必须验根

这道题还有解法二:利用比例的性质“内项积等于外项积”,这样做也比较简便.(P28)例2.解方程

[分析]找对最简公分母(x-1)(x+2),方程两边同乘(x-1)(x+2)时,学生容易把整数1漏乘最简公分母(x-1)(x+2),整式方程的解必须验根.六、随堂练习

解方程(1)322362(2)xx6x1x1x1(3)x142xx21(4)2 x1x12x1x

2七、课后练习

1.解方程(1)(3)210 5x1x(2)

64x71 3x883x2341530(4)

222x12x24xxxxx12x912的值等于2? x3x3x2.X为何值时,代数式

八、答案:

六、(1)x=18(2)原方程无解(3)x=1(4)x=53

2七、1.(1)x=3(2)x=3(3)原方程无解(4)x=1 2.x=课后反思:

/ 2

第四篇:分式方程教案1

分式方程教案(1)

----田桂娟

教学目标

(一)学习目标

1.了解分式方程的概念;2.能够区分整式方程和分式方程;3.会求简单的分式方程;4.知道增根并会验证.(二)能力目标

1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.2.使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径.(三)情感与价值观要求

1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度.2.运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.教学重点

1.能够区分整式方程和分式方程

2.简单分式方程的求解

教学难点

知道增根并会检验

教学方法

探索发现法

讲授法

练习法

演示法

教学对象

西藏班(藏族来内地学习的学生)

教具手段

多媒体

课件 教学过程

Ⅰ.复习提问,引入新课

(1)我们在前面学过那些方程?这些方程统称为哪一类方程?

(2)分式的概念?举例

21,都是分式,若这两个分式用等号连接就x13x21变成了方程,象这样=的方程就是我们这节课所要研究的分式

x13x方程

Ⅱ.讲解新课, 1.分式方程的定义:分母中含未知数的方程叫做分式方程.2.区别:整式方程的未知数不在分母上 分式方程的分母中含有未知数

巩固概念

(1)判断下列说法是否正确

2x35 是分式方程()①234②是分式方程()44xx3x21 是分式方程()③ x④11 是分式方程()x1y1(学生自己动手做,做完老师统一讲解)(2)下列方程,那些是分式方程?那些是整式方程? ① ⑤x2x13x(x1)43 ② 7 ③  ④ 1 23x2xxxy3x(学生自己动手做,做完老师统一讲解)3.例题讲解

探索分式方程的解法 xx112x110 ⑦x2 ⑧3x1

⑥2x25xxx11这个方程呢?(师生共同分析)思考怎么样才能解

x12我们来一同回忆一下一元一次方程的解法步骤?解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢?(学生讨论)如果可以的话,方程两边同乘以什么样的整式(或数),可以去掉分母呢?

解一元一次方程,去分母时,方程两边同乘以分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘以分母的最简公分母,去分母比较简单.解:方程的两边同乘以最简公分母2(x1),x11·2(x1), 得

2(x1)·

x12 化简,得整式方程2(x1)x1 解整式方程,得

检验:把

x3

x3代入最简公分母得

2(x1)2(31)80

所以x3是原分式方程的根

总结解分式方程的一般步骤:

分式方程整式方程解整式方程检验(一化二解三检验)

4.强化练习,巩固提高 ①解分式方程③解分式方程

2312 ②解分式方程

2xx3x3xxx113 ④解分式方程 1x3x1x1(x1)(x2)

(由学生在练习本上试着完成,找几个学生上黑板上做,然后再共同解答)

5.课堂小结 这节课主要讲三个内容:(1)分式方程的概念

(2)分式方程与整式方程的区别

(3)解分式方程一般需要经过哪几个步骤? 三大步骤:

①方程两边都乘以最简公分母,约去分母,化分式方程为整式方程 ②解这个整式方程;

③把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.6.布置作业

第一个作业:课本31页第一题

课本32页第一题

第二个作业:

思考:解分式方程时一定要验根。有的分式方程在求解过程中会出现不适合原分式方程的根,这样的根称为增根!为什么会出现增根?

第五篇:分式方程教案

第一环节:回顾 活动内容:

1.等式性质有哪些?

2.解下列一元一次方程

(1)x1x 22x1x1(2)324活动目的:

回顾等式性质,解一元一次方程的解法,着重复习去分母的步骤,为学生过渡到分式方程去分母. 注意事项:

学生能很快回忆起根据等式性质,找出各分母的最小公分母,两边同时乘以相同的因式,达到去分母的目的,并能熟练解出方程.但是,部分学生容易出现去分母时漏乘某一项,特别是不含分母的项.另外,学生还容易出现的错误是:去分母后,如果分子是多项式,漏去括号,导致计算错误,这些错误在解分式方程时也容易出现,在复习一元一次方程时老师对这一点要重点强调.在复习解一元一次方程时,老师还应强调检验方程的根,培养学生严谨的作风,并为解分式方程的验根打下基础.第二环节:想一想 活动内容: 解下列分式方程:

13 x2x活动目的:

引导学生仔细观察,采用类比的方法找出解分式方程的关键――去分母,把分式方程转化为整式方程即一元一次方程. 注意事项:

通过观察类比,学生容易发现只要方程两边同时乘以相同的因式,可以去分母,使方程变为学过的一元一次方程,从而解快了问题.另外,学生还能根据比例的性质:内项积等于外项积.解出这个方程,对于这部分学生应该鼓励,肯定数学一题多解.第三环节:试一试 活动内容: 解下列分式方程 48060045 x2x活动目的:

使学生进一步体会并熟悉分式方程的解法,并强调检验方程的解. 注意事项:

通过前面的探索体验,学生都很有兴趣并能基本掌握分式方程的解法,并在老师的指导下,规范书写过程.在解题过程中,要提醒学生注意可先化简原方程,从而达到简便运算的目的.第四环节:议一议 活动内容: 解分式方程 活动目的:

让学生通过解这个方程,并思考问题,从而产生疑惑,展开讨论,了解分式方程会产生增根. 注意事项:

在解这个方程的过程中,学生容易忽视两个分母互为相反数,所以在去分母时会化简为繁.要提醒学生先将一个分母化为另一个分母的相反数.另外这个方程把学生易犯的错误集中在一起,例如-2这一项没乘公分母.通过仔细观察,积极讨论,学生都发现 x2 使原方程无意义,了解增根的概念,及产生的原因,提高了对方程验根的重视程度,总结出验根的方法(其方法是代入最简公分母中或原方程中进行检验,使分母为零的是增根,否则不是)

第五环节:练一练 1x12 时,小明的解为x2,他的答案正确吗? x22x活动内容: 解下列分程

34 x1x3x54(2)2x332x(1)活动目的:

让学生认真完成从审题到最后检验的完整过程,熟练掌握解题方法. 注意事项:

学生解第一小题时,从比例式的性质出发,利用外项积等于内项积的性质,交叉相乘,和利用等式性质去分母一样,都能把分式方程转化为整式方程.解第二题时,有的学生因为审题不仔细,把(2x3)和(32x)当成两个不同的整式,给计算带来不必要的麻烦.反应出有些学生处理问题的能力的欠缺.

第六环节:学生小结 活动内容:

在今天的学习活动中,你学会了哪些知识?掌握了哪些数学方法? 活动目的:

鼓励学生独立思考,并用自己的语言描述,然后再与同伴讨论、交流自己的结果.通过学生的回顾小结,加深分式方程解法和数学转化思想的理解.

注意事项:

学生在解方程过程中易犯的错误:

1、解方程时忘记检验;

2、去分母时忘记加括号;

3、去分母时漏乘不含分母的项.第七环节:反馈练习活动内容:

1.方程112的解为()xx134的解为___________. x70x A.1 B.-1 C.1 D.0 2.方程

x51 3x443xax110有增根,则a的值为_______. 4.若关于x的方程

x1 3.解方程活动目的: 通过学生的反馈练习,使老师能全面了解学生对分式方程解法的掌握程度,以及对增根的理解,以便老师能及时进行查漏补缺.注意事项:

从学生的反馈练习中来看,学生能熟练解出分式方程,但对增根的理解及灵活处理还不够,在今后的练习中还要巩固渗透,要让学生弄清增根产生的原因,因此要正确验根从而排除增根.

课后练习:请完成课后作业解下列方程

64 x1x3x11 2.x44x 1.

下载16.3 分式方程教案word格式文档
下载16.3 分式方程教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    15.3分式方程教案

    15.3分式方程教案 一、创设情景,明确目标 1.列方程(组)解应用题的一般步骤是什么?2.2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难.八方支援”,某厂计划生产1......

    《分式方程》教案5篇

    《分式方程》教案 模块引领 学习目标 、知识目标:理解分式方程的概念;掌握解分式方程的基本步骤;理解解分式方程时可能无解的原因。 2、能力目标:经历“实际问题---分式方程---......

    16.3.1分式方程教案

    16.3.1 分式方程 教学目标: 1.了解分式方程的概念, 和产生增根的原因. 2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的增根. 教学重点:会解可......

    《分式方程(二)》参考教案

    16.3分式方程(二) 一、教学目标: 1.会分析题意找出等量关系. 2.会列出可化为一元一次方程的分式方程解决实际问题. 二、重点、难点 1.重点:利用分式方程组解决实际问题. 2.难点:列分......

    分式方程复习课教案

    分式方程(复习课) 教学目标: 1、了解分式方程的概念,掌握可化为一元一次方程的分式方程的解法。 2、能将实际问题中的相等关系用分式方程表示,并进行方法总结。 3使学生能分析题......

    分式方程复习教案(推荐五篇)

    分式方程复习课教案 教学内容:复习分式方程 教学目标:1.掌握分式方程的概念以及解法;2.了解分式方程产生增根的原因, 教学重、难点:分式方程的概念以及解法 教学过程: 一、复习问......

    15.3 分式方程 教学设计 教案

    教学准备 1. 教学目标 1.1 知识与技能: 1.会分析题意找出等量关系. 2.会列出可化为一元一次方程的分式方程解决实际问题. 1.2过程与方法 : 通过学习课堂知识使学生懂得任何......

    教案《分式方程的应用》(推荐阅读)

    教案《分式方程的应用》 教学目标 知识目标:经历将实际问题中的等量关系用分式方程表示的过程,体验分式方程模型的思想,会用分式方程解决简单的实际问题。 能力目标:1、经历“实......