第一篇:《多边形的面积》教学设计
《多边形的面积》教学设计
本资料为woRD文档,请点击下载地址下载全文下载地址
《平行四边形的面积》教学设计
课题
《平行四边形的面积》
教学目标
包含知识、技能、价值观、情感、态度、过程、方法等。教师根据学科及教材内容特点制定。
.在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2.通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重难点
掌握平行四边的面积计算公式,并能正确运用。
教
学
过
程
教师活动
演示
设计意图
一、自为:
.我们学习过哪些平面图形?
2.哪个平面图形的面积会求?
二、共研
.数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积并填写表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?
(5)观察表格,你发现了什么?
(6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等。
(7)提出猜想:平行四边形的面积=底×高
2.操作验证。
(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。
(2)学生分组操作,教师巡视指导。
(3)学生展示不同的方法把平行四边形变成长方形。
(5)小组讨论:
A.拼成的长方形和原来的平行四边形的大小有什么关系?
B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?
(6)交流反馈,引导学生得出:
A.形状变了,面积没变。
B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。
(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
3.教学例1。
(1)(出示例1)平行四边形的花坛的底是6m,高是4m。它的面积是多少?
(2)学生独立完成并反馈答案。
三、看书质疑
.判断题
(1)一个平行四边形一定能剪拼一个长方形。()
(2)平行四边形的面积等于长方形的面积。()
(3)由平行四边形剪拼成的长方形的长实际上是平行四边形的底。
()
2、填空
3、练习十五第3题。
4、选择题
5、思考题
五、课堂总结
通过这节课的学习,你有哪些收获?(学生自由回答。)
学生通过数方格的方法求出长方形和平行四边形的面积很直观,也很容易让学生发现问题。
大胆鼓励学生进行猜想:平行四边形的面积=底×高
通过学生动手剪一剪、拼一拼等方法,把平行四边形想办法转变成我们已学过面积计算的图形,在这里渗透转化的思想,培养学生动手能力,将感性材料上升到理性材料。
在学生出现沿着高来剪的时候,老师可以适当的加一句:“为什么要沿着这条高来剪呢?”
讲授完平行四边形的面积计算公式之后,出示例题1就显得水到渠成了,老师在讲授的时候,可以适当的增加变式练习,多增加一条高,问学生能不能底乘高,引导出相对应的高才能相乘。
自学部分可以增加学生看书时间,有不懂的马上提问解决。
常规练习,帮助学生巩固学习成果。
课堂最后提问,唤起学生的记忆,老师适当加以小结,巩固新知。
第二篇:《多边形的面积》教学设计
《多边形的面积》整理与复习教学设计
王润敏
教学目标:
1、进一步理解并掌握平行四边形、三角形和梯形的面积计算公式,能应用公式计算这些图形的面积,并解决一些简单的实际问题。
2、通过回忆、交流,将“多边形的面积”这个单元所学的知识进行系统复习,形成完整知识体系;结合练习,加深对所学知识的理解,提高应用所学知识解决实际问题的能力。
3、感受系统复习的必要性与重要性,逐步形成学生自己整理所学知识的意识和良好的学习习惯。
4、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点难点:
重点是把通过归纳和整理本单元所学的面积公式,形成完整的知识体系,能正确应用这些面积公式解决实际问题。难点是把掌握多边形面积公式之间的联系。教法学法: 本课指导思想是发挥学生的主体作用,引导学生自主学习。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。教学过程:
(一)、回忆公式,夯实基础。小组合作交流。(思路提示)
1、本单元学过哪些多边形面积的计算公式?
2、他们是怎样推导出来的?
3、看图计算图形面积时,特别要注意哪些方面的问题?
(二)、全班交流,形成知识体系。
1、学生回答问题1,老师同步板书。
2、学生回答问题2,老师同步课件展示。(体现转化的数学思想)
3、学生回答问题3。学生先回答但不一定完整,再通过一些具体练习把答案补充更加完整。得到结论: 计算图形的面积时,特别要注意以下几个方面的问题 :
(1)计算三角形、梯形面积时一定不要忘记除以2。
(2)看图列式时,一定要找准相对应的底和高。
(3)单位不统一时,一定不要忘记单位转化。
(4)需要的条件不足时,用分步先算出来。
(三)、多样练习,促进理解。
1、重视利用填空、判断、选择题,巩固本单元概念。比如:填空题两个一样的梯形可以拼成一个(平行四边形),它的底边等于梯形的(上底加下底的和)。判断题:三角形的面积是平形四边形的一半。(×);两个三角形的高相等,它们的面积就相等。(×)
在选择题部分,强化了多边形面积计算时要注意底与高的“对应”。
2、在解决生活实际问题部分,我则补充了下列对比练习:
一块地近似平行四边形,它的底是50米,高12米。
(1)如果每平方米施化肥0.5千克,那么这块地共需施化肥多少千克?
(2)如果在这块地里种玫瑰,每棵玫瑰占地0.5平方米,这块地能种玫瑰多少棵?
小组合作完成,议一议、比一比第(1)和(2)问题的解题方法一样吗?为什么? 引导学生总结出解决问题需要注意:(1)、弄清楚图形,选择公式。
(2)、注意:条件要相对应,单位要统一,别忘了除以2(三角形、梯形)(3)、根据题意,弄清面积与其它数量间的关系.(四)、课堂小结:
这节课我们复习了多边形的面积,你有什么收获?
第三篇:多边形面积计算教学设计
人教版小学五年级数学上册《多边形面积的计算》教案教学反思设计 教学内容:九年义务教育六年制小学教科书数学第九册第64~66页,练习十六第1~3题。
教学目的:
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1.照课本第64页的方格纸上画着的平行四边形和长方形的插图制成演示教具。有投影片设备的也可制成投影片。
2.剪两个底40厘米、高30厘米的平行四边形,供教师演示用。有投影设备的也可按照上述底和高的比例制成推拉投影片。
3.每个学生准备一个平行四边形(可以用课本第137页的图剪下来贴在厚纸上。)和一把剪刀。
教学过程:
一、复习
1.出示方格纸上画的平行四边形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
二、新课 这节课我们共同研究平行四边形面积的计算。(板书:平行四边形面积的计算)
1.用数方格的方法计算平行四边形的面积。
(1)我们学习计算长方形的面积时,曾经用数方格的方法来计算面积的大小,现在我们学习习近平行四边形面积的计算,也先在方格图上数一数它的面积是多少?请打开书看第64页左边的平行四边形,每一个方格表示一平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢? 启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(4)小结。从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得精确。特别是较大的平行四边形,如像教室这么大就不好数了。想一想,能不能像计算长方形面积那样,也找出计算平行四边形面积的计算方法。2.通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。(2)教师示范平行四边形转化成长方形的过程。刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
(3)引导学生比较。(黑板上在剪拼成的长方形上面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。(4)引导学生总结平行四边形面积计算公式。这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
(5)教学用字母表示平行四边形的面积公式。板书:S=a×h,告知S和h的读音。说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
(6)看课本中讲解的相应的内容,并完成第65页中间的“填空”。3.应用总结出的面积公式计算平行四边形的面积。
(1)课本第66页例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。
(2)完成课本第66页“做一做”第1、2题。共同订正。(3)把自己准备的平行四边形量一量,底、高各是多少厘米?再求出面积。
三、巩固练习练习十六第1题。
四、全课小结 这节课我们共同研究了什么? 怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、布置作业 练习十六第2、3题。
教材先给出方格纸上的平行四边形和长方形,从数图形中的方格数引入平行四边形的面积。利用数方格的方法来计算面积仍然是一种计量面积的方法。遇到图形中的边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。教材通过实际数方格的个数让学生学会这种计算面积的方法。教材中左右两个方格图上,平行四边形的底与长方形的长,平行四边形的高与长方形的宽分别相等,暗含着两种图形的联系。长方形画在方格纸上,实际是给出了它的长和宽。通过数和算,使学生知道两个图形的面积相等;再通过比较,使学生看出左右两个图形的底与长、高与宽分别相等,从而初步看到平行四边形和长方形的面积和它们的边长和高之间有一定的联系。这样就为学生进一步探寻平行四边形面积的计算方法做了准备。接着教材再提出问题,平行四边形的面积怎样计算,能不能转化为长方形来算。转化的方法是一种数学方法,利用这种方法,可以把新知识转化为旧知识,从而使新问题得到解决。在教学一个数除以小数时,已经用到了转化方法。即根据被除数和除数都扩大相同倍数商不变的性质,把除数是小数的除法转化成学过的除数是整数的小数除法。教材在这里教学平行四边形的面积时利用转化方法,通过学生动手操作、探索,把平行四边形转化成已学过的长方形,从而把计算平行四边形的面积转化为计算长方形的面积。教材改变了过去简单的割补方法,在引导学生操作时渗透了平移思想。教材用图说明平移的方法,把从左面剪下的直角三角形,底边沿着原来的底边向右平着移动,直到直角三角形的左下角的顶点和原平行四边形右下角的顶点重合,直角三角形的斜边和原平行四边形的右边重合为止。通过这样操作,学生把一个平行四边形转化为一个与它面积相同的长方形。然后让学生自己找出长方形的长、宽与原来平行四边形的底、高的关系,推导出平行四边形的面积计算公式。接着通过例题和“做一做”巩固新学的计算公式。“做一做”中第1题图形的底和高的数值都很简单,但图形位置各不相同。这样可使学生加深对图形的认识,正确分清平行四边形的底和高。第2题出现一个接近平行四边形的地面图,让学生计算它的面积,以便加强与实际的联系。练习题由浅入深,而且不全是按照所给的数据直接计算面积的,也有运用图形知识的题目。还注意培养学生动手测量的能力。如第3题让学生自己动手量平行四边形的底和高,这就要求学生首先要会找出哪是底,哪是高,然后才能量出相应的底和高。第6题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关,与相邻两边组成的角度大小无关。第8题和第9题是联系实际的题目,需要先计算土地的面积,再根据数量关系解答问题。第11题渗透函数思想,通过木条围成的图形的变化,以及面积、周长的变化,可以加深学生对长方形和平行四边形之间的联系的理解,使学生知道4根木条围成的长方形面积最大,左右两边的木条斜度越大,围成的平行四边形的高越小,从而面积也越小。
第四篇:《多边形的面积》教学设计
教学内容:梯形的面积计算
教学目标
1.使学生理解并掌握梯形面积的计算公式,能正确地应用公式进行计算。
2.通过操作,培养学生的迁移类推能力和抽象概括能力。
3.培养学生应用所学知识解决实际问题的能力,发展空间观念,引导学生运用转化的思想
教学重点理解并掌握梯形的面积计算公式及推导过程。
教学过程
一、复习并引入课题
1.计算下面图形的面积。(单位:厘米)
2.三角形面积的计算公式是怎样推导出来的?为什么要“除以 2”?
3.教师出示场景图:生活中,我们能看到各种形状的物体,这辆小轿车的车窗是梯形的,仔细观察梯形有什么特点?(教师首先指出梯形各部分名称,让学生认识梯形的上底、下底和高)
问题:下面这个梯形你能指出它们的上底、下底和高吗?。
导入:我们已经掌握了平行四边形、三角形的面积计算公式,有了这两方面的基础,我相信大家一定也能把梯形转化成已经学过的图形,计算出梯形面积。大家有信心吗?
二、学生自己尝试并归纳和总结出梯形的面积公式。
1.你能仿照求三角形面积的方法,用两个完全一样的梯形推导出梯形面积的计算公式吗?拼拼看。
2.学生操作,互相讨论。
3.根据讨论结果,完成88页书空,总结出梯形的面积公式。
4.汇报结果。提问:通过刚才的学习,你知道了什么?
引导学生明确:
①两个完全一样的梯形能拼成一个平行四边形。
②这个平行四边形的底等于梯形的上、下底之和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
③梯形面积:(上底+下底)×高÷2
④计算过程中“3+5”表示上、下底之和,它等于拼成的平行四边形的底,所以计算时要加上小括号。每个梯形的面积等于拼成的平行四边形面积的一半,所以计算中要加上“除以 2”?
⑤想一想:如果是两个完全一样的直角梯形,能拼成什么图形?
学生口述,教师点拨:两个完全一样的直角梯形能拼成一个长方形,而长方形是平行四边形的特殊形式。
5.引导学生知道:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式可以表示为:
S=(a+b)h÷2
问题:要求梯形的面积必须知道哪些条件?为什么要“除以 2”?
总结:梯形面积的计算公式是怎样推导的?用字母怎样表示梯形的面积公式?
三、应用
1.出示例题:我国三峡水电站大坝的横截面的一部分是梯形,你能求出它的面积吗?
①首先根据题意画出示意图。分析已知条件以及求解内容。(生画出示意,教师给予引导,找出梯形的上底、下底和高。)
②问题:根据分析,你能算出大坝的横截面积吗?(生试做,教师巡视给予指导。)
③选代表板演,集体纠错。问题:你是怎么考虑的?在计算时应该注意哪些问题?为什么要“除以2”?
2.完成做一做。
一辆汽车侧面的两块玻璃是梯形的,它们的面积分别是多少?
①学生试做。
②订正。提问:计算时应注意哪些问题?
3.判断。
(1)平行四边形面积是梯形面积的2倍。()
(2)两个面积相等的梯形能拼成一个平行四边形。()
四、总结归纳
今天学会了什么?怎样计算梯形的面积?梯形面积的计算公式是怎样推导出来的?
第五篇:多边形的面积教学设计(定稿)
《多边形的面积》整理与复习教学设计 五单元课本79页至93页的内容。教学目的:
1、通过整理和复习,使学生进一步理解和掌握多边形面积计算公式,能正确、灵活地运用公式进行有关计算,解决一些简单的实际问题。
2、通过操作、观察、比较,发展学生的空间观念,建立良好的知识结构,培养学生的创新意识。
3、在小组合作学习中,培养学生合作精神,增强学生的集体荣誉感。教学重点:整理完善知识结构。
教学难点:掌握多边形面积之间的联系。教学过程: 导入预测:
导入语:在《多边形的面积》这个单元我们都学过了哪些知识?请同学们在小组内相互说一说。(也可以翻开课本79页至93页独自回顾一遍)
板书课题:在学生讨论时教师先板出课题:多边形面积整理与复习。
指着课题引导:这节课我们一起来整理与复习《多边形面积》这个单元。今天我们上一节---?(复习课)我们一起整理和复习---?(齐读课题:多边形面积)
注:“---”的地方声音要变得缓慢,请学生说。第一层面的整理预测:整理多边形面积的计算公式
过渡:谁先来说一说这个单元我们都学过了哪些知识?(让学生自主回答)引导:我们先整理多边形面积的计算公式。(指名学生回答、老师板书)三角形面积计算公式:S=ah平行四边形面积计算公式:S=ah÷2 梯形面积计算公式:S=(a+b)h÷2 进一步引导:除了这三种图形的面积计算公式外?我们前面还学过了哪些图形面积?(还有长方形、正方形的面积)这两个图形的面积计算公式怎样用字母表示?(指名学生回答、老师板书)
第二层的整理预测:整理多边形面积的计算公式的推导过程。
引导:平行四边形、三角形、梯形的面积计算公式是怎样推导过程出来的呢?请同学们在小组内选一个或几个你喜欢的图形拼一拼、摆一摆、说一说。(小组活动)
展开:哪位同学请先来说“平行四边形的面积计算公式”的推导过程? 把平行四边形沿着它的“高”剪下来,分成两个部分时,运用“割补”法,经过“平移”,把平行四边形“转化”成了长方形。因为长方形的宽等于平行四边形的高,长等于平行四边形的底,根据形状改变,面积不变,“推导”出平等四边形的面积计算公式。
也可以说把新的知识“转化”成已经学过的(旧的)知识来学习、研究,并通过“旧的”知识来总结、“推导”出新的知识,(板书)这是一种很好的学习方法。
师:“三角形的面积计算公式”的推导过程呢?
两个“完全一样”的三角形,先“重合”也就是“完全重合”,因为它们的形状相同,面积相等,再经过“旋转”,最后“平移”拼成一个“等底等高”的平行四边形。三角形面积是拼成的“等底等高”平行四边形的--?(一半)所以计算三角形的面积时都要除以2。
指着板书重复:概括说把三角形“转化”成了平行四边形来学习、研究,也是把新的知识“转化”成已学过的(旧的)知识,并通过“旧的”知识的总结、“推导”出新的知识,(指出板书)“转化”方法,这种思考问题的方式,在这个单元里我们已经用了两次。
师:“梯形的面积计算公式”的推导过程是也用运用了这种方式呢? 两个“完全一样”的梯形。先“重合”也就是“完全重合”,因为它们的形状相同,面积相等;再经过“旋转”,最后“平移”拼成一个的平行四边形,它们高相等、梯形的底=(上底+下底)的和。
梯形的面积是拼成的平行四边形的--?(一半)所以计算梯形的面积时都要除以2。指着板书重复:同样!也是把新的知识“转化”成已学过的(旧的)知识,并通过“旧的”知识的总结、“推导”出新的知识。
第三层的整理预测:整理多边形面积之间的关系。过渡:我们从这些图形面积计算公式的推导过程,我们发现这些图形与图形的面积之间有着密切的“联系”!(板书:联系)
第四层的整理预测:巩固、总结、引申
过渡:刚才经过同学们动手操作、动脑思考、动口说理,进一步理解和巩固了多边形面积的计算公式及推导过程。下面我们一起来完成几道练习题。
1.出示图形。(分以下步骤完成
第一步:求平形四边形的面积要具备哪些条件?出示两条底边的长度及两条高,第二步:求三角形的面积需要具备哪些条件?(底和相对应的高)出示直角三角形三条底边的长度,让学生选择条件求出面积。再让学生根据面积,求出另一条底边对应的高。
第三步:求梯形的面积要具备哪几个条件?(上底、下底或下底加上底的和、高)出示数字,要求学生用公式代入法解决。
2.看图、联想。(分以下步骤完成)
出示图⑴,条件:每小格1平方分米。
引导:观察这个图,你想到了什么?
汇报:它们面积相等,它们底相等、高相等。
引申:将一个长方形框架“拉动”变成一个平行四边形。你们又有什么发现? 出示图⑵,你又想到了什么?
引导:观察这个图,你想到了什么?
汇报:它们面积相等,它们底相等、高相等。
引申:将两个面积相等的三角形能拼成一个平行四边形吗? 三角形的面积是平行四边形面积的一半。3.你能求出下面图形的面积吗?
这块地的面积是多少? 草地的面积呢?
路面的面积呢?(你有几种办法求出路面的面积)总结:通过这节课的学习你有哪些收获)(学生自由发言)总结:图形与图形面积之间存在着紧密的联系,它们的计算公式间相同也存在着密切联系。只要我们善于观察、善于思考、分析,总会有新的收获!
1.判断题。
(1)两个底和高都分别相等的三角形面积一定相等。()
(2)两个底和高分别相等的梯形能拼成一个平行四边形。()
使学生清楚:底和高相等的梯形形状不一定相同,只有形状和面积都分别相等的梯形才能拼成一个平行四边形。
(3)平行四边形面积是三角形面积的2倍。()
使学生清楚:只有在等底等高的情况下,平行四边形的面积才是三角形面积的2倍。(4)两个三角形的高相等,它们的面积就相等。()
使学生清楚:三角形的面积等于底乘高除以2。如果两个三角形的高相等而底不相等,它们的面积也不相等。
要求学生独立判断,并说明理由。
订正:(1)√(2)×(3)×(4)×
2.计算下面图形的面积。
让学生先识别每个图形是什么图形,想好求每个图形的面积应用什么公式,再独立列式计算。
做完后让学生说说计算图形面积时应注意什么?①看清是什么图形;②选择正确的公式;③正确的计算;④注意单位名称。
订正:(1)270平方厘米,144平方厘米,3.61平方米;(2)3.41平方米,4.5平方分米,357平方米
(三)综合练习
1.根据所给条件求面积。
(1)三角形的底是5分米,高是1分米。
(2)长方形的长是2厘米,宽是3厘米。
(3)平行四边形的底是4分米,高是2分米。
(4)梯形的上底是1厘米,下底是3厘米,高是2厘米。
要求学生口头列式说出结果,并想一想应用了哪个面积公式。
订正:(1)2.5平方分米,(2)6平方厘米,(3)8平方分米,(4)4平方厘米。
2.自己测量出求下面图形的面积所需的数据,并求出图形的面积。
订正时让学生说出是怎么测量的。测量时应注意什么。
3.下图是三角形小旗。同学们要做 6面这样的小旗,一共要用纸多少平方厘米?
订正:38×38÷2×6=4332(平方厘米)
4.一块平行四边形的地,底长是280米,高是57.5米。共收油菜籽3542千克,平均每公顷产油菜籽多少千克?
订正:28×57.5=1610(平方米)
1610平方米=0.161公顷
3542÷0.161=22000(千克)
5.有一块平行四边形的地,(如图)分成三块种菜。第一块种西红柿,第二块种黄瓜,第三块种茄子。问:每种菜占地多少平方米?
订正:(1)3.8×4.4÷2=8.36(平方米)(2)4.2×4.4=18.48(平方米)(3)(5+1.2)×4.4÷2=13.64(平方米)