第一篇:六上《解决问题的策略》教学设计
《解决问题的策略》教学设计
教材剖析:
本单元首要教学用替换和假设的策略解决实际问题。本单元共支配了二个例题,分三课时进行教学,本节课是其中的第一课时。“替”即替换,“换”则替换,替换能使繁杂的题目变得简单。教学要求是,让学生在解决问题的进程中初步领会替换,充实思维,发展解题策略。教材支配的例题就是行使“小杯的容量是大杯的 ”这个数目瓜葛进行的替换运动,把较繁杂的题目转化成简单的题目。教学的义务是把沉睡的法子叫醒,使隐含的思维清楚起来。这是例题的编写用意,也是教学计划的思绪。教材要求学生说说“为何如此更换”,引诱他们回首适才的替换运动,反思是怎么样替换的,明白地晓得可以从哪一个数目瓜葛诱发替换的思索。教学用意:
这节课的教学计划,力求表现新课程的理念,给学生自主索求的空间,为学生营建宽松协调的气氛,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在索求的过程中,培育学生的实践本领、缔造本领、合作精神,激励学生勇敢发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,表现了过程的运动化,实现了预定的教学目标。教学目标:
1、学生初步学会用“替换”的策略理解题意、剖析数目联系,并能依据题目肯定公道的解题步骤。
2、同时在对解决实际问题过程的反思中,感受“替换”策略对于解决特定题目的价值,进一步发展剖析、综合和简单推理本领,累积解决问题的经验。
3、加强解决问题的策略意识,得到解决问题的成功经验,进一步增强学好数学的信念。教学重难点
1、初步让学生学会用“替换”方法来解决一些简单的问题。
2、弄清“替换”在倍比数量关系中的应用。教学过程:
一、课前赏识:回忆《曹冲称象》的故事,感受策略。创设情境,感受用策略解决问题的魅力 1.承接故事情境,感受策略的作用。(1)故事中曹操提出了什么要求?(2)众大臣有没有解决这个困难?(3)曹冲用了什么策略解决了这个困难?
(4)过渡语:要称出那头大象的重量,人们都一筹莫展,7岁的曹冲却想出了那么妙的解决办法,用称出与大象雷同重量的1船石头的重量来求出大象的重量,真了不起!今天咱们就一起来学习用这类策略解决一些实际问题。
板书:解决问题的策略
[设计意图] 通过创设一个题目情境,用学生感兴趣的小故事导入新课,初步感受用替换策略解决实际问题的优点,让学生在课始就进入知识的探讨中,自觉的参与到学习中去。
二、探讨新知,初步理解替换的策略解决生活中的困难。例
1、小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?
读题,从题目中获得哪些信息。
你是怎样理解“小杯的容量是大杯的”这句话?[电脑出示] 这里720毫升果汁既倒入6个小杯,又倒入1个大杯,要求小杯和大杯的容量,该怎么办呢?
学生说两种替换的过程。为什么要把大杯换成小杯?
1、[多媒体出示]例1:小明把720毫升果汁倒入六个小杯和一个大杯,恰好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?
(1)从标题中得到哪些信息?
(2)你是怎么样理解“小杯的容量是大杯的1/3”这句话?
4、问:你可以提出哪些数学问题呢?(课前估计学生可能出现的问题,做好充分的准备,结合学生的回答灵活的提炼到今天要解决的问题上来)
5、问:这些问题现在都能解决吗?
6、(生广泛发言,教师及时肯定和评价)
7、针对学生提出的问题,提炼到今天所要解决的问题上来。问题:同学们,你们看每个大杯和小杯的容器不一样。杯子的数量也不一样,只告诉我们这些杯子里果汁的总量720毫升,那怎样来求小杯和大杯的容量呢?我们该怎么办呢?你们能不能想一个比较好的方法呢?
8、讨论讨论,想想曹冲称象的故事给我们解决这一个问题有什么启示呢?
9、结合学生提出的已有经验,学生可能出现的情况是: A把大杯换成小杯 B把小杯换成大杯
10、小结学生的方法:不管是大杯换小杯,还是把小杯换成大杯,同学们有没有发现,他们的共同点都是把两个较复杂的量转化成比较简单的同一种量来考虑。
这就是我们今天要学习的内容:替换策略来解决问题 板书:替换
11、过渡:在刚才的探究中,我们知道了可以把小杯替换成大杯,也可以把大杯替换成小杯,在这个过程中怎样来替换,又如何来解决这个问题呢?在每个同学的桌上有这样的一张作业纸,拿出来四人小组合作。
要求
1、画一画,选一种替换方法画出替换过程。
2、说一说,应该怎样替换,并且如何计算。小组展示汇报。
12、分析数量关系及解答。黑板上
(1)学生根据投影出来的方法说一说解答思路。问:要解决这个问题,根据我们画的图可以怎么想?(2)哪些同学是和他一样的做法,还有不同的方法吗?交流第二种方法。
13、怎样检验结果是否正确?学生口头检验。
你觉得小杯的容量加上大杯的容量满足720毫升以后,还需要满足什么条件吗?
三、拓展应用,巩固策略
1、[电脑出示]六(3)班40名同学和赵老师、高老师一起去公园秋游,买门票一共用去220元。已知每张成人票是每张学生票的2倍,每张学生票和每张成人票各多少元? 让学生说一说你是怎么替换的? 出示填空,让学生完成。
2、[电脑出示]8块达能饼干的钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢?
学生独立完成。并说出想的过程。为什么不把饼干替换成牛奶来考虑?
四、回顾反思、总结全课。
1、在解决这一问题的过程中用到了什么策略?为什么要替换?
2、我们又是怎样来替换的?
第二篇:六上《解决问题的策略》教学反思
《解决问题的策略》教学反思
上完这一节课本节课,我趁热打铁,立刻进行反思。本节课我努力体现解决问题这类课型,老师应该坚持做哪些工作,我个人思考不管是新课程理念还是老课程,也不管是什么版本,数学应该有其本质的东西,那就是给学生思考的时间和空间,引导学生会思考,促进学生去悟懂里面的道理。正是基于这样的理念和思考,所以在课中我用了四个注重:
1、注重多媒体的演示,让学生很容易理解“替换”的意义。能清楚的发现大杯果汁替换成小杯果汁的过程。把一个抽象的“替换”概念形象的演示出来。即激活了学生的学习兴趣又减轻了这节课的难点。
2、注重给学生充分思考的时间,我等着学生慢慢领悟其中的道理,课堂上照顾全体同学,决不是看到有同学举手,就像看见了一个救星一样,马上请这位同学回答,他回答对了,就代表都会了,这样做就以个体代替了整体,会造成课堂上个别学生的表演。
3、注重审题,我感觉对于一个问题,能够正确全面的审题对于能否解决问这个问题至关重要,所以新授部分,我注意让学生多次读题,并且把重要的信息让学生重读,并且说说自己的理解,之所这样就是想培养孩子仔细审题、全面审题的能力。通过课堂效果来看,起到了预期的效果,在学生正确全面的审题以后,解决问题就水到渠成了。
4、注重学生在独立思考后的讨论交流,课堂上我是先让学生独立思考,思考后再进行交流,而不是抛出一个问题后就直接让学生讨论交流,我感觉那样的讨论交流一般是比较流于形式的,是浅层次的交流,是没有深度的。因为每个同学还有经过自己的思考张口就说,看上去很热闹,往往是:自说自话,简单的想法。通过课堂效果来看,这样的处理有着实实在在的效果,对于发展学生的思维能力是非常有帮助的。
再来反思自己上课的不足之处:
1、没有很好的调动起学生的积极性,学生是紧张的,平时胆小的学生这节课没敢举手回答,高年级有可能是担心回答错误后难为情。课前也没有进行充分的交流。
2、课堂的练习设计层次性不强、趣味性不高,所以感觉课堂上后面的练习学生积极性不够高,显得沉闷和呆板。
3、课堂语言不够生动和活泼,也不够精炼。
4、课后同事间进行交流,发现这节课没有让学生形成算式的完整呈现。可能是因为担心时间不够而无法完成教学任务,课堂节奏“打”的有点快。
以上几点不足都是我在今后的教学中需要下大力气进一步改进的地方。
第三篇:六上解决问题的策略(假设)教学设计
解决问题的策略——假设
扬州市江都区实验小学
陈文
教学内容:教材第68-69页例1和“练一练”,第72页第1-3题。教学目标:
1.使学生经历解决问题的过程,体会通过假设把复杂的问题转化成简单问题的过程,初步感悟假设的策略,并能运用策略解决一些实际问题。
2.使学生在运用假设的策略解决实际问题的过程中,初步感受假设的策略对于解决问题的价值,进一步发展观察、比较、分析和推理等能力。
3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,增强学好数学的信心。
教学重点:理解相关实际问题的数量关系,初步学会运用假设的策略解决一些含有两个未知数的实际问题。
教学难点:通过假设把含有两个未知数的实际问题转化成含有一个未知数的问题。
教具准备:多媒体课件。教学过程:
(课前游戏,渗透假设思想)
一、复习铺垫
1.口答:把720毫升的果汁倒入9个相同的杯子,正好都倒满,每个杯子的容量是多少毫升?
2.出示例1。
提问:和上面一道题相比,这道题复杂在哪里?(板书:两种未知量)3.揭示课题:像这种有两种未知量的问题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)
二、探索策略 1.教学例1。(1)理解数量关系。
提问:“把720毫升果汁倒入6个小杯和1个大杯,正好都倒满”这句话里隐藏着怎样的数量关系?(6个小杯的容量+1个大杯的容量=720毫升)
1提问:你怎样理解“小杯的容量是大杯的”?
3(2)确定思路。
学生尝试在作业纸上用简单的数学符号表示解题思路,并汇报。(3)写出解答过程并检验。
学生可能用算术方法解答,也可能列方程解答。
比较两种解法,得出相同的思路:都是把1个大杯看成3个小杯。(4)小结:假设把720毫升果汁全部倒入小杯,这样就使原来含有两个未知量的问题转化成只含有一个未知量的问题。
(5)教学第二种思路。这道题还可以怎样假设?
你能根据这样的假设算出结果吗? 学生列式解答并汇报。2.比较和回顾。
比较两种解题思路,你发现什么?(都是假设把720毫升果汁全部倒入一种杯子)
回顾解决问题的过程,你有什么体会?
三、运用策略
1.说一说可以怎样假设。
(1)3辆大货车和4辆小货车共运货30吨,大货车的载重量是小货车的2倍。两种货车的载重量各是多少吨?
1(2)1张桌子和4把椅子的总价是2700元,椅子的单价是桌子的。桌子
5和椅子的单价各是多少?
2.下面各题可以用假设的策略解决吗?
(1)妈妈买回来一个菠萝和4个梨,共重2600克,一个梨重300克,一个菠萝重多少克?
(2)一共有200双运动鞋,正好装满2个大纸箱和6个小纸箱。每个大纸箱装多少双运动鞋?每个小纸箱呢?(补充条件:2个小纸箱装的运动鞋和1个大纸箱同样多)
3.拓展题。妈妈过生日,小明送给妈妈一束鲜花、一个蛋糕和一盒巧克力,一共用去180元。一个蛋糕的钱是一束鲜花的2倍,买一盒巧克力的钱正好可以买一束鲜花和一个蛋糕。一束鲜花、一个蛋糕和一盒巧克力各要多少钱?(启发学生用不同的假设方法解答)
四、课堂总结(略)
五、回顾曾经运用假设策略解决过的问题
如,计算除数是两位数的除法时,把除数当作整十数试商;估算时,把接近整百或整十的数看作整百或整十数 „„
第四篇:《解决问题的策略》教学设计
《解决问题的策略》教学设计
---画线段图
一、教学内容:教材P48~49例1、练一练相关习题。
二、学情分析:学生已经学过从条件或问题出发分析数量关系,用列表的策略整理条件和问题,常见的数量关系等,也初步接触过线段图等。
三、教材分析: 本单元的主要内容是画图描述和分析问题,解决已知两个数的和与差,求这两个数的实际问题。发展学生的几何直观是数学课程标准提出的重要课程目标之一。本单元的教材编排有以下几个特点:1.选择合适的实际问题,让学生在运用画图策略解决问题的过程中,感受借助图形直观分析数量关系,确定解题思路的方法,逐步培养学生运用策略的意识。2.在解决问题的过程中,培养学生运用策略的意识。3.在富有变化的问题中,让学生感受策略是超越具体问题而存在的。
四、教学目标:
1.运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。
2.掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。
3.积累经验,增强策略意识。
五、教学重点:学会用画图的方法整理条件和问题,理解已知两个数的和与差,求这两个数的实际问题。
六、教学难点:能正确运用画图的方法整理条件和问题,并借助直观图示分析数量关系。
七、教学过程:
(一)旧知导入:
师:同学们,我们今天要学习的内容是解决问题的策略,什么是策略呢?
生:策略就是方法及过程。
师:是的,就是解决问题的方法,在之前我们学过很多解决问题的策略,有列表法,画图法,从条件或问题出发分析数量关系等,今天我们要来学习一种新的解决问题的策略,画线段图(板书)以前我们也接触过线段图。
课件出示:小宁有30枚邮票,小春比小宁多12枚,小春有多少枚邮票?大家看下这道题,有几个相关联的量呢?画几条线段呢?
生:2个,画两条线段
师:请同学们用两条线段表示小宁与小春的邮票数,并想一下先画谁,为什么?
同学们自己画线段图,画完展示有问题的。
师:同学们看下,你们觉得有什么问题呢?
生:条件没有标出来,问题也没有标出来。
师:所有我们在画图的时候要把条件和问题都标出来,大家思考刚才的问题,为什么要先画小宁呢?关键信息在哪里呢?
生:小春比小宁多12枚
师:对的,小春比小宁多12枚,我们一般把比后面的作为参照标准,所以要先画小宁。
(二)探索新知
师:线段图画完了,大家来一起说一下这道题怎么列式。接下来我们来调整难一点的。
出示课件:小宁和小春共有72枚邮票,小春比小宁多12枚。两人各有邮票多少枚?大家看下这道题,和我们刚才的那道题,有什么相同点和不同点呢?
生:相同点是都是小宁和小春的邮票数,小春比小宁多12枚,不同点是告诉了小宁和小春共有72枚邮票,一个问题是小春有多少枚邮票,一个问题是两人各有多少枚邮票。
师:非常棒,第一道是一个未知量,第二道是两个未知量。同样的,请同学们根据题意画出线段图表示它们的邮票数吧。
展示线段图,并强调标条件和问题。
小宁: 多(12)枚
小春:(72)枚
师:观察线段图,大家思考这道题怎么来解答,先自己思考一下,然后小组交流你们的方法。
提问:观察线段图,想一想可以先算什么?
(1)学生独立观察思考后,小组交流讨论。
(2)全班交流解题思路。
汇报预测:
解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。72-12=60(枚)60÷2=30(枚)30+12=40(枚)请同学来说一下每步算的是什么?
解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。72+12=84(枚)84÷2=42(枚)42-12=30(枚)
学生独立解答。
引导学生选择一种自己喜欢的方法解答。
师:(1)提问:我们用什么方法进行检验?
(2)追问:检验要分几步进行?
(3)学生独立进行检验,并写出答案。
师:回顾反思。
回顾这道题的解题思路,大家思考下第一步我们先干嘛了呢?
生:先读题,再画图
师:我们画的是线段图,画线段图有什么好处呢?
生:线段图可以更清楚直观的看到他们直接的关系。
师:画完线段图接下来的步骤是什么呢?
生:解答,检验
师:怎么检验呢?
生:把得数代入原题中的方法
师:在之前的学习中,我们曾经运用画图的策略解决过哪些问题?
生:一个数是另一个数几倍的时候,探索规律的时候
(三)巩固应用,内化提高
(1)完成教材第49页“练一练”。
(2)完成教材第52页“练习八”第1题和第3题。
(四)回顾整理,反思提升
通过本课的学习,你有什么收获? 还有哪些疑问?
(五)板书设计:
解决问题的策略
小宁: 多(12)枚
小春:(72)枚
方法一:72-12=60(枚)方法二:72+12=84(枚)
小宁: 60÷2=30(枚)小春:84÷2=42(枚)
小春:30+12=40(枚)小宁:42-12=30(枚)
读题→画图→解答→检验
八、教学反思
这节课我以简单线段图进行导入,引出这节课内容,由易到难,除了教会学生如何画线段图,清楚解题思路是这节课的重点,因此我让学生们先自我思考,再进行小组讨论,通过讨论,探究不同的方法,优生带动学困生,学会这节课的内容。不足之处:1.对学生学情把握不太好 2.时间分配不合理,前期浪费了太多时间,后面没有时间进行练习。3.讲课不够灵活,出现突发情况不会处理。4.评价语单一等。
山西省实验小学富力分校
杨 蓉
2021年4月12日
第五篇:“解决问题的策略”教学设计
“解决问题的策略”教学设计
教学内容:苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页-69页例2和练一练。
教学目标:
1.引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2.能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:能有序、有效地思考、分析实际问题中的数量关系。
教学难点:感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
教学准备:课件、导学单、教具
教学过程:
一、复习铺垫
1.出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:()个小杯的容量=720毫升
口头列式解答
2.出示例1:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。已知小杯的容量是大杯的,小杯和大杯的容量各是多少毫升?
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)
3.揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)
【设计说明:创设倒果汁的问题情境,呈现对比强烈的可以直接平均分和不能直接平均分的问题,引导学生通过比较体会新的问题的结构特点,形成认知冲突,进而产生把复杂问题转化成简单问题的心理需求,激发进一步探索解决问题策略的欲望】
二、探索策略
1.教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升
大杯的容量x =小杯的容量 小杯的容量x3=大杯的容量
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
提问:设小杯的容量是x毫升,1个大杯的容量可以怎样表示?可以根据哪个数量关系式列方程解答?
小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
【设计说明:引导学生通过对题中条件和问题的梳理,找到数量关系,并画图对数量关系进行理解,可以帮助学生正确地理解题意,感知题中条件和问题之间的联系,打开寻求解题方法的思路。针对解决问题的困难,启发学生思考使复杂问题变得简单的方法,既可以激活学生已有的解决问题经验,又使学生的探索活动有了明确方向,进而产生假设的需要,找到解决问题的方法。展示并交流学生中出现的不同的解决问题思路并通过师生对话帮助学生理解,有利于学生体会用假设的策略解决问题的思考过程,感受假设的策略在解决问题过程中的作用。在列式解答的同时,提出检验的要求,有利于学生加深对题中数量大系的理解,进一步养成检验的良好习惯】
(4)回顾反思。
问题:解答例1时,我们遇到了怎样的因难?是怎样解决这一困难的解决问题时运用了什么策略?说说你对假设这一策略的认识和体验。【设计说明:及时反思提炼,引导学生进一步体会“为什么假设”“怎样假设”等问题,以强化对“假设”策略的体验。】
(5)教学第二种思路。
谈话:刚才我们假设把720毫开果计全部倒入小怀,顺利解决了问题。这道题还可以怎样假设?假设把720毫开果计全部倒入大杯,可以倒满几个大杯?你能根据这样的假设算出结果吗?
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
比较:请同学们比较假设全部倒入大杯和全部倒入小杯这两种假设方法,想想,它们有什么相同的地方?
提回:通过解答上面的问题,你有哪些收获和体会?
谈话:假设是解决问题的常用策略,运用假设的策略,可以把复杂的问题变成简单的问题。请同学们回忆一下,在过去的学习中,我们曾经运用假设的策略解决过哪些问题?
让学生先在小组里说一说,再组织全班交流。
【设计说明:假设“把720毫升果计全部例入大杯”的思路,由学生自己提出,并通过独立思考解决问题,促使学生再次经历和体验运用假设的策略解决问题的过程,获得对假设策略更深刻的感悟。比较两种假设思路的联系。并交流自己的收获和体会,目的是帮助学生梳理运用假设策略解决问题的方法。以及在解决问题过程中积累起来的经验,进一步提升对策略的认识和感悟;回顾曾经运用假设的策略解决过哪些问题,意在引导学生从策略的高度重新审视过去的学习中解决一些问题的过程和方法,以促进策略的内化,形成策略意识】
2.完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
【设计说明:先让学生说一说可以怎样假设,再独立完成解答,并交流不同的假设思路,突出了本课的教学重点,有利于强化学生对假设策略的体验】
三、巩固练习
完成练习十一第1-3题。
四、课堂总结
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?