第一篇:2.1曲线与方程 教学设计 教案
教学准备
1.教学目标
[1]了解曲线上的点与方程的解之间的一一对应关系 [2]初步领会“曲线的方程”与“方程的曲线”的涵义 [3]强化“形”与“数”一致并相互转化的思想
2.教学重点/难点
教学重点:理解“曲线的方程”与“方程的曲线”的涵义 教学难点:利用定义验证曲线是方程的曲线,方程式曲线的方程
3.教学用具
多媒体设备
4.标签
教学过程
教学过程设计
复习引入
【师】在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线,请思考下面问题: 【板演/PPT】
思考1 直线y=x上任一点M到两坐标轴距离相等吗?
思考2 到两坐标轴距离相等的点都在直线y=x上,对吗?
思考3 到两坐标轴距离相等的点的轨迹方程是什么?为什么? 【生】学生思考交流 2 新知介绍
[1]结合具体实例,引入曲线方程和方程曲线概念 【师】:引导学生发言总结 【板演/PPT】 答 y=±x.理由:在直角坐标系中,到两坐标轴距离相等的点M的坐标(x0,y0)满足y0=x0或y0=-x0,即(x0,y0)是方程y=±x的解;
反之,如果(x0,y0)是方程y=x或y=-x的解,那么以(x0,y0)为坐标的点到两坐标轴距离相等. 【师】思考下面问题:
思考4 曲线C上的点的坐标都是方程f(x,y)=0的解,能否说f(x,y)=0是曲线C的方程?
思考5 判断下列命题是否正确.
(1)以坐标原点为圆心,半径为r的圆的方程是y=(2)过点A(2,0)平行于y轴的直线l的方程为|x|=2.【生】思考总结 【板演/PPT】
解(1)不正确.设(x0,y0)是方程y=x02+y02=r2.两边开平方取算术平方根,得的解,则y0=,即
;
=r即点(x0,y0)到原点的距离等于r,点(x0,y0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r的圆上的一点如点在圆上,却不是y=的解,这就不满足曲线上的点的坐标都,是方程的解.所以,以原点为圆心,半径为r的圆的方程不是y=而应是y=±
.(2)①、直线上的点的坐标都满足方程︱x︱=2
②、满足方程︱x︱=2的点不一定在直线上 结论:过A(2,0)平行于y轴的直线的方程不是︱x︱=2 【师】引导学生交流思想总结曲线方程的概念 【板演/PPT】
曲线的方程、方程的曲线
一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 【师】 引导学生深入理解定义,从充要条件来理解这个定义 【板演/PPT】
定义中的两个条件是判定一个方程是否为所定曲线的方程,一条曲线是否为所定方程的曲线的依据,缺一不可. 从逻辑知识来看:
第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立. 【板演/PPT】 从集合角度理解为:
定义的实质是平面曲线的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.
由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以求曲线的方程 [2]概念应用
【师】下面我们看屏幕上的例题 【板演/PPT】 例1:若命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题为真命题的是().
A.不是曲线C上的点的坐标,一定不满足方程f(x,y)=0 B.坐标满足方程f(x,y)=0的点均在曲线C上 C.曲线C是方程f(x,y)=0的曲线
D.不是方程f(x,y)=0的解,一定不是曲线C上的点.【师】从定义入手,考虑充要条件 【生】思考回答 【板书/PPT】
解析 ∵题设命题只说明“曲线C上的点的坐标都是方程f(x,y)=0的解”,并未指出“以方程f(x,y)=0的解为坐标的点都是曲线C上的点”,∴A,B,C都是假命题,如曲线C:平面直角坐标系一、三象限角平分线上的点,与方程f(x,y)=x2-y2=0,满足题设条件,但却不满足选项A,B,C的结论,根据逆否命题是原命题的等价命题知,D是正确的. 【师】规律方法
(1)判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上.从而建立方程的解与曲线上点的坐标的一一对应关系.
(2)定义中的两个条件是判定一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的准则,缺一不可.因此,在证明f(x,y)=0为曲线C的方程时,必须证明两个条件同时成立.
【师】为了深刻的理解方程与曲线,我们来看下列一个问题 【板书/PPT】
[例2] 下列方程表示如图所示的直线,对吗?为什么?不对请改正.
【生】分析各个方程所表示的曲线是否与图中图象符合 【板书/PPT】 解:不对,应为y=x 【师】引导学生反思总结 【板书/PPT】 反思与感悟
判断方程表示什么曲线,必要时要对方程适当变形,变形过程中一定要注意与原方程等价,否则变形后的方程表示的曲线就不是原方程的曲线. 【板书/PPT】
【师】引导学生思考 【板书/PPT】
方法点拨(1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.
解:带入验证知P点在此方程所表示的曲线上,Q点不在。【板书/PPT】(2)若点在此方程表示的曲线上,求m的值. 解:将点带入方程后解方程得:
迁移训练(12分)若曲线y2=xy+2x+k通过点(a,-a),a∈R,求k的取值范围.
【师】引导学生思考
【板书/PPT】
[3] 新知应用
【师】为了深刻的理解本节内容,我们来看下列一个问题 【板书/PPT】
1.曲线C的方程为y=x(1≤x≤5),则下列四点中在曲线C上的是()
A.(0,0)B.(1,5)
C.(4,4)
C.(4,2)2.已知坐标满足方程f(x,y)=0的点都在曲线C上,那么()A.曲线C上的点的坐标都适合方程f(x,y)=0 B.凡坐标不适合f(x,y)=0的点都不在C上 C.不在C上的点的坐标必不适合f(x,y)=0 D.不在C上的点的坐标有些适合f(x,y)=0,有些不适合f(x,y)=0 3.下列四个图形中,图形下面的方程是图形中曲线的方程的是
【师】 能否根据引例中的检验方式进行相关分析 4.方程y=3x-2(x≥1)表示的曲线为()
A.一条直线
B.一条射线
C.一条线段
D.不能确定 5.方程x2+xy=x表示的曲线是()
A.一个点
B.一条直线 C.两条直线
D.一个点和一条直线 6.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2
”的()
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 7.请说出下列方程表示什么曲线?
答案:CCDBCB
课堂小结
1.曲线的方程和方程的曲线必须满足两个条件: ①曲线上点的坐标都是方程的解,②以方程的解为坐标的点都在曲线上. 2.点(x0,y0)在曲线C上的充要条件是点(x0,y0)适合曲线C的方程. 3.曲线和方程质检一一对应的确立,进一步把“曲
线”与“方程”统一了起来,在此基础
上,我们就可以更多地用代数的方法研究几何问题.板书
第二篇:“曲线与方程”教学设计
“曲线与方程”教学设计
深圳中学 郭慧清
一、教学内容与内容解析 1.内容:
(1)曲线的方程与方程的曲线的概念;(2)求曲线的方程;(3)坐标法的基本思想与简单应用.2.内容解析:
“曲线与方程”是《普通高中数学课程标准》规定的教学内容.在教学时,不少人认为只是为后面学习椭圆、双曲线、抛物线做准备.尽管学习这一内容是学生体会并理解圆锥曲线与其方程的基础,但人们将碰得的曲线远非这些.因此,教学时不仅要让学生学习如何求曲线的方程,而且要通过这一内容培养学生的坐标法思想,使学生明白求出曲线方程的真正意义在于利用曲线的方程去研究曲线.研究曲线与方程的目的是把曲线的几何特征转化为数量关系,并通过代数运算等方便手段,处理已得到的数量关系,进而得出曲线的几何性质,并达到利用曲线为人们服务的目的.因此,学习这一部分内容可以加深学生对数学中的代数方法的认识,也能够让学生更好地体会数学的本质.
在平面直角坐标系建立以后,任何曲线都有唯一的方程,任何方程也都有唯一确定的曲线(或点集).因此,曲线的方程是曲线的唯一表示.这种表示,为人们表达自己的思想认识提供了一种规范,这是人们应该具备的基本素养.
二、教学目标与目标解析 1.目标:
(1)通过实例理解曲线的方程与方程的曲线的概念,能判断已经学习过的特殊的曲线与方程之间是否具有互为表示的关系;
(2)通过实例体会求曲线的方程的基本步骤,能求出给定了几何特征的曲线的方程;
(3)通过实例体会不同的平面直角坐标系对同一曲线方程的影响,体会如何“恰当”地建立平面直角坐标系.(4)通过一些简单曲线的方程及其研究,体会坐标法的基本思想及简单应用. 2.目标解析:
教学目标(1)和(2)是本节课的教学重点,教学时落实好目标(1)、(2)和(3)是实现教学目标(4)的前提与保证.学生通过函数y =f(x)及其图象、直线的方程与圆的方程的学习,对曲线的方程与方程的曲线这些概念有了初步认识,但这只是一种意会,我们现在的任务是要建立曲线与方程之间的一般性的概念,让学生能从“定义”的角度去理解这些概念.教学目标(3)是学生初学时不易达到的目标,教学时要提供学生熟悉的曲线(比如直线,圆等)在不同坐标系中的方程的简洁程度,让学生体会建立坐标系时应该关注的要点.
对许多与曲线有关的具体问题而言,原本是没有坐标系的.因此,通过这样的问题,可以使学生体会如何建立坐标系,求出问题中曲线的方程,并通过曲线的方程帮助解决问题,这应该是实现教学目标(4)的一种较好的方法.
三、教学问题诊断分析 1.如何理解曲线与其方程之间的关系?学生可以很流利地背出曲线与其方程应该满足的两条,但是如何证明“一条曲线与一个方程之间具有互为表示的关系”,这是学生学习时可能遇到的第一个教学问题.这个问题可以结合“直线与其方程”、“圆与其方程”进行说明.
2.在求曲线的方程时,如何建立平面直角坐标系?这是学生会遇上的第二个教学问题,也是本节课的教学难点之一.教学时,应通过实例,帮助学生总结出建立坐标系的基本要点,并用具体问题让学生练习进行体会.
3.在将曲线上的点应该满足的几何特征转化为点的坐标应满足的等式后,常常遇上“将所得等式化简得到所求方程”的问题.对于有些复杂的等式,化简是一个学生不易把握的问题,学生在此极易出错,这是第三个教学问题.教学时不能因为这个问题而使教学偏离重点,因而宜使用信息技术工具解决这个问题.4.学生学习时,可能会因更多地关注代数运算而忽略数学思想的提炼,这个教学问题的解决,需要教师有目的地进行引领.四、教学支持条件
1.在进行本节课的教学时,学生已经在数学必修1中学习了函数y =f(x)及其图象,在数学必修2中学习了直线的方程与圆的方程,这些内容是学生理解曲线与方程概念的重要基础,因此教学时应充分注意这一教学条件,引导学生多进行归纳与概括.2.曲线与方程是数形结合的典范,教学这一内容时会涉及大量图形的绘制与方程的简化等代数运算,因此,TI图形计算器或几何画板是重要的支持条件,教学中充分利用这一条件,不仅可以节省大量时间用于学生思考,而且可以对实际问题中的数据不加“修饰”地进行分析.五、教学过程设计
引子:如果你邀请朋友在你所在城市的某餐馆聚会,你会怎样告诉他(她)聚会地点?例如,如果聚会地点在“深圳市笋岗路南,宝安路东的澳葡街”(如图一),你会怎样说?
(图一)
(图二)
意图:通过建立平面直角坐标系,用坐标来刻画点的位置,为后面用点与坐标的对应关系来研究曲线与方程的关系作准备,同时让学生体会坐标法思想。
师生活动:教师提出问题让学生思考,然后通过建立平面直角坐标系,给出聚会地点的坐标(如图二)。[问题1] 一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线(航行方向与东向西方向的夹角的正切值为4/7),那么它是否会受到台风的影响?
这是同学们在学习数学必修2时曾经研究过的问题,你能说说你现在会怎样解决这个问题? 意图:体会坐标法的思想,强调研究曲线与方程的概念的必要性,让学生体会数学方法的好处.师生活动:教师提出问题后让学生交流并回答他们的想法,在此基础上,教师归纳并演示过程:如图建立直角坐标系,得出船的航线的方程为4x+7y-28=0,圆形区域的边界圆的方程为x+y=9.联解上面两个方程所成的方程组有一定的困难,可以通过TI图形计算器求解,如下列图示:
2由此可见让船按原定航线航行不会出现危险.
进一步问学生:如果没有坐标法,没有直线的方程与圆的方程,但要确定能否让船按原定航线航行,你会怎样做?
[问题2]我们知道,在平面直角坐标系中,经过点(x0,y0),且方向向量为确定的,你能求出这条直线的方程吗?怎么说明你所求得的方程就是这条直线的方程呢?
意图:为引出曲线的方程与方程的曲线的概念做铺垫.师生活动:让学生尝试求直线的方程,在得出直线的方程后,教师介绍怎样说明所得的方程就是直线的方程.
[问题3] 你能说明中心在(a,b),半径为的圆的方程是(x-a)+(y-b)=r吗?
2的直线是唯一意图:让学生体会教师在[问题2]中介绍的“说明所得方程是直线的方程”的方法,为介绍曲线的方程与方程的曲线的概念再做准备.师生活动:让学生先思考,然后教师引领学生完成说明过程.[问题4] 对一般的曲线与方程,你能给出方程是曲线的方程,曲线是方程的曲线的概念吗? 意图:给出曲线的方程与方程的曲线的概念.师生活动:让学生先思考,然后教师引领学生阅读教材上的“定义”,给出曲线的方程与方程的曲线的概念.最后问学生:
[问题5] 给定命题A:“方程f(x,y)=0是曲线曲线”,请问命题A与命题B是否互为充要条件?
意图:加深对曲线的方程与方程的曲线的概念的认识.师生活动:学生回答,教师评析.学生完成教材P37练习第1题,并将题中的“中线AO(O为原点)所在直线的方程”修改为“中线AO(O为原点)的方程”后,提问学生结论有无改变?学生完成P37练习第2题. 的方程”;命题B:“曲线C是方程f(x,y)=0的 [问题6] 你能画出函数的图象吗?图象C上的点相应于坐标轴的距离而言具有怎样的几何特征?是否具有这些几何特征的点都在图象C上?
意图:理解用解析式表示的函数与其图象之间的关系,巩固曲线的方程与方程的曲线的概念.师生活动:(1)师生画出函数的图象C(可以利用信息技术工具);(2)学生思考“图象C上的点相应于坐标轴的距离而言具有怎样的几何特征”,利用信息技术工具探究,可能归纳出的几何特征是“图象C上的点到两坐标轴的距离的乘积是常数k”;(3)学生思考“到两坐标轴的距离的乘积是常数的点都在图象C上”吗?;(4)师生得出“到两坐标轴的距离的乘积是常数k的点的轨迹方程是”;(5)证明所得结论,完成教材P35例1.
[问题7] 阅读教材P35“2.1.2求曲线的方程”的第一段内容,你能得出什么结论? 意图:明确解析几何研究的基本内容.师生活动:学生阅读教材并提炼回答内容,请学生回答,教师点评.
[问题8]已知平面上的线段BC的长为所张的角恒为,动点A位于线段BC所在直线的同一侧,且向线段BC,动点A的轨迹是否有有限长度?若有,你能求出其长度吗?
意图:归纳求曲线的方程的步骤,体会坐标法的基本思想. 师生活动:
(1)教师讲解:以BC所在的直线为x轴,以线段BC的中垂线为y轴建立平面直角坐标系,则,.设点A在x轴的上方,坐标为(x,y)(y>0),则点A的集合为
.
由于
因为所以
所以,点A的坐标满足方程x+(y-1)= 4 ① ;
反过来,由于上述的步骤均可逆,所以方程①的解作为坐标的点都在集合P中.
所以,点A的轨迹方程是①,点A的轨迹是一段以2为半径的圆弧,它的长度是整个圆的.因此,动点A的轨迹的长度为
(2)教师根据上述过程总结求曲线的方程的步骤(见教材P36).(3)提问学生,有无其它建立坐标系的方法使点A的轨迹方程更简单,更简单的原因是什么?教师归纳总结建立坐标系的一般要点.
(4)提问学生思考:为什么不能把x+(y-1)= 4作为点A的轨迹方程?(5)学生练习教材P37练习第3题.
[问题9] 已知一条直线和一个点F,点F到l的距离是2.一条曲线上面的点到F的距离减去到l的距离所得的差都是2.你能建立适当的坐标系,求出这条曲线的方程吗?
意图:帮助学生熟悉和巩固求曲线的方程的步骤.师生活动:(1)师生一起讨论如何画出图形,如何建立坐标系.
(2)让学生按步骤求出曲线的方程.
(3)师生一起讨论如何避免轨迹中出现多余的点或方程中出现多余的解.(4)简化求解步骤.
[问题10]建立坐标系后,是否存在一条曲线有两个不同的方程?你能以[问题1]和[问题8]为例,归纳一下你本节课学得的东西吗?
意图:归纳总结本节内容.师生活动:学生思考交流,教师帮助总结.五、目标检测设计
1.教材P37,习题2.1:A组第3、4题;B组第1题.
2.已知平面上的线段BC的长为的轨迹的长度吗? 2009-03-25 人教网,动点A向线段BC所张的角恒为,你能求出动点A运动
第三篇:曲线与方程的概念的教学设计
曲线与方程的概念的教学设计
一、教学分析 1. 教材地位
曲线的方程和方程的曲线是解析几何的最基本的概念,是坐标法的基础。2. 教学重点难点
重点:曲线的方程和方程的曲线的概念 难点:两者的辩证关系
二、学情分析
教学班为实验班,学生思维较为活跃,理解能力较强;但在概念细节的理解上比较不在意,容易造成对概念认识的漏洞。
三、教学目标
1. 理解曲线与方程的对应关系。
2. 通过对已知事例的比较,学生能从中学会判断曲线与方程的方法。3. 教学中学生能感受到曲线与方程的辩证关系。
四、教学手段:PPT
五、教学过程
问题引入:圆是如何定义的?并说出圆的标准方程 新课题:曲线与方程的概念
探究问题:求直角坐标系下一三象限的角分线方程,下列方法是否正确?
方法1:设一三象限的角分线上的点为P(x,y),根据角平分线的性质得:
因此一三象限角平分线的方程为
方法2:设一三象限的角分线上的点为P(x,y),根据角平分线的性质得:
因此一三象限角平分线的方程为 方法3:设一三象限的角分线上的点为P(x,y),根据角平分线的性质得:
因此一三象限角平分线的方程为
小结:
方法3中两个集合的元素之间建立了一一对应关系,人们规定把具有这种关系的曲线C和方程f(x,y)=0,分别称为方程的曲线和曲线的方程
一般我们所求的曲线(或轨迹)的方程都必须满足这样的条件
定义:
一般地,在直角直角坐标系中,如果某曲线C上的点与一个二元方程 F(x, y)=0的实数解建立了如下的关系
(1)曲线上的点的坐标都是这个方程 的解
(2)以这个方程的解为坐标的点都是曲线上的点 曲线的方程常称为满足某种条件的动点的轨迹方程
例题辨析
那么曲线C叫做方程F(x, y)=0的曲线;方程F(x, y)=0叫做曲线C的方程
例1
判断曲线与方程的关系
(1)曲线:过点A(2,0)且与y轴的距离等于2的点的轨迹l;
方程:|x|=2
(2)曲线C:抛物线(如图)
方程:
(3)曲线C:等腰⊿ABC底边BC的中线(如图)
方程:x=0 例2 甲:“曲线C上的点的坐标都是方程 f(x,y)=0 的解”,乙:“曲线C是方程f(x,y)=0 的曲线”,则甲是乙的()(A)充分非必要条件
(B)必要非充分条件
(C)充要条件
(D)非充分也非必要条件
例3 求证:与两条坐标轴的距离的积等于1的点的轨迹方程是|xy|=1
课堂练习
题1 图示曲线的曲线方程是所列出的方程吗?为什么?
(1)曲线C:过点A(1,1),B(-1,1)的折线
方程:(x-y)(x+y)=0
(2)曲线C:顶点在原点的抛物线
方程:
(3)曲线C:Ⅰ, Ⅱ象限内到x轴,y轴的距离乘积为1的点的轨迹
方程:
题2 已知三角形A(0,0),B(2,0),C(3,4),求证:三角形内角A的平分
线方程是
思考:已知三角形A(0,0),B(2,0),C(3,4),求到角A的两边的距离之比为1:
2的点的轨迹方程
课堂小结
第四篇:曲线与方程的教学设计
曲线与方程的教学设计
一、教学内容与内容解析 1.内容:
(1)曲线的方程与方程的曲线的概念;(2)求曲线的方程;(3)坐标法的基本思想与简单应用.2.内容解析:
“曲线与方程”是《普通高中数学课程标准》规定的教学内容.在教学时,不少人认为只是为后面学习椭圆、双曲线、抛物线做准备.尽管学习这一内容是学生体会并理解圆锥曲线与其方程的基础,但人们将碰得的曲线远非这些.因此,教学时不仅要让学生学习如何求曲线的方程,而且要通过这一内容培养学生的坐标法思想,使学生明白求出曲线方程的真正意义在于利用曲线的方程去研究曲线.研究曲线与方程的目的是把曲线的几何特征转化为数量关系,并通过代数运算等方便手段,处理已得到的数量关系,进而得出曲线的几何性质,并达到利用曲线为人们服务的目的.因此,学习这一部分内容可以加深学生对数学中的代数方法的认识,也能够让学生更好地体会数学的本质.
在平面直角坐标系建立以后,任何曲线都有唯一的方程,任何方程也都有唯一确定的曲线(或点集).因此,曲线的方程是曲线的唯一表示.这种表示,为人们表达自己的思想认识提供了一种规范,这是人们应该具备的基本素养.
二、教学目标与目标解析 1.目标:
(1)通过实例理解曲线的方程与方程的曲线的概念,能判断已经学习过的特殊的曲线与方程之间是否具有互为表示的关系;
(2)通过实例体会求曲线的方程的基本步骤,能求出给定了几何特征的曲线的方程;
(3)通过实例体会不同的平面直角坐标系对同一曲线方程的影响,体会如何“恰当”地建立平面直角坐标系.(4)通过一些简单曲线的方程及其研究,体会坐标法的基本思想及简单应用. 2.目标解析:
教学目标(1)和(2)是本节课的教学重点,教学时落实好目标(1)、(2)和(3)是实现教学目标(4)的前提与保证.学生通过函数y =f(x)及其图象、直线的方程与圆的方程的学习,对曲线的方程与方程的曲线这些概念有了初步认识,但这只是一种意会,我们现在的任务是要建立曲线与方程之间的一般性的概念,让学生能从“定义”的角度去理解这些概念.教学目标(3)是学生初学时不易达到的目标,教学时要提供学生熟悉的曲线(比如直线,圆等)在不同坐标系中的方程的简洁程度,让学生体会建立坐标系时应该关注的要点.
对许多与曲线有关的具体问题而言,原本是没有坐标系的.因此,通过这样的问题,可以使学生体会如何建立坐标系,求出问题中曲线的方程,并通过曲线的方程帮助解决问题,这应该是实现教学目标(4)的一种较好的方法.
三、教学问题诊断分析
1.如何理解曲线与其方程之间的关系?学生可以很流利地背出曲线与其方程应该满足的两条,但是如何证明“一条曲线与一个方程之间具有互为表示的关系”,这是学生学习时可能遇到的第一个教学问题.这个问题可以结合“直线与其方程”、“圆与其方程”进行说明.
2.在求曲线的方程时,如何建立平面直角坐标系?这是学生会遇上的第二个教学问题,也是本节课的教学难点之一.教学时,应通过实例,帮助学生总结出建立坐标系的基本要点,并用具体问题让学生练习进行体会.
3.在将曲线上的点应该满足的几何特征转化为点的坐标应满足的等式后,常常遇上“将所得等式化简得到所求方程”的问题.对于有些复杂的等式,化简是一个学生不易把握的问题,学生在此极易出错,这是第三个教学问题.教学时不能因为这个问题而使教学偏离重点,因而宜使用信息技术工具解决这个问题.4.学生学习时,可能会因更多地关注代数运算而忽略数学思想的提炼,这个教学问题的解决,需要教师有目的地进行引领.四、教学支持条件
1.在进行本节课的教学时,学生已经在数学必修1中学习了函数y =f(x)及其图象,在数学必修2中学习了直线的方程与圆的方程,这些内容是学生理解曲线与方程概念的重要基础,因此教学时应充分注意这一教学条件,引导学生多进行归纳与概括.2.曲线与方程是数形结合的典范,教学这一内容时会涉及大量图形的绘制与方程的简化等代数运算,因此,TI图形计算器或几何画板是重要的支持条件,教学中充分利用这一条件,不仅可以节省大量时间用于学生思考,而且可以对实际问题中的数据不加“修饰”地进行分析.五、教学过程设计 引子:
(1)写出表示下列图形(实线部分)的方程
(2)作下列方程所表示的图形
(i)
;(ii)意图:通过建立平面直角坐标系,用坐标来刻画点的位置,为后面用点与坐标的对应关系来研究曲线与方程的关系作准备,同时让学生体会坐标法思想。
[问题1] 一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线(航行方向与东向西方向的夹角的正切值为4/7),那么它是否会受到台风的影响?
这是同学们在学习数学必修2时曾经研究过的问题,你能说说你现在会怎样解决这个问题? 意图:体会坐标法的思想,强调研究曲线与方程的概念的必要性,让学生体会数学方法的好处.师生活动:教师提出问题后让学生交流并回答他们的想法,在此基础上,教师归纳并演示过程:如图建立直角坐标系,得出船的航线的方程为4x+7y-28=0,圆形区域的边界圆的方程为x+y=9.联解上面两个方程所成的方程组有一定的困难,可以通过TI图形计算器求解,如下列图示:
2由此可见让船按原定航线航行不会出现危险.
进一步问学生:如果没有坐标法,没有直线的方程与圆的方程,但要确定能否让船按原定航线航行,你会怎样做?
[问题2]我们知道,在平面直角坐标系中,经过点(x0,y0),且方向向量为确定的,你能求出这条直线的方程吗?怎么说明你所求得的方程就是这条直线的方程呢?
意图:为引出曲线的方程与方程的曲线的概念做铺垫.师生活动:让学生尝试求直线的方程,在得出直线的方程后,教师介绍怎样说明所得的方程就是直线的方程.
[问题3] 你能说明中心在(a,b),半径为的圆的方程是(x-a)+(y-b)=r吗?
2的直线是唯一意图:让学生体会教师在[问题2]中介绍的“说明所得方程是直线的方程”的方法,为介绍曲线的方程与方程的曲线的概念再做准备.师生活动:让学生先思考,然后教师引领学生完成说明过程.[问题4] 对一般的曲线与方程,你能给出方程是曲线的方程,曲线是方程的曲线的概念吗? 意图:给出曲线的方程与方程的曲线的概念.师生活动:让学生先思考,然后教师引领学生阅读教材上的“定义”,给出曲线的方程与方程的曲线的概念.最后问学生:
[问题5] 给定命题A:“方程f(x,y)=0是曲线曲线”,请问命题A与命题B是否互为充要条件?
意图:加深对曲线的方程与方程的曲线的概念的认识.师生活动:学生回答,教师评析.学生完成教材P37练习第1题,并将题中的“中线AO(O为原点)所在直线的方程”修改为“中线AO(O为原点)的方程”后,提问学生结论有无改变?学生完成P37练习第2题. 的方程”;命题B:“曲线C是方程f(x,y)=0的 [问题6] 你能画出函数的图象吗?图象C上的点相应于坐标轴的距离而言具有怎样的几何特征?是否具有这些几何特征的点都在图象C上?
意图:理解用解析式表示的函数与其图象之间的关系,巩固曲线的方程与方程的曲线的概念.师生活动:(1)师生画出函数的图象C(可以利用信息技术工具);(2)学生思考“图象C上的点相应于坐标轴的距离而言具有怎样的几何特征”,利用信息技术工具探究,可能归纳出的几何特征是“图象C上的点到两坐标轴的距离的乘积是常数k”;(3)学生思考“到两坐标轴的距离的乘积是常数的点都在图象C上”吗?;(4)师生得出“到两坐标轴的距离的乘积是常数k的点的轨迹方程是”;(5)证明所得结论,完成教材P35例1.
[问题7] 阅读教材P35“2.1.2求曲线的方程”的第一段内容,你能得出什么结论? 意图:明确解析几何研究的基本内容.师生活动:学生阅读教材并提炼回答内容,请学生回答,教师点评.
[问题8] 已知一条直线和一个点F,点F到l的距离是2.一条曲线上面的点到F的距离减去到l的距离所得的差都是2.你能建立适当的坐标系,求出这条曲线的方程吗?
意图:帮助学生熟悉和巩固求曲线的方程的步骤.师生活动:
(1)师生一起讨论如何画出图形,如何建立坐标系.
(2)让学生按步骤求出曲线的方程.(3)师生一起讨论如何避免轨迹中出现多余的点或方程中出现多余的解.(4)简化求解步骤.
[问题9]建立坐标系后,是否存在一条曲线有两个不同的方程?你能以[问题1]和[问题8]为例,归纳一下你本节课学得的东西吗?
意图:归纳总结本节内容.师生活动:学生思考交流,教师帮助总结.五、目标检测设计
1.教材P37,习题2.1:A组第3、4题;B组第1题.
2.已知平面上的线段BC的长为的轨迹的长度吗?,动点A向线段BC所张的角恒为,你能求出动点A运动
第五篇:高中数学曲线和方程教案(改)
各位老师,大家好!
我叫韩杨,今天我说课的课题是《曲线和方程》的第一课时。下面我将从教材分析、教学目标、教学重难点、教法和学法、教学过程和教学效果等六个方面加以分析和说明。
一、教材分析
《曲线和方程》是人教版高中数学第二册上册第七章第五小节的内容。本节课的主要内容是了解曲线上的点与方程的解之间的一一对应关系,学会求解曲线的方程,因为学生已有了用方程表示曲线的感性认识,特别是二元一次方程表示直线,现在要进一步研究平面内的曲线和含有两个变量的方程之间的关系,是由直观表象上升到抽象概念的过程。它既是对前一节线性规划知识的延伸和发展,也为下一节圆的方程打下了基础,起到了承上启下的作用。
二、教学目标
根据教学大纲的要求和高中学生的认知规律,以及新课标对教育目标的定位,我将本节课的教育目标确定为以下三点:
►知识与技能目标:初步领会“曲线的方程”与“方程的曲线”的概念;学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。►过程与方法目标
(1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识;
(2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点;
(3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。
►情感态度与价值观目标;课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生强烈的求知欲。
三、教学的重难点
根据数学新课标标准,我确定本节课的重点是“曲线的方程”与“方程的曲线”的概念。为强化其认识,决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法、知其理。
教学难点是怎样利用定义验证曲线是方程的曲线、方程是曲线的方程。因为学生在作 业中容易犯想当然的错误,通常在已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线的方程。为了突破难点,本节课将通过例题让学生体会“二者”缺一不可的性质。四:教法和学法分析
数学是一门培养和发展人的思维的重要学科。因此,在教学中,不仅要让学生“知其然”,还要“知其所以然”,这也是我小学数学老师经常给我们说的一句话。新课标指出,学生是教学的主体,教师的教应从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,构建新的知识体系。学是中心,会学是目的。本节课主要板书的形式,教给学生“动手画、动脑想、善分析、善总结”的研讨式学习方法,教给学生主动思考问题、主动解决问题的方法,这样才能使学生产生一种成就感,从而提高学习数学的兴趣。五:教学过程
对于45分钟的课堂,我做了以下时间安排: 课题引入约5分钟,讲授新课约20分钟,练习巩固约13分钟,课堂小结约5分钟,作业布置约2分钟。
因为还没有正式的成为老师,没有教学经验,对课堂的时间把握不是很准确,所以拟定了时间安排,希望对教学过程有所帮助,做到合理安排时间,下面我从六个方面介绍一下我的教学过程。
1、设置情境——提出课题
在本节课之前,学生已经学习过直线的各种方程,建立了二元一次方程与直线的对应关系。所以这节课首先让学生先画出方程xy0表示的直线,借助图形让学生再一次从直观上深刻体会方程的解与直线上的点一一对应关系。在巩固已有知识的前提下再提出:对任意曲线和二元方程是否都能建立这种等价关系呢?从而引出本节课的内容:曲线和方程。通过提问的方式有助于吸引学生的注意力,激发他们强烈的好奇心和求知欲,给学生搭建起一个探究和实践的平台. 2.讲授新课
通过前面已经学过的圆、抛物线、再推广到任意曲线,借助图形让学生体会到对任意曲线的解和方程的解都能建立一一对应关系,从而得出“曲线的方程”和“方程的曲线”的定义。
问题2:如果概念中的两点少一点,是否也满足曲线上的点与方程的解的一一对应关系呢?
通过提问,引导学生对得到的结论要给予更多的思考,帮助他们提高认识,这也是概念 教学中学生理解概念的要点,给学生较多的时间互相探究问题和讨论解决问题。
找一下不同时满足两个条件的反例,通过反例的讲解,让学生自己总结得出: 要想满足曲线上的点与方程的解的一一对应关系,概念中的两点缺一不可。在概念教学中,通过反例的反衬,常常起着帮助学生理解概念的作用。
3、练习巩固
找一些典型例题让学生进行练习,做题过程中,要求学生独立思考,抽点几位学生到黑板上写出自己的答题过程,其他学生也独立完成,完成后,再抽点几个同学上台进行检查,错误的地方加以修改。这样既能让学生积极参与,增强学生的注意力,也能对解答中容易出错的地方加深印象。
4、课堂小结
本节课通过对实例的研究,掌握了“曲线的方程”、“方程的曲线”的定义,在领会定义时,要牢记定义中(1)、(2)两点缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件,两者都满足了,“曲线的方程”和“方程的曲线”才具备充分性。小结时才提出“必要性”与“充分性”的问题,使学生的认识再上一个台阶,另一点意在建立“解析几何”的基本思想,使之逐步转变为学生的思想。5.布置作业
书本习题7.5第2题、第3题、第5题、第6题。
作业要求:允许学生对不会做的题目可以不做,但要分析出不会做的症结所在,这样做的目的在于既可以避免抄袭现象的产生,也可以让学生自己分析出知识的薄弱点,由被动学习变成主动学习,增强学习兴趣。
6、板书设计
力求简明清楚,重点突出,加深学生对重点知识的理解和掌握,有利于提高教学效果。
曲线与方程
公式推导 例题 练习六.教学效果分析
本节课在引导学生探究的过程中,关注学生的认知心理过程,重视学生学习过程中的参与度、自信心以及独立思考能力。教学过程中注重层次性,对基础薄弱的学生多给他们创造机会,力争每一个层次的学生都能有机会得到积极的评价,因为这是让他们保持自信,爱好数学的最佳培养时机。
以上是我的教学设计,肯定存在很多不足的地方,但是我一定会积极改进,请各位老师批评指正!谢谢!