第一篇:六年级数学教案——《确定位置》教学计划
六年级数学教案——《确定位置》教学计划
一、教学内容
学生认识了生活中的八个方向,能够用量角器量角与画角,还掌握了比例尺的知识。本单元综合应用已有的经验,用方向和距离比较准确地表示物体所在的位置。
编排3道例题和一个练习,把教学内容分成四段。
例1,理解新的方向词,用方向和距离讲述物体的位置;
例2,根据物体所在的方向和距离,在平面图上指出它的位置;
例3,用方向和距离描述行走的路线;
实践活动《实际测量》
二、教材编写特点和教学建议
1.知道了物体所在的方向和距离,就能确定位置。
生活中用方向表示物体的位置不大精确,因为东北、东南、西北、西南的范围比较宽,而且仅有方向,没有距离。用方向和距离比较准确地表示物体的位置,涉及了方位、角度、实际距离三个具体内容。
引出新的方向词。本单元先后教学四个方向词,它们是北偏东、北偏西、南偏东、南偏西,这些词是人们约定的,不能随意创造或变化。
例1联系原有经验,航海情境图上灯塔1在轮船的东北方向,灯塔2在轮船的西北方向。教材指出,东北方向叫做北偏东,西北方向叫做北偏西,引出了两个新方向词。在原有方向知识基础上认识新方向词,有助于理解词的具体含义。北偏东即正北往东偏些,北偏西即正北往西偏些。理解了北偏东、北偏西,再认识南偏东、南偏西就容易了。
用角度准确表示方向。北偏东仍然是较宽的范围,用来表示方向还不够精确。教材指出从航海图上可以看到,灯塔1在轮船的北偏东30方向。这里的北偏东30方向表示了轮船为端点的一条射线,灯塔1是这条射线上的一个点。因此,方向词的后面添上角的度数,才能准确描述物体所在的方向。教学这个知识,不仅让学生学会如何表示方向,还要体会这样表示的好处。
用距离准确表示位置。北偏东30讲了方向,在这个方向上,哪里是灯塔1?于是,量出灯塔1到轮船的图上距离,根据比例尺,算出实际距离。轮船北偏东30方向6千米处准确地描述了灯塔1的位置。
例1有序地安排三个知识点的教学,让学生逐步体会方向和距离能够确定位置。
2.在平面图上指出物体的位置。
例2根据物体所在的方向与距离,在平面图上标出它的位置。这道例题里没有新的知识,只是理解北偏东40方向2千米处的基础上画图。画图通常分两步,先画出北偏东40方向,再在这个方向上画出相应的点。教材让学生先画图,再交流画的方法与体会。
用量角器画射线。北偏东40是以灯塔为端点的一条射线的方向,在图上表示清凉岛的位置,应该画出这条射线。画射线可以使用量角器,把表示灯塔的点作顶点,正北方向为角的一条边,偏东40角的另一条边就是北偏东40方向。
算出图上距离,在射线上描点。2千米是清凉岛到灯塔的实际距离,在平面图上表示清凉岛的位置,需要这两点间的图上距离。平面图绘出的是线段比例尺,鸟选用了比较方便的算法求图上距离。算出图上距离4厘米,就能用直尺在射线上找到相应的点表示清凉岛。
3.用方向和距离描述行走的路线。
例3说说李伟从家到学校的路线,在现实的情境里应用方向距离确定位置的知识。
李伟家到学校的路线是三条线段组成的折线,描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。兔和鸟描述的共同点是都清楚讲述了方向与路程,不同点在用的方向词上。两种讲述都正确,要提倡像鸟那样说,通过具体应用巩固确定位置的知识。示意图上有两个60角,其中一个用于描述上学路线,另一个描述放学路线。
4.测定地面上相隔较远的两点间的距离。
受测量工具的限制,地面上相隔较远的两点间的距离,往往不能一次就直接量得。这就需要先通过两点测定一条直线,把两点间的距离分成几段,逐段测量并相加。实践活动《实际测量》教学这种方法。
认识工具。测量较短的长度,有各种尺供选用。平整土地、兴修水利、架桥铺路......都需要测量较长的距离,仅用尺不能直接度量,还需其他工具,如标杆、测绳等。
测定直线。使用标杆在两点之间测定直线,是这次实践活动的主要内容。教材通过图画表达在A、B两点间测定直线的方法,先在A点和B点各竖一根标杆,然后在两点间的C点和D点竖标杆。要使所有标杆都在同一条直线上,一名男孩观察,女孩在调整。这样就把A、B两点间的距离分成三段测量,各段长度的总和就是A、B两点间的距离。
看懂图示的方法以后,在操场上选择相距较远的两点,实践这种方法。
步测。没有测量工具或者测量要求不高的时候,可以步测。步测需要知道一步的长度,教材指导获得步长的方法,设计了求步长的活动。学生按教材的设计,就能算出平均步长。
目测。如果对测量结果的要求不高,还可以目测。教材讲了什么是目测,介绍了练习目测的方法。目测技术要经过大量练习才会逐渐掌握,小学生只能知道目测,进行的目测是很不精确的。
第二篇:五年级数学教案《确定位置一》
五年级数学教案《确定位置一》
作为一名优秀的教育工作者,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?以下是小编整理的五年级数学教案《确定位置一》,欢迎大家分享。
设计说明
数学来源于生活,生活又离不开数学知识。因此,数学教学就应遵循数学源于生活,寓于生活,用于生活的理念,给学生一双“数学的眼睛”,使学生在实际生活中体会到数学的用途。《数学课程标准》指出:好的数学教学应从学习者的生活经验和已有的知识背景出发,提供给学生充分进行数学实践活动和交流的机会,使他们真正理解和掌握数学知识、思想和方法,同时获得广泛的数学活动经验。根据本节课的知识特点,为激发学生的求知欲,使学生学会解决相关问题,本节课在教学设计上有如下特点:
1、情境激趣。
教学中,有效地利用教材提供的学习资源创设情境,通过学生的描述,体会必须通过方向和距离才能准确描述事物的位置关系。从而有效地激发学生的学习兴趣,为学习新课做好铺垫。
2、突出学生的主体地位。
在教学的过程中,以学生为主体,在小组合作中大胆地与同伴进行交流与合作,学会辨别方向和位置的方法,不断提高自己的思维水平。同时让学生眼、口、脑并用,在积极探究中体验解决问题的整个过程,使学生的各方面能力都得到培养。
课前准备
教师准备PPT课件
学生准备量角器
教学过程
⊙创设情境,激趣导入
1、创设情境。(课件出示教材情境图)
六一儿童节,老师带领同学们到动物园游玩,他们可以去哪些景点游玩?你能用学过的知识说说它们的位置吗?(学生自由回答)
2、激趣导入。
师:我们该怎样描述这些景点的具体位置呢?今天我们来学习确定位置的方法。
[板书课题:确定位置(一)]
设计意图:数学源于生活,又服务于生活。通过课件出示生活化的情境,激发了学生的学习兴趣,同时带给学生具有挑战性的问题,引起学生的思考,进一步调动学生探究问题和解决问题的积极性。
⊙合作交流,探究新知
1、探究物体的具体方向。
(1)分组讨论:此时,怎样描述各景点的位置?
(2)汇报想法。(学生可能想到用方向或其他方法来表示位置,教师要及时确定正确的方法,并引导学生明确要用方向表示位置,必须先确定一个观测点)
(3)引导思考。
①提问:熊猫馆在喷泉广场的什么方向?[引导学生说出熊猫馆在喷泉广场的`东北方向(也可以说在喷泉广场的北边再往东)]
②提问:狮虎山也在喷泉广场的北边再往东,怎么区分这两个地点呢?(使学生想到结合角度来确定位置)
教师说明:在确定方向时,一般以南、北为标准,北偏东就是正北往东偏,北偏西就是正北往西偏,南偏西就是正南往西偏,南偏东就是正南往东偏。
(4)探究结合角度精确确定物体方向的方法。
①结合情境图中熊猫馆的位置,明确物体精确方向的描述方法。
(指出:熊猫馆在喷泉广场北偏东20°的方向上和熊猫馆在喷泉广场东偏北70°的方向上这两种说法都是正确的。确定角度可以借助图中的角度线,也可以用量角器测量)
②根据情境图描述狮虎山的精确方向。
[狮虎山在喷泉广场北偏东50°(或东偏北40°)的方向上]
2、结合具体方向和距离确定物体的.位置。
(1)认识方向和距离对确定物体位置的作用。
①提问:大象馆和长颈鹿馆都在喷泉广场北偏西60°(或西偏北30°)的方向上,如何区分它们的位置呢?
②学生小组讨论教师提出的问题。
③教师明确:知道各景点在喷泉广场的哪个方向后,必须同时知道各景点到喷泉广场的距离才能确定它们的具体位置。
(2)结合具体方向和距离确定物体的位置。
[大象馆和长颈鹿馆都在喷泉广场北偏西60°(或西偏北30°)的方向上,大象馆距离喷泉广场1000米,长颈鹿馆距离喷泉广场500米]
(3)小结。
确定物体位置的方法:首先要找准观测点,然后明确方向和距离。
3、用方向和距离描述行走路线。
课件出示:参观斑马场后,同学们想去猴山,说一说他们的行走路线。
(1)议一议:怎样才能说清去猴山所走的路线呢?
①明确出发点和目的地,以及按什么方向行走,走多远,途中要经过哪些景点。
②明确以斑马场为观测点时怎样描述喷泉广场所在的位置。
(2)说一说同学们从斑马场去猴山的行走路线。
设计意图:
《数学课程标准》指出:学生是主体,教师是组织者、引导者和合作者。以学生为主体,引导学生在观察、发现、思考、交流中认识方向、距离对确定物体位置的作用,掌握根据方向和距离确定物体位置的方法,能根据方向和距离准确描述出物体的具体位置。
第三篇:确定位置(一)-苏教版五年级下册数学教案
1、确定位置
(一)-苏教版五年级下册数学教案
教学内容:教科书第15页例
1、练一练,练习三1~3题。教学目标:
1、使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2、使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。
3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程:
一、情境引入
1、谈话:同学们去过新体育馆观看过篮球比赛吗?(出示一张球票)这是老师去新体育馆看比赛的票,拿着票,老师很快就找到了自己的位置,你知道老师是怎么找到的吗?
学生自由回答。
2、出示例1的情境图。
这是班级的座位图,从图中你看出了什么?
有个小朋友叫小军,你知道他坐在哪里吗?
指名学生回答。
如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗?
你觉得用这样的方法描述小军的位置有什么特点?(不够清楚,比较麻烦)
3、揭示课题并板书。
用我们以前学习过的知识描述小军的位置,显得不够规范或比较麻烦。怎样才能正确、简明地说出小军的位置呢?
这节课我们继续研究确定位置的方法。
二、教学新课
1、教学用数对表示位置。
(1)介绍列、行的含义和确定第几列、第几行的规则。实际上,在确定位置时,竖排叫列,横排叫行。
(指图说,板书)
确定第几列一般从左往右数,确定第几行一般从前往后数。这叫什么?这是第几列?(从图中指列、行问)这是第几行?指第1列第1行的图问:
这一位同学在第几列第几行?(第1列第1行)小军位置是第几列第几行?
同桌互相指一个位置说说。
(2)出示抽象图。
如果把每个学生的座位用圆圈表示,每一行有几个圈呢?一共要画几列呢?
出示抽象图:
第7行○○○○○○○○
第6行○○○○○○○○第5行○○○○○○○○第4行○○○○○○○○第3行○○○○○○○○第2行○○○○○○○○第1行○○○○○○○
第第1„„„„7
列列
图中的第1列在哪里?
第1行呢?(标出“第1行”和“第1列”)
谁能像这样标出其他的列和行?
指一指第4列第2行在哪里?
第3列第4行在哪里?
„„
同学们在明白了列和行的含义后,现在能正确、简明的确定位置了吗?
(3)用数对表示位置。
小军坐在第4列第3行,在数学上可以用数对表示为(4,3)。你知道这个数对的含义吗?数对中的4表示什么意思?3呢?数对中的第一个数表示第几列,第二个数表示第几行;两个数之间用逗号隔开,两个数的外面用小括号括起来。
师指抽象图中任意一个圈问:请你用数对表示。
2、完成“练一练”。
(1)学生在书上完成1、2题。
你能找到第2列第4行的位置吗?有数对怎样表示?
(2)(5,5)表示什么呢?是图上的哪个圈?
两个“5”表示的意思一样吗?
三、巩固练习
1、完成练习三第1题。
教室里的座位共有几列几行呢?第1列第1行是哪个同学的座
位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?
在小组中互相说说,并互相指其他座位说数对。
2、完成练习三第2题。
在实际生活中,也经常用数对确定位置。
你能悦纳嘎数对表示这四块瓷砖的位置吗?
追问:第3列的两块瓷砖有什么共同特点吗?
第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?
同一列的两块瓷砖,数对中的第一个数相同;
同一行的瓷砖,数对中的第二个数相同。
3、完成第3题。
(1)独立完成用数对表示每一块花砖的位置。
(2)在小组中交流花砖位置的排列有什么规律?
(3)汇报交流结果。
四、课堂总结
通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?
板书设计:
用数对确定位置
竖排叫列,横排叫行。
数对中的第一个数表示第几列,第二个数表示第几行;两个数之间用逗号隔开,两个数的外面用小括号括起来。
第四篇:确定位置(一)-苏教版五年级下册数学教案
1、确定位置
(一)-苏教版五年级下册数学教案
教学内容:教科书第15页例
1、练一练,练习三1~3题。教学目标:
1、使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2、使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。
3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。教学过程:
一、情境引入
1、谈话:同学们去过新体育馆观看过篮球比赛吗?(出示一张球票)这是老师去新体育馆看比赛的票,拿着票,老师很快就找到了自己的位置,你知道老师是怎么找到的吗? 学生自由回答。
2、出示例1的情境图。
这是班级的座位图,从图中你看出了什么? 有个小朋友叫小军,你知道他坐在哪里吗? 指名学生回答。
如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗? 你觉得用这样的方法描述小军的位置有什么特点?(不够清楚,比较麻烦)
3、揭示课题并板书。
用我们以前学习过的知识描述小军的位置,显得不够规范或比较麻烦。怎样才能正确、简明地说出小军的位置呢? 这节课我们继续研究确定位置的方法。
二、教学新课
1、教学用数对表示位置。
(1)介绍列、行的含义和确定第几列、第几行的规则。实际上,在确定位置时,竖排叫列,横排叫行。(指图说,板书)
确定第几列一般从左往右数,确定第几行一般从前往后数。这叫什么?这是第几列?(从图中指列、行问)这是第几行? 指第1列第1行的图问:
这一位同学在第几列第几行?(第1列第1行)小军位置是第几列第几行?
同桌互相指一个位置说说。(2)出示抽象图。
如果把每个学生的座位用圆圈表示,每一行有几个圈呢?一共要画几列呢? 出示抽象图:
第7行
○
○
○
○
○
○
○
○ 第6行
○
○
○
○
○
○
○
○ 第5行
○
○
○
○
○
○
○
○ 第4行
○
○
○
○
○
○
○
○ 第3行
○
○
○
○
○
○
○
○ 第2行
○
○
○
○
○
○
○
○
第1行
○
○
○
○
○
○
○
第 第 „„„„
列
列 图中的第1列在哪里?
第1行呢?(标出“第1行”和“第1列”)谁能像这样标出其他的列和行? 指一指第4列第2行在哪里? 第3列第4行在哪里? „„
同学们在明白了列和行的含义后,现在能正确、简明的确定位置了吗?
(3)用数对表示位置。
小军坐在第4列第3行,在数学上可以用数对表示为(4,3)。你知道这个数对的含义吗?数对中的4表示什么意思?3呢? 数对中的第一个数表示第几列,第二个数表示第几行;两个数之间用逗号隔开,两个数的外面用小括号括起来。
师指抽象图中任意一个圈问:请你用数对表示。
2、完成“练一练”。
(1)学生在书上完成1、2题。
你能找到第2列第4行的位置吗?有数对怎样表示?(2)(5,5)表示什么呢?是图上的哪个圈? 两个“5”表示的意思一样吗?
三、巩固练习
1、完成练习三第1题。
教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?
在小组中互相说说,并互相指其他座位说数对。
2、完成练习三第2题。
在实际生活中,也经常用数对确定位置。你能悦纳嘎数对表示这四块瓷砖的位置吗? 追问:第3列的两块瓷砖有什么共同特点吗?
第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?
同一列的两块瓷砖,数对中的第一个数相同; 同一行的瓷砖,数对中的第二个数相同。
3、完成第3题。
(1)独立完成用数对表示每一块花砖的位置。(2)在小组中交流花砖位置的排列有什么规律?(3)汇报交流结果。
四、课堂总结
通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?
板书设计: 用数对确定位置 竖排叫列,横排叫行。
数对中的第一个数表示第几列,第二个数表示第几行; 两个数之间用逗号隔开,两个数的外面用小括号括起来。
教学目标
1.使学生在具体的情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中的位置。
2.使学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高抽象思维能力,发展空间观念。
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
教学过程
一、设境置疑,产生需要
1.(课件出示学生座位图)仔细观察这幅座位图,你知道小军坐在哪里吗?(板书:第4组第3个;第3排第4个)
2.设疑:小军的位置没有变,为什么同学们的说法都不一样呢?
3.你能具体说一说第4组第3个是怎么看的吗?第3排第4个你们又是怎么看的呢?
4.揭题:由于同学们看的方法和角度不同,所以在描述小军位置时,产生了不同的说法。那么,怎样才能正确、简明地描述小军的位置呢?今天这节课我们就一起来进一步学习确定位置。(板书:确定位置)
[设计意图:通过呈现学生比较熟悉的教室里有序排列的座位的场景,激活学生头脑中已有的描述物体位置的经验;然后通过交流,引发学生产生用一致的方式表示位置的需要。]
二、逐步抽象,掌握方法
1.列、行的含义和确定第几列、第几行的规则
(1)认识场景图中的竖排和横排
①继续观察上幅座位图,在教室里,竖里面有几排?如果从左往右数的话,这是第1竖排,这是第2竖排……这是第6竖排。
②在教室里,横里面又有几排呢?如果我们从前往后数的话,这是第1横排,这是第2横排……这是第5横排。
(2)认识圆圈图
①为了清楚地表示每个同学坐的位置,现在我们把他们坐的位置都用圆圈表示出来。(课件出示)
②为了突出小军坐的位置,我们把小军坐的位置用红色圆圈来表示。(课件出示)
(3)认识列
①从这幅圆圈图上,如果从左往右数,现在你还能指一指第1竖排在哪里吗?第5竖排在哪里?第6竖排呢?
②揭示:其实每一竖排在数学上我们都把它叫做列。(板书:竖排 列)确定第几列我们一般都是从左往右数的。(板书:从左往右数)
③想一想这一列应是第几列?这一列又是第几列?这幅图上一共有几列?(课件依次出示第1列到第6列)
(4)认识行
①刚才我们已经知道每一竖排都叫做列,而每一个横排在数学上我们把它叫做行。(板书:横排 行)确定第几行一般是从前往后数的。(板书:从前往后数)
②想一想第1行在哪里?第3行呢?在这幅图上一共有几行呢?(课件依次出示第1行到第5行)
(5)巩固列和行的认识
刚才我们已经知道了列和行,请同学们闭上眼睛想一想,我们是怎样规定列和行的?(随学生回答,课件闪动演示)[设计意图:先认识场景图中的竖排和横排,然后把具体的场景图逐步抽象成圆圈图,为后面教学作了孕伏和铺垫。在此基础上,教学列、行的合义和确定第几列、第几行的规则,一切显得水到渠成。同时,借助于多媒体课件,形象直观地帮助学生理解规则。]
2.数对的含义和数对表示位置的方法
(1)学习用第几列第几行表示位置
①从圆圈图上,你能找到第1列第1行的位置在哪里吗?
②你现在还能用第几列第几行来描述小军的位置吗?
③现在同学们都用第4列第3行来表示小军的位置,看来用第几列第几行的方法来描述小军的位置真好,让我们有了一个统一的说法。
(2)学习用数对表示位置
①揭示:小军的位置是第4列第3行,我们也可以用数对表示。(板书:数对)
②猜一猜:既然是数对,你能不能猜一猜有几个数呀?
③介绍数对表示位置。
数对有两个数,我们在表述的时候,应该先表示列数,再表示行数,前后的顺序是不能颠倒的。因为小军的位置是在第4列第3行,所以在这里我们应先写列数4,再写行数3。数对还有它特定的书写格式,要用括号把列数与行数括起来,并在列数和行数之间写上一个逗号,把两个数隔开。完成板书:(4,3),这个数对就表示小军的位置,我们把这个数对读作“四三”。
④想一想:数对(4,3)表示什么意思?
[设计意图:通过让学生找“第1列第1行”的位置这一活动,然后根据圆圈图中小军的位置,有意识地让学生说说小军坐在“第几列第几行”,统一认识。在此基础上,给出用数对表示的方法,结合板书使学生理解数对中的每一个数各表示什么,从而初步理解数对的含义。]
(3)尝试用数对确定位置
①在这幅圆圈图中,你还能找到第2列第4行的位置吗?这一位置用数对该如何表示?这里的2和4又分别表示什么意思呢?
②在练习纸上的圆圈图中,任意找一个位置,说一说你找的位置是第几列第几行,用数对怎样表示。
③交流:你找的位置是第几列第几行,用数对如何表示?
④如果有一个同学坐的位置是用数对(6,5)表示的,你能在圆圈图上很快地圈出他的位置吗?你是怎样想的?
⑤在练习纸上写一个数对,让你的同桌在圆圈图上找出相应的位置,并互相说一说这个位置是第几列第几行。
[设计意图:联系例题中的圆圈图,通过指定用第几列第几行表示的位置,让学生完整地写出表示这一位置的数对;以及根据数对去找某一位置这两个活动,帮助学生加深对数对含义的理解,初步学会用数对表示座位所在的位置。]
三、联系实际,加深理解 1.用数对表示教室里的位置
(1)谈话:刚才我们用数对很快确定了圆圈图上的位置,那么在教室里,同学们的位置是在第几列第几行,用数对怎样表示呢?
(2)明确教室里的列和行。
①如果站在老师的角度来观察同学们的位置,想一想第1列应该在哪里?第5列在哪里?第8列呢?
②列我们已经清楚了,那第1行在哪里呢?第4行呢?
③请第1列第1行的同学站起来。
(3)用数对确定位置。
①观察一下数学课代表的位置,看看是在第几列第几行,用数对怎样表示?
②你的位置在第几列第几行,怎样用数对表示呢?先自己想一想再告诉你的同桌。
③猜同学:在我们教室里有个同学的位置用数对表示是(3,4),猜一猜他是谁呀?
④猜好朋友:现在你不用告诉大家你的好朋友是谁,你用数对把你好朋友的位置表示出来,让大家猜猜他是谁。
[设计意图:因为圆圈图中的位置和实际教室里的位置稍有不同,所以教师加强了指导作用。然后,通过用数对描述数学课代表位置、自己位置的活动,以及根据数对猜同学、猜好朋友的活动,让学生结合教室中的位置,进一步巩固对列、行和数对的含义的认识。]
2.用数对表示装饰瓷砖的位置
(1)谈话:在生活中的很多现象都用到了数对的知识。(出示练习三第2题瓷砖图)这是小明家厨房的一面墙上贴着的瓷砖,你能用数对表示这四块花色瓷砖的位置吗?
(2)仔细观察这四块花色瓷砖的位置和表示的数对,你发现什么规律了吗?
3.国际象棋记录棋子位置的方法
(1)谈话:数对不仅在生活中有着广泛的应用,在竞技体育中也经常用到数对的知识。(课件出示国际象棋比赛的画面)
(2)介绍国际象棋(课件依次出示)。
①国际象棋的棋盘。
②国际象棋表示棋盘方格所在列数和行数的方法。
国际象棋棋盘上通常用小写字母a~h分别表示棋盘方格所在的列数,用数字1~8分别表示棋盘方格所在的行数。
③国际象棋的棋子。
(3)交流理解国际象棋记录棋子位置的方法。
①(出示练习三第8题图)现在棋盘上白王所处的位置用国际象棋专用的方法记为g2,你知道它是用什么方法记录白王的位置吗?这个g2表示什么意思呢?
②棋盘上的黑王、黑车、白兵各在什么位置?先说一说,再记录下来。
③如果黑马的位置用d5表示,你知道它在哪里吗?如果白马的位置用f7表示,你又知道它在哪里吗?
4.用数对表示礼堂中的座位
(1)(课件出示练习三第5题图)找一找在这张位置图上一年级一班的位置在哪里?六年级五班的位置在哪里?
(2)如果有一个班级所处的位置用数对表示是(□,3),你能确定是哪个班级吗?可能是哪些班级呢?为什么?
(3)如果老师告诉你,这个班级的位置用数对表示是(2,3),现在你知道是哪个班级了吗?
[设计意图:练习的形式活泼有趣,富有开放性和人文性,既拓宽了学生的知识面,又能让学生体会数对对确定位置的方法的应用价值。在活跃课堂气氛的同时。更有效地巩固了用数对确定位置这一新知识。]
四、拓宽视野,全课总结 1.介绍
(1)用经线和纬线确定地球上任意一点位置的方法。
(2)部分城市的地理位置,如:北京在北纬39°57′,东经116°28′;无锡在北纬31°35′,东经120°39′。
(3)经度和纬度在航海、航天、气象、军事等方面的运用。(课件出示相关图片)
2.全课总结
(1)讲述:用经度和纬度确定位置和我们用数对确定位置的道理是一样的。
(2)课外作业:数对的知识在生活中的运用很广泛,有兴趣的同学课后可以通过上网、看书等方式搜集这方面的资料。
[设计意图:结合数对介绍地球仪上的经纬线的知识,拓宽了学生的知识视野,有利于学生充分体验数对知识的广泛应用。布置的作业由课内向课外拓展,可以使学生将书本知识与生活实际进行链接,感受数学与生活的密切联系,将数学思考引向深处。]
第五篇:确定位置(一)-苏教版五年级下册数学教案
1、确定位置
(一)-苏教版五年级下册数学教案
教学内容:教科书第15页例
1、练一练,练习三1~3题。教学目标:
1、使学生在具体情境中认识列、行的含义,知道确定第几列、第几行的规则,初步理解数对的含义,会用数对表示具体情境中物体的位置。
2、使学生经历由具体的座位抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念。
3、使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。教学过程:
一、情境引入
1、谈话:同学们去过新体育馆观看过篮球比赛吗?(出示一张球票)这是老师去新体育馆看比赛的票,拿着票,老师很快就找到了自己的位置,你知道老师是怎么找到的吗? 学生自由回答。
2、出示例1的情境图。
这是班级的座位图,从图中你看出了什么? 有个小朋友叫小军,你知道他坐在哪里吗? 指名学生回答。
如果我们不知道小军的位置,听了刚才同学的发言,能顺利地找到小军的位置吗? 你觉得用这样的方法描述小军的位置有什么特点?(不够清楚,比较麻烦)
3、揭示课题并板书。
用我们以前学习过的知识描述小军的位置,显得不够规范或比较麻烦。怎样才能正确、简明地说出小军的位置呢? 这节课我们继续研究确定位置的方法。
二、教学新课
1、教学用数对表示位置。
(1)介绍列、行的含义和确定第几列、第几行的规则。实际上,在确定位置时,竖排叫列,横排叫行。(指图说,板书)
确定第几列一般从左往右数,确定第几行一般从前往后数。这叫什么?这是第几列?(从图中指列、行问)这是第几行? 指第1列第1行的图问:
这一位同学在第几列第几行?(第1列第1行)小军位置是第几列第几行?
同桌互相指一个位置说说。(2)出示抽象图。
如果把每个学生的座位用圆圈表示,每一行有几个圈呢?一共要画几列呢? 出示抽象图:
第7行
○
○
○
○
○
○
○
○ 第6行
○
○
○
○
○
○
○
○ 第5行
○
○
○
○
○
○
○
○ 第4行
○
○
○
○
○
○
○
○ 第3行
○
○
○
○
○
○
○
○ 第2行
○
○
○
○
○
○
○
○
第1行
○
○
○
○
○
○
○
第 第 „„„„
列
列 图中的第1列在哪里?
第1行呢?(标出“第1行”和“第1列”)谁能像这样标出其他的列和行? 指一指第4列第2行在哪里? 第3列第4行在哪里? „„
同学们在明白了列和行的含义后,现在能正确、简明的确定位置了吗?
(3)用数对表示位置。
小军坐在第4列第3行,在数学上可以用数对表示为(4,3)。你知道这个数对的含义吗?数对中的4表示什么意思?3呢? 数对中的第一个数表示第几列,第二个数表示第几行;两个数之间用逗号隔开,两个数的外面用小括号括起来。
师指抽象图中任意一个圈问:请你用数对表示。
2、完成“练一练”。
(1)学生在书上完成1、2题。
你能找到第2列第4行的位置吗?有数对怎样表示?(2)(5,5)表示什么呢?是图上的哪个圈? 两个“5”表示的意思一样吗?
三、巩固练习
1、完成练习三第1题。
教室里的座位共有几列几行呢?第1列第1行是哪个同学的座位?用数对怎样表示你能说说自己的座位在第几列第几行吗?用数对怎样表示?
在小组中互相说说,并互相指其他座位说数对。
2、完成练习三第2题。
在实际生活中,也经常用数对确定位置。你能悦纳嘎数对表示这四块瓷砖的位置吗? 追问:第3列的两块瓷砖有什么共同特点吗?
第4行的两块瓷砖用数对表示位置时,写出的两个数对有什么相同的地方?
同一列的两块瓷砖,数对中的第一个数相同; 同一行的瓷砖,数对中的第二个数相同。
3、完成第3题。
(1)独立完成用数对表示每一块花砖的位置。(2)在小组中交流花砖位置的排列有什么规律?(3)汇报交流结果。
四、课堂总结
通过今天的学习,你有什么收获?你认为学习用数对确定位置的方法对你以后有什么指导作用呢?
板书设计: 用数对确定位置 竖排叫列,横排叫行。
数对中的第一个数表示第几列,第二个数表示第几行; 两个数之间用逗号隔开,两个数的外面用小括号括起来。