第一篇:多边形面积的计算复习课教学设计(写写帮推荐)
多边形面积的计算复习课教学设计
教材分析:
这节课是在教学完五种图形的面积计算后,对学过的知识进行系统整理。教学设计是以数学思想方法为主线来安排教学内容的。新课程标准指出:数学课程改革要以反映未来社会公民所必须的数学思想方法为主线,选择和安排教学内容。因为数学的思想与方法是数学的灵魂,学生一旦拥有它,将终身受益。为此,我在这节课上,首先以学过的五个多边形的面积公式及其推导过程为载体,让学生回忆整理其中所应用的数学思想与方法。然后,我设计了四道实际应用的题目:(1)实际操作题;(2)观察发现题;(3)先估后验题;(4)解决“买地”题。我不以得出答案为满足,而以学生能否应用各种数学思想方法解决实际问题为主要目标,让学生通过独立思考、合作交流和自我评价等过程,提高学习的能力,培养对数学学习的兴趣。
教学目标:
1、情感性目标:使学生感受数学方法和思想的重要性及其应用的广泛性。体会数学的价值,培养对数学学习的热爱。
2、探索性目标:通过操作、讨论、合作等解决问题的数学活动,探索灵活应用各种数学思想方法的技巧。培养学生探索的能力和创新的精神。
3、知识性目标:使学生进一步熟练掌握已学图形各面积公式,能灵活地应用多种方法解决生活中简单的有关组合图形面积的实际问题。
教学流程:
第一阶段:回忆整理所用的数学思想和方法
导入新课:前一段时间我们学习了多边形面积的计算这个单元,你们说说学了这个单元
有什么用呢?(可以计算长方形、正方形、平行四边形、三角形梯形的面积,并能解决生活中有关的实际问题。)今天我们就来上一节多边形面积的计算实践活动课?(电脑了出示课题。)
1、逐个出示各种图形学生用字母公式回答。(根据学生的回答,电脑出示图形和面积公式。)
2、逐个梳理推导过程。
(1)小组活动:他们的面积公式是怎样推导出来的,每一组选一种图形,利用桌面上的学具说一说它们的面积公式是怎么推导出来的?
(2)汇报:在师生共同口述推导时电脑出示图形面积计算公式推导过程。(从三个方面来回答:①推导什么图形,②用什么方法③它的面积公式是。例:我推导的是长方形的面积公式,用数方格的方法推导出来的,它的面积公式是s=ab。)
3、整理完善知识结构。
(1)你们推导这些面积公式最初是从哪一个图形开始的(长方形)它可以推出哪些图
形的面积公式,接着又从哪个图形继续推导。(电脑出示网络图如下:)
(2)引导观察,体会:现在老师把这幅图转过来看就象一棵大树,而长方形就是这棵大树的 “根”(电脑出示网络图)
请同学们回忆一下,在这些面积公式的推导过程中我们都运用了哪些数学方法?{(割补法、平移法)比如平行四边形到长方形。(拼合法、旋转法)比如三角形到平行四边形。}(迁移法:如:梯形面积公式的推导与三角形面积公式的推导方法。转化思想:如平行四边形转化为长方形。)(课件出示以上所归纳的数学思想与方法)学生齐读思想与方法。运用刚才所学的数学思想与方法可以解决很多生活中的实际问题。
第二阶段: 应用数学思想方法解决实际问题
1、结合情景,现在我们先来解决第一个问题,请大家观察一下教室里哪些物体的面上
有我们学过的图形?(黑板、书画等。)以小组为单位,请你们在教室里找到一种物体它的面上有我们学过的图形,测量出它的必备条件,求出它的面积。(注意测量时只要取整数)
汇报:①测量什么图形?②测量什么条件?③面积多少(读算式)(学具:卷尺、计算器)
2、从图中:你知道了什么?你发现了什么?
(知道了:长、宽、底和高,以及它们的面积。发现了:①相同点:②不同点)
小结:刚才这些同学发现了这么多,是因为同学们运用了观察对比的方法找这些图形的相同点和不同点。
3、先估后算:
(1)、在图中大平行四边形的面积是48平方厘米。小平行四边形的面积是多少?(小平
行四边形的底是大平行四边形的一半,高相等。你怎么知道它是等底等高的呢?)
中点
(2)(如图1)梯形的面积是72平方厘米。涂色部分面积是多少?(汇报: 怎样求的?
其实这道题我们用观察法也可以算出来的。电脑演示:)
图2 5 6 12 10
12厘米 4厘米
图1
三、发散思维:(开放性作业设计)
某村有一块荒地,(如上图2)准备以每平方米200元的价格出售,如果买方有1.2万元你认为够不够买?
问:(1)要解决这个问题必须先求什么?
(2)你能想出多少种求这个图形面积的解决方法?(注意只要求计算其中最简单的一
种图形的面积,其它方法只要画出来。)(所用的方法附后)
让学生根据分割的块数进行汇报。
①先汇报分割中分割成两块的有哪几种?
②有没有分成三块的?分成两块就能解决问题,你分成三块必须有特殊的作用。老师出示分割成三块的图形,你们观察一下有没有什么特殊的意义呢?(两个半的长方形,这样就能使计算简便,这就叫找等量的方法,)想想看,这题除了按长方形去找等量外,你们不可以按什么图形去找等量?
③有没有用补足法的?补成什么图形?
④刚才你们所用的方法至少都出现了两块,能不能运用你们所学的办法把它转化成一种图形,如果能的话不是更简便了吗?想想看,有没有办法。
小结:你们做的方法肯定不止这些,归纳起来主要有四种(分割法、找等量的方法、补足法、移位法。)
你们刚才已经选出最简便的一种,算出它的面积了吗?假如用这种方法算(找等量的方法)怎么算呢?如果用(移位法)怎么算?(渗透优化思想)
2、现在你们能回答这个问题吗?如果买方有1.2万元够不够呢?
四、全课总结:
这节课有意义吗?你有什么收获?有什么感受?(主要围绕以下三方面回答)
第二篇:多边形面积计算教学设计
人教版小学五年级数学上册《多边形面积的计算》教案教学反思设计 教学内容:九年义务教育六年制小学教科书数学第九册第64~66页,练习十六第1~3题。
教学目的:
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,使学生初步认识转化的思考方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。
教具准备:
1.照课本第64页的方格纸上画着的平行四边形和长方形的插图制成演示教具。有投影片设备的也可制成投影片。
2.剪两个底40厘米、高30厘米的平行四边形,供教师演示用。有投影设备的也可按照上述底和高的比例制成推拉投影片。
3.每个学生准备一个平行四边形(可以用课本第137页的图剪下来贴在厚纸上。)和一把剪刀。
教学过程:
一、复习
1.出示方格纸上画的平行四边形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高来。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确。)
二、新课 这节课我们共同研究平行四边形面积的计算。(板书:平行四边形面积的计算)
1.用数方格的方法计算平行四边形的面积。
(1)我们学习计算长方形的面积时,曾经用数方格的方法来计算面积的大小,现在我们学习习近平行四边形面积的计算,也先在方格图上数一数它的面积是多少?请打开书看第64页左边的平行四边形,每一个方格表示一平方厘米,自己数一数是多少平方厘米? 请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较。提问:它们的面积怎么样?平行四边形的底和长方形的长怎么样?平行四边形的高和长方形的宽呢? 启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(4)小结。从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得精确。特别是较大的平行四边形,如像教室这么大就不好数了。想一想,能不能像计算长方形面积那样,也找出计算平行四边形面积的计算方法。2.通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视。)然后指名到前边演示。(2)教师示范平行四边形转化成长方形的过程。刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
(3)引导学生比较。(黑板上在剪拼成的长方形上面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系? 教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。(4)引导学生总结平行四边形面积计算公式。这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
(5)教学用字母表示平行四边形的面积公式。板书:S=a×h,告知S和h的读音。说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h,或者S=ah。
(6)看课本中讲解的相应的内容,并完成第65页中间的“填空”。3.应用总结出的面积公式计算平行四边形的面积。
(1)课本第66页例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在本上列式计算,教师巡视。共同订正,指名说出是根据什么列式的。
(2)完成课本第66页“做一做”第1、2题。共同订正。(3)把自己准备的平行四边形量一量,底、高各是多少厘米?再求出面积。
三、巩固练习练习十六第1题。
四、全课小结 这节课我们共同研究了什么? 怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、布置作业 练习十六第2、3题。
教材先给出方格纸上的平行四边形和长方形,从数图形中的方格数引入平行四边形的面积。利用数方格的方法来计算面积仍然是一种计量面积的方法。遇到图形中的边与边之间有不成直角的情况时,该怎样计算面积,学生还没有学过。教材通过实际数方格的个数让学生学会这种计算面积的方法。教材中左右两个方格图上,平行四边形的底与长方形的长,平行四边形的高与长方形的宽分别相等,暗含着两种图形的联系。长方形画在方格纸上,实际是给出了它的长和宽。通过数和算,使学生知道两个图形的面积相等;再通过比较,使学生看出左右两个图形的底与长、高与宽分别相等,从而初步看到平行四边形和长方形的面积和它们的边长和高之间有一定的联系。这样就为学生进一步探寻平行四边形面积的计算方法做了准备。接着教材再提出问题,平行四边形的面积怎样计算,能不能转化为长方形来算。转化的方法是一种数学方法,利用这种方法,可以把新知识转化为旧知识,从而使新问题得到解决。在教学一个数除以小数时,已经用到了转化方法。即根据被除数和除数都扩大相同倍数商不变的性质,把除数是小数的除法转化成学过的除数是整数的小数除法。教材在这里教学平行四边形的面积时利用转化方法,通过学生动手操作、探索,把平行四边形转化成已学过的长方形,从而把计算平行四边形的面积转化为计算长方形的面积。教材改变了过去简单的割补方法,在引导学生操作时渗透了平移思想。教材用图说明平移的方法,把从左面剪下的直角三角形,底边沿着原来的底边向右平着移动,直到直角三角形的左下角的顶点和原平行四边形右下角的顶点重合,直角三角形的斜边和原平行四边形的右边重合为止。通过这样操作,学生把一个平行四边形转化为一个与它面积相同的长方形。然后让学生自己找出长方形的长、宽与原来平行四边形的底、高的关系,推导出平行四边形的面积计算公式。接着通过例题和“做一做”巩固新学的计算公式。“做一做”中第1题图形的底和高的数值都很简单,但图形位置各不相同。这样可使学生加深对图形的认识,正确分清平行四边形的底和高。第2题出现一个接近平行四边形的地面图,让学生计算它的面积,以便加强与实际的联系。练习题由浅入深,而且不全是按照所给的数据直接计算面积的,也有运用图形知识的题目。还注意培养学生动手测量的能力。如第3题让学生自己动手量平行四边形的底和高,这就要求学生首先要会找出哪是底,哪是高,然后才能量出相应的底和高。第6题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关,与相邻两边组成的角度大小无关。第8题和第9题是联系实际的题目,需要先计算土地的面积,再根据数量关系解答问题。第11题渗透函数思想,通过木条围成的图形的变化,以及面积、周长的变化,可以加深学生对长方形和平行四边形之间的联系的理解,使学生知道4根木条围成的长方形面积最大,左右两边的木条斜度越大,围成的平行四边形的高越小,从而面积也越小。
第三篇:《多边形的面积复习课》教学设计
《多边形的面积复习课》教学设计
安徽省黄山市黄山区甘棠中心学校 吕彩虹(初稿)
安徽省黄山市教科院 高娟娟(修改)安徽省黄山市黄山区教研室 齐胜利(统稿)
教学内容:人教版小学数学教材五年级上册第113页第2题及相关练习。教学目标:
(一)知识与技能
复习已学的多边形面积的计算公式。
(二)过程与方法
利用转化思想,推导出平行四边形、三角形和梯形的面积计算公式,将各种组合图形的面积转化为已学的多边形面积并加以计算。
(三)情感态度和价值观
加强知识间的联系,培养学生综合运用各种知识解决问题的能力。目标解析:本学期所学的平行四边形、三角形和梯形的面积计算公式都可以从长方形的面积计算公式推导而来。理解推导的过程,对加强知识间的内在联系、掌握转化的数学思想方法起着重要的作用。掌握了这些,学生今后即使忘记某个多边形的面积计算公式,也可自行推导得出。在计算组合图形的面积时,可以鼓励学生采用不同的方法进行计算,提高学生解决问题的能力。
教学重点:利用转化思想掌握多边形面积的计算公式。
教学难点:采用不同方法计算组合图形的面积,提高综合应用知识解决问题的能力。教学准备: 教具:课件;
学具:每人准备两个完全相同的三角形、梯形和一个平行四边形。教学过程:
一、创设情境,引出新课
李爷爷有一块地,种了三种蔬菜,是哪三种呢?我们一起去看看(课件出示图片)。
教师引导学生发现信息与问题。
信息:种茄子的是一块三角形的地,底长15 m,高是32 m;种黄瓜的是一块平行四边形的地,底长25 m,高是32 m;种西红柿的是一块梯形的地,上底是15 m,下底是23 m,高是32 m。
问题:茄子、西红柿和黄瓜各种了多少平方米?这块地共有多少平方米?
【设计意图】通过情境的创设,拉近数学与生活的联系,使学生产生亲切感,产生学习的兴趣。
二、解决问题,复习方法 1.三角形的面积=底×高÷2 =15×32÷2 =240(平方米)
思考:计算三角形的面积时,为什么要除以2呢?(出示两个完全相同的三角形,请同学拼一拼,明白三角形的面积就是两个完全相同的三角形所拼成的平行四边形面积的一半。)2.平行四边形的面积=底×高
=25×32 =800(平方米)
思考:为什么平行四边形的面积是“底×高”,而不是“底×斜边”呢?(沿平行四边形的高减下三角形,就可以拼得一个长方形。长方形的一边是平行四边形的底,长方形的另一边就是平行四边形的高。)3.梯形的面积=(上底+下底)×高÷2 =(15+23)×32÷2 = 608(平方米)
思考:有谁能说一说梯形的面积公式是怎样得来的?
(用两个完全相同的梯形可以拼成一个平行四边形。平行四边形的底就是梯形的“上底+下底”,平行四边形的高就是梯形的高,梯形的面积是拼成的平行四边形面积的一半。)4.你能用不同的方法求出李爷爷菜地的总面积吗?学生独立解决问题再汇报。方法一:总面积=三角形的面积+平行四边形的面积+ 梯形的面积
=240+800+608 =1648(平方米)
方法二:三种图形组合成一个梯形,上底是(25+23)米,下底是(15+25+15)米,高是32米。
总面积=[(25+23)+(15+25+15)]×32÷2 =1648(平方米)
【设计意图】在呈现简单实际问题的情境中,让学生在解决问题的过程中,回顾了多边形面积计算公式的相关知识和推导面积计算公式的方法,既巩固了多边形的面积计算,又发展了学生迁移、转化的方法和思想。带着问题动手操作,使抽象的知识形象化,进一步唤起对旧知的回忆。用不同的方法求菜地的总面积,让学生进一步感受到解决问题的多样化,训练了学生的思维。
三、巩固练习,应用拓展
1.课件出示教材第116页练习二十五第7题。
(1)学生独立解题。(2)汇报评价。
2.课件出示教材第116页练习二十五第8题。
(1)学生独立解题。(2)汇报评价。
指名说清计算过程中的每一步所表示的意义。既可分段列式,也可以综合列式。3.课件出示教材第116页练习二十五第9题。
(1)学生独立解题,教师巡视,适当指导。(2)小组交流汇报,教师评价。
4.课件出示教材第116页练习二十五第10题。
(1)题目给出什么条件,要求什么?
(条件:小方格的边长为1 cm。要求:组合图形的面积。)(2)学生自主尝试解决问题后,小组交流。
(3)学生汇报自己是怎么想的,教师评价。【设计意图】第7题与第8题属于基础题,通过解决生活中的简单问题巩固平行四边形及梯形面积的计算公式,让学生进一步熟练面积计算公式;第9题的难度有所加大,体现运用不同方式解决问题的思想,充分体现了开放性,既可通过“割”的方式,也可通过“补”的方式来计算,方法三难度相对较大,需要教师引导学生找到三角形的高,让学生感受解决问题的多样性;第10题更为灵活开放,学生先确定方法,再找出相应的长度计算,通过学生汇报自己的思考方法,优化认知,形成共识。
四、全课总结
这堂课你巩固了什么知识?你有什么新的收获?
【设计意图】将有关多边形面积的知识再次进行系统回顾,既加深印象,又将复习中获得的新知表达出来,让同学们共享,使其对知识的认知再次得到提升。
第四篇:多边形的面积复习课
五年级数学
《多边形的面积》复习课
【教学目标】:
1、知识与技能:
(1)使学生进一步理解并掌握平行四边形、三角形和梯形的面积公式,能应用公式计算一些平面图形的面积,并解决一些简单的实际问题。
(2)能用不同的方法计算简单组合图形的面积,进一步体验算法多样化。
2、过程与方法: 引导学生通过回忆、讨论与交流,将“多边形的面积”这个单元所学的知识进行系统复习,结合练一练,加深对所学知识的理解,提高掌握水平。
3、情感、态度与价值观: 使学生感受复习的必要性与重要性,逐步养成自己整理所学知识的意识和良好学习习惯。【教学重点】:正确运用面积公式进行相关计算。【教学过程】
一.创设情境,激发兴趣
谈话:同学们喜欢唱歌吗?有一首歌叫《王老先生有块地》你们知道吗?今天我们就来观察观察王老先生的这块地。大家看黑板。(出示小黑板)
问:你们发现这块地都有什么图形组成的呢?
生回答:(平行四边形、三角形、梯形)
二、知识梳理:
1、组织学生回忆各类图形面积的计算公式(相机板书)
2、回忆各类图形面积计算公式的推导过程。(学生讨论,全班交流)
平行四边形:割补平移转化为长方形
三角形:两个相同的三角形拼成一个平行四边形 梯形:(1、两个完全相同的梯形拼成一个平行四边形。
(2、将梯形分割成两个的三角形。
(3、将梯形分割成一个平行四边形和一个三角形。
小结:我们在推导平行四边形、三角形、梯形的面积公式时,根据转化的思想,把这些图形转化为我们所学过的图形来推导,这是一个重要的思想方法,这在今后学习新知识也将会用到。
3、说说在计算面积时,应该注意的问题是什么?(低和高一定要相互对应)
三、基础练习:
1、口算面积:(单位:厘米)
2、帮王老先生算一算他的地有多大?
四、巩固提高,大显身手 五年级数学
第一题、判断
1、三角形面积是平行四边形面积的一半。()
2、两个面积相等的梯形,形状是相同的。()
3、两个三角形的高相等,它们的面积就相等。()
4、平行四边形的底越长,它的面积就越大。()
5、面积相等的两个梯形一定能拼成一个平行四边形。()
6、两个等底等高的三角形一定可以拼成一个平行四边形。
()
7、用木条做一个长方形框架,再拉成一个平行四边形,平行四边形的面积要变小()第二题、填空
1)一个平行四边形面积是40平方厘米,与它等底等高的三角形面积是()平方厘米。2)个三角形,高不变,底扩大3倍,面积就扩大()倍。
3)如果一个三角形的底和一个平行四边形的底相等,面积也相等,平行四边形的高是10厘米,那么三角形的高是()
4)一个三角形的面积是36平方厘米,高是8厘米,底是()厘米。第三题、思考:
1、一个平行四边形的面积是16平方厘米,从这个平行四边形中剪出一个最大的三角形,这个三角形的面积是多少平方厘米。
2、一个三角形与一个平行四边形的底和面积都相等,平行四边形的高是16厘米,三角形的高是多少厘米。
3、一个平行四边形的底是14厘米,高是9厘米,它的面积是多少平方厘米,与它等底等高的三角形的面积是多少平方厘米。
4、一个梯形面积是84平方米,上底是6米,下底是8米,它的高是多少米。
五、终极挑战:(小黑板出示)
1、一堆圆形钢管堆在一起,它的横截面形状成等腰梯形。已知这堆钢管最上面一层有8根,最下面的一层有13根,并且下面一层都比上面一层多1根。求这堆钢管共有多少根?
2、求阴影部分的面积
3、一个平行四边形花圃的中间有一条宽2米的小路,如图所示,求花圃的面积为多少平方米
六、反思总结:
通过今天的复习,你有什么收获,和大家分享一下。
第五篇:《多边形面积计算》教学反思
《多边形面积计算》教学反思
《多边形面积计算》教学反思1
五年上册第五单元多边形面积计算,主要学平行四边形面积、三角形面积和梯形面积的计算。一直以来,这几个面积公式的推导都是教学的难题,也是教学中的典型课例。在进行教学前,我做了充分的准备工作,学生们做了各种各样的三角形、平行四边形和梯形学具,准备课上动手操作时使用。
在预备课上,我带领学生对相关的平面图形知识进行了复习。学生已经学习了长方形和正方形周长、面积的计算,对平行四边形、三角形、梯形、圆等平面图形学生也有了初步的了解。
在讲平行四边形面积的时候,因为特殊原因,新课不能按计划进行,我灵机一动,这节课可以上一节动手操作课啊。于是,我让学生拿出已准备好的各种图形,进行摆拼,看看都能摆拼出什么样的图案,然后小组进行总结。
在学生进行摆拼的过程中,我一巡视指导,一边思考,这节课应该为后面的新课做哪些铺垫。于是,我提出了以下两个问题:⑴根据我们上节课复习的内容,各小组把摆拼出来的图形进行分类。各小组经过讨论,在我的揭示下,得出结论,所有摆拼出来的图形,可以分为规则图形和不规则图形(也就是组合图形)。⑵观察摆拼成的规则图形,所用的图形有什么规律或者特点。学生开始观察,争论,研究,有的学生还主动寻求教师的帮助。在这一过程中,学生认识到,两个完全一样的三角形可能摆拼成平行四边形、三角形、长方形、正方形,两个完全一样的平行四边形还可以摆拼成平行四边形,两个完全一样的梯形可以摆拼成平行四边形等结论。
通过这一节意外的教学设计,学生在后面学生平行四边形、三角形、梯形面积计算公式推导时,感觉很容易操作,对图形的理解也容易的多了。
不足之处是因为临时的课,教师想的还不是很深入。现在想,可以在这节课上设计两个活动,一个用各种基本图形进行摆拼,完成上面提到的内容,另一个就是各个基本图形之间的转化,在面积不变的情况下,如何把一个基本图形转化成另一个基本图形。这样,整个多边形面积计算的基础就给学生打牢了,再讲多边形面积计算难度就降低了很多,学生掌握起来也会容易的多。
《多边形面积计算》教学反思2
在教学多边形这一个单元时,在新授课时,强调了让学生自己动手实验,找出相互之间的联系,推导出各自的面积计算公式,因为在这一环节中用时较多,常常导致后面安排的练习题不能全部在课堂上完成;练习课时,由于时常注重了对后进生掌握情况的关注,比如说多请他们回答问题,尤其让他们多说说思考过程,这样的结果致使事先安排的习题又一次不能全部完成。
导致出现这种现象的原因是什么呢?经过反思,应该是“精讲多练”做得还不够。有时候,作为教师时常怕学生不理解,总是多讲、反复讲,自以为讲清楚了,学生也就听懂了,事实果真会这样吗?未必。学生他有自己的思维方式,有时候老师越讲他甚至越糊涂,只有在具体的练习中他才会真正掌握。
《多边形面积计算》教学反思3
平行四边形和三角形的面积需要学生操作、在操作中感知面积的推导过程,但学生的操作能力不一,小组合作的能力还没有养成,所以安排的操作环节只对好学生起了作用,中等及以下的学生没有起到效果,还浪费了不少时间,感觉课堂比较散,学生的注意力不能有效的集中,只是开学一周来的最主要的现象,反思这一周就培养学生的合作、交流能力,估计是不适宜的,开学初,接一个新班,可能还是,先明确要求,培养学生坐正认真听讲的习惯,让学生的注意力集中到教师身上,养成眼睛看黑板的习惯,开学初就安排小组合作容易分散学生的注意力,造成课堂比较散的现象。
虽然基本上学生都能掌握计算的公式,但一部分学生对计算公式的推倒不清楚,不知道为什么这么算,所以在计算中会出现问题,反思课堂,在这一环节处理上也感觉不够清楚,学生操作时比较散,导致中下等学生不理解。
教师主观意识太强,觉得课后安排的练习比较简单,也没重视,其实可以在细节上进行教学,如单位名称,好多学生都写的是长度单位,不是面积单位,答语的完整,书写的规范,观察单位等等。
也可适当增减,增加一些思维含量稍高的练习,为作业中的难题目打好基础,埋下伏笔。从而提高课堂效率。也避免了作业中的题目没时间讲。
课堂作业中反映的问题,计算不过关,书写马虎,单位名称不注意,全是平方厘米。没有仔细观察题目。
教师讲的又多了,感觉 容量大,就怕时间来不及,就不有自主的教师讲,学生的自主学习意识就单薄了,备课还需加强,哪些地方要让学生先尝试,先讲,要考虑好,不能上课时临场发挥。
思考明天的练习课,简单的题目,加快频率,有所侧重,第7题侧重单位的处理和直角三角形的底和高,第8题侧重是乘还是除,答语的完整。第9题侧重高的位置。复杂的要花时间,三题都要先让学生思考后再交流,教师一定要舍得花时间,不可代替,主观讲授,否则效果不会好。时间控制在25分钟内,思考题适当提醒完成。留出10分钟左右评讲补充习题上的2条题目。
《多边形面积计算》教学反思4
本节课对多边形面积计算的知识点进行了全面的整理和复习。把长方形,平行四边形,三角形,梯形的面积计算紧密联系起来。着重解决组合图形的面积计算。在整个教学过程中,我始终贯彻了以下几点:
一、体现数学与实际生活的联系,将知识应用于生活实际。
新课改强调“要使学生体会数学与自然及人类社会的密切联系,了解数学的价值,增强应用数学的意识。”在本节课中,我时刻提醒学生注意数学知识与日常生活的联系,激发学生运用数学知识探索和解决实际问题的强烈欲望,既显得亲切自然,也为整理复习的开展创设新的情境。
二、加强合作交流的意识,在合作中学习,在交流中体验快乐。
在课程设计中,充分发挥学生的主动性,创造尽可能多的机会让学生展示自己学习的收获和聪明才智。既可以是独立的讲解,也可以是同伴的合作,或者是互相的提问,答辩,质疑。所以,我安排后进生,交流基础知识的回顾;让中等生进行复习整理提高;到实践与应用时,充分发挥优等生的优势,辨论用多种方法合理解题。整个过程中,始终让学生通过多种形式的交流,来揭示知识之间的联系,认识转化迁移等数学思想。
三、突破难点重点,完成单元既定目标。
组合图形面积计算是长方形、正方形,平行四边形,三角形与梯形的`面积计算知识的发展,也是日常生活中经常需要解决的问题。在教学过程中,让学生自主解决组合图形面积计算的问题。再让学生动手操作,自主探究如何使用组合图形,转化为己学过的基本图形的过程中,首先让学生把这个图形,分解成我们已学过的图形,通过画辅助线表示出来,如果认为有几种分法,就分别在图形上表示出来。在这个环节中,学生基本上都能够运用分割法或添补法把组合图形转化为所学过的基本图形。但在展示学生分法时,我忘记了将在巡堂时发现的个别学生,由于找不到相关条件,无法计算图形面积也进行展示和集体讨论,这是不足的地方。学生汇报了不同的分法后,就让他们用自己喜欢的方法进行图形的面积计算,然后让学生展示汇报,从中小结,用哪种分割法或添补法计算这个组合图形的面积更简单。这个环节花的时间比较多,跟前面的环节类似,结果导致后面的时间很紧,因此在今后教学中应多注意教学环节之间的内容设计,把握重点,尽量紧凑,及时发现问题和做出反馈。
当然,课堂上还存在一些不足。例如,对于有些学生表现好,能够正确地进行评价。而对于有些学生的亮点没有及时发现,评价不到位。且课堂纪律的组织,也有些欠缺。这些有待于自己在今后教学中,不断学习和探索。我深知:教师应该是用教材,而不是学教材,应引导学生走出课本,激活他们的创造性思维,使学生向多元化发展,让学生真正学到有价值的数学,获得必需的数学。
《多边形面积计算》教学反思5
在多边形的面积计算教学中,通过小组活动、操作实践等手段,帮助学生理解知识点,使抽象的知识变得直观形象,给学生一个创新的空间。
在计算教学中注重引导学生的自主学习,把学习的权利交给学生,利用小组合作学习,便于培养学生的参与合作精神。教师会积极参与小组的讨论,引导组织好学生的学习活动,真正把课堂还给学生,使学生成为课堂的主人。
学生在练习时发现学生单位进率严重遗忘,作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的知识,利用一个边长1米的正方形,让学生分别用米作单位和用分米作单位计算面积,再现了面积单位进率的推导过程,帮助学生找回记忆中的知识。针对这种情况,我有意识地在平时的练习中,引导学生复习容易遗忘的知识点。在教学实践过程中,教师只有经常反思学生在学习过程中出现的种种问题,分析其成因,才能帮助教师不断改进教学手段,以增强教学效果。应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的学生能够说出来的,作为老师尽量不要代替学生说出来。在课堂上也能从操作、比较到发现前后图形之间的联系,最后得出计算公式。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式。
《多边形面积计算》教学反思6
下面,结合学生在《多边形面积计算》这一单元中的学习情况,谈一点自己的思考。
(一)多机械记忆,缺灵动思考。
应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。更有甚者,当老师提问:“我们是怎样推导出平行四边形的面积公式的?”他回答道:“平行四边形的面积等于底乘高。”问不对题!学生的反应,促使我对课堂教学进行思考:排除一些学生的领悟能力不强这一客观因素,作为老师,我有没有引导学生把探索活动真正落到实处,有没有关注学生在活动中是否有深刻的体会?而学生,对学习所表现出来的主动意识如何?是积极地自主探索和思考,还是墨守成规地接受书本知识呢?
反思课堂教学,我觉得要在以下几个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式等实践活动,理解相关面积公式的来龙去脉,并且产生深刻的体会;
其次,激发学生积极思考的意识,多边形面积公式的推导过程中,可以让学生在拼图的过程中多说说自己的发现,多说说转化前后图形之间的联系,同桌说,指名说,以“说”促“思”,也能增强学生对本课知识的理解;再次,恰当评价学生的学习情况以及参与意识,要使学生明白,学习的目的不仅仅是会做作业,学会学习是很重要的一件事,要积极在学习过程中培养自己的学习能力。
(二)面积单位进率严重遗忘
有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,利用一个边长1米的正方形,让学生分别用米作单位和用分米作单位计算面积,从而得出1平方米=100平方分米,再现了面积单位进率的推导过程,帮助学生找回记忆中的知识。但是作业中的情况反应,仍有错误存在。看来有些学生确实忘得一干二净,现在只是老师在黑板上画图说教,把进率塞进学生脑子,效果毕竟不行。但是重教一遍也不可能。另外,诸如千克和克,小时与分等单位之间的进率,遗忘也很多,有待于在复习梳理中加强记忆。学生为什么遗忘得那么严重呢?有人说,我们的教材知识点分得太散,不利于学生的记忆,这也许是原因之一。但是我想,学生在当初学习的时候,也许体验也不够深刻,所以导致容易遗忘。针对这种情况,教师应有意识地在平时的练习中,引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。
(三)审题不清甚至不会审题。
批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。就拿这次单元测验来说吧,“压路机的作业宽度是6米,每小时前进6千米”,“一块长方形布长4米,宽16分米”等,单位名称不统一,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。
当然,关键还是要让学生发现自己存在的问题,主动产生纠正不良习惯的需求。如针对学生的作业错误,让学生自己分析错误原因,想想解决办法,使学生明白,做作业一定要静下心来,从认真读题开始,不读清楚题目不动笔,只有付出细心、耐心,才能把作业做好等。
总之,从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。在以后的教学中,我还准备把做好预习作为培养学生自主学习的一种策略,并且结合学生实际情况,安排“每日一题”的练习,拓展书本知识,激发学生的兴趣,培养学生的学习能力,以确保学生扎实、有效地学好知识。
《多边形面积计算》教学反思7
五年级开始数学的每个大单元后都有一课整理与练习,说明从五年级开始需要学生对于自己的学习要有一定的归纳,整理,反思和评价能力,显然刚开始这个要求对于学生来说只能是摸索着跟着老师走,星期一的行政调研我上了一堂整理与复习,由于这样的课型展示得也不多,只能和师傅作了一次尝试与探讨。上完后书记总结了三点问题,听完觉得自己的功力实在很浅薄。
一、整理与复习定位是什么?
这单元的整理与复习是在学生已经掌握了多边形的面积公式后所做的梳理,如果再把套公式的一般练习给学生或许做的只是前面学习的重复,所以在练习选择上必须把握到位,但我想,对于蓝天的学生套公式计算似乎是在做一种重复的练习,但是如果把题目的难度加大加深对于他们来说又是一种时间上的拖沓,那么练习的难度最好是让学生小跳一下就能得到结果的样式,这样既不在做学生已经厌倦的面积计算,又让学生有学习的成就感
二、课堂中重点把握的是什么?
这堂课由于我的指导性过强,让学生没有感受到知识的连贯和系统性,也许正如新基础的方向中有这么一条说:还学生以空间,我必须给学生思考的空间,让学生去探索,在这探索中间教师起一个引导作用。在研究这堂课时没有有效把握好本课的重点,整节课让人感觉到知识点的零碎,其实这单元的整理与复习正是让学生发现图形的面积公式及推导过程之间的内在联系,把整个单元作一个串联,再此基础上通过图形间的面积关系就可以解决一些综合性的问题。
三、让学生得到的是什么?
从这个新的单元可以看出,对于学生的要求又进一步提升,要求学生在学完一个一个知识点后要学会整理与联系,从而解决一些综合性的练习,再在练习中得到一定的解题策略这才是重点,让学生学会优化,选择又快又好的解决方法,这样就能提升学生学习的积极性和成就感。
袁书记的一番分析,让我知道其实功夫更多地要花在课前,对于本节课的定位,重点以及对学生的分析都要把握到位,无论是练习课还是复习课,都需要好好去研究,也让我深有感触的是,让其他有经验的老师和专家来听自己的课才会发现自己的问题所在,否则永远在自己的世界里没有进步。
《多边形面积计算》教学反思8
在教学实践过程中,教师的教学行为所产生的结果,往往是通过学生的表现体现出来的,所以只有经常反思学生在学习过程中出现的种种问题,分析其成因,才能帮助教师不断改进教学手段,以增强教学效果。现在结合学生在《多边形面积的计算》这一单元中的学习情况,谈一点自己的思考。
(一) 多机械记忆,缺灵动思考
应该说,课堂上每一个多边形面积公式的推导过程都是比较清晰的。在推导平行四边形、梯形和三角形的面积公式时,学生的参与度是很高的。在课堂上也能从操作、比较到发现前后图形之间的联系,最后得出计算公式。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程却表达不清。不能很清楚的知道平行四边形的底和高与拼成的长方形的长和宽是对应相等的。更有甚者,当老师提问:“我们是怎样推导出平行四边形的面积公式的?”他回答道:“平行四边形的面积等于底乘高。”问不对题!当一个图形里面出现几条高和底时,有较多的学生不能正确的选择数据进行计算。有些学生甚至把题目中所有的数据都用上了。学生的反应,促使我对课堂教学进行思考:排除一些学生的领悟能力不强这一客观因素,作为老师,我有没有引导学生把探索活动真正落到实处,有没有关注学生在活动中是否有深刻的体会?而学生,对学习所表现出来的主动意识如何?是积极地自主探索和思考,还是墨守成规地接受书本知识呢?反思课堂教学,我觉得要在以下几个方面进行改进。首先,要引导学生进入主动学习的状态。对于多边形面积公式的推导,能让学生探索的,教师尽量少干预,使学生通过动手剪拼、猜想面积公式、对比归纳转化前后的情况,最后抽象出面积公式等实践活动,理解相关面积公式的来龙去脉,并且产生深刻的体会;其次,在教学的过程也要让学生明白多边形的面积计算公式要选择对应的底和高的,并且可以在教学的过程中适当出一些有关这方面的练习。加深学生对公式的理解。最后,学生能够说出来的,作为老师尽量不要代替学生说出来。这是作为新老师的自己所没有注意到的。老是在担心学生学生,代替学生给说出来了。在以后的教学中需要特别注意了。
(二) 面积单位进率严重遗忘
有关面积单位的进率是在学生三年级时教学的,现在五年级再用到,学生基本都忘了。作业中发现问题后,我在评讲作业时,重新进行了面积进率的推导,以其帮助学生回忆以前的知识。但是作业中的情况反应,仍有错误存在。因此,在平时的练习中,需要引导学生复习容易遗忘的知识点,达到常温常新的目的,以减少遗忘。
(三) 审题不清,甚至不会审题
批改学生作业时,感受很深的一点是,很多学生都没有仔细审题的习惯。在写作业的时候常常不注意单位。遇到单位名称不统一时,应转化后再计算,结果,很多学生拿起来就做,根本没注意到这个问题。出现这样的情况,我分析原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯。当然,关键还是要让学生发现自己存在的问题,主动产生纠正不良习惯的需求。如针对学生的作业错误,让学生自己分析错误原因,想想解决办法,使学生明白,做作业一定要静下心来,从认真读题开始,不读清楚题目不动笔,只有付出细心、耐心,才能把作业做好等。总之,从这个单元的教学中,发现了很多值得反思的问题,有待于今后改进。在以后的教学中,我还准备把做好预习作为培养学生自主学习的一种策略,并且结合学生实际情况,安排“每日一题”的练习,拓展书本知识,激发学生的兴趣,培养学生的学习能力,以确保学生扎实、有效地学好知识。
《多边形面积计算》教学反思9
整整两个星期我们都在学习多边形的面积计算,因为初次教五年级,所以每节课的备课时间总是花到上课时间的三到四倍,不过总算今天把这章内容讲完了,下面我来谈谈我的教学感受。
小学阶段的多边形是指平行四边形、三角形和梯形,它们的面积计算是以长方形、正方形的面积计算为基础,由于四年级时学生们通过剪一剪,画一画,分一分把长方形和正方形分成边长是1厘米的小正方形推导出它们的面积公式,掌握了计算方法。因此五年级学习多边形的面积计算时应充分利用已具备的学习基础。首先学习的是平行四边形,在教学时我先出示一组面积相等的长方形和平行四边形让学生猜一猜它们的大小;再把它们放到方格纸上让学生通过数方格得出它们的面积相等;然后教师提出问题:我们可不可以把平行四边形通过分一分、拼一拼转化成长方形呢?接下来让学生们动手操作。有的同学沿平行四边形的高把它分成两个梯形;有的同学沿它的高把平行四边形分成一个直角三角形和一个直角梯形;然后利用前面学习的平移知识转化成一个长方形,从而推导出平行四边形的面积公式。
教学三角形的面积计算时,师问:我们怎样应用所学的方法探究三角形的面积计算公式呢?于是学生们三个一组,四个一堆就开始讨论、操作。有的剪了两个完全一样的直角三角形拼成一个长方形;有的剪了两个完全一样的等腰直角三角形拼成了一个正方形;有的剪了两个锐角三角形拼成了一个平行四边形;还有的同学剪了一个大三角形,过三角形的一个顶点作一条高,再过高的中点作一条和底边平行的平行线,然后沿平行线剪开,把大三角形分成一个小三角形和一个梯形,把小三角形旋转后与梯形拼成一格平行四边形。最后他们都利用自己拼的图形推导出了三角形的面积计算公式。
在学习梯形面积计算公式的推导时,我更加相信学生们的能力了,首先从学生的生活实际出发,让学生知晓生活中很多时候都要计算梯形的面积,从而引发学生探究梯形面积的学习欲望,让他们充分调动自己已有的知识经验,放手让学生把梯形转化成前面学过的会计算面积的图形,自主探究出了很多种推导面积公式的方法,培养了他们的创新思维能力和自主学习能力。
在教学多边形面积公式的推导时,我注重把握以下几点:
1、充分应用前面掌握的学习策略来学习新知识。
2、重视培养学生的动手能力。
3、重视发展学生的个性,鼓励学生拼出多种多样的图形,让学生选择自己喜欢的图形来推导面积计算公式。
总之,数学教学不仅是一门科学,而且是一门艺术。为了让学生在愉快的气氛中最大限度的调动他们的积极性和主动性,使他们轻松愉快的学习,我们更应该备好每一堂课。
《多边形面积计算》教学反思10
1、平行四边形面积计算,是学习习近平面几何初步知识的基础,要让学生通过剪、拼等方法了解平行四边形的底相当于长方形的长,平行四边形的高相当于长方形的宽,所以其面积公式是底乘以高,还要让学生理解高是底对应的高,以免计算是发生错误。
2、三角形面积计算,是在平行四边形面积计算的基础上得出来的,教学时要让学生知道三角形面积计算的推导过程,这样,学生在今后的答题中不会把三角形面积计算与平行四边形面积计算混淆。要让学生知道两个一样的三角形可以拼成一个平行四边形,因此,就可以得到:三角形的面积等于底乘以高除以2。
3、梯形面积计算,也是在平行四边形面积计算的基础上得出来的,教学时也要让学生同样知道推导过程,可以尝试让学生自己推导。学生通过推导了解两个一样的梯形也可以拼成一个平行四边形,梯形的上底和下底的和相当于平行四边形的底,梯形的高相当于平行四边形的高。因此,也可以得到:梯形的面积等于上底加下底的和乘以高除以2。
4、组合图形的面积计算。让学生先要观察组合图形由哪些基本图形组合起来的,这样可以让学生把组合图形分割成几个基本图形,计算每个基本图形的面积,然后把每个基本图形的面积相加。这种方法称之为直接法。还要教给学生,如果计算每个基本图形的面积,由于受到已知条件的限制,无法计算时,应补组合图形,使它变成一个大的基本图形,然后通过计算大的基本图形的面积减去补的小的基本图形的面积,就可以得到组合图形的面积。这种方法称之为间接法,有时候也挺管用的。
总之,在计算图形的面积时要根据具体的条件灵活运用,方法应该是多种多样的,哪种简便就用哪一种,切忌一刀切,把方法教死了,这样学生的思维被框死了,得不到锻炼,不利于学生的发展。