第一篇:圆柱和圆锥的教学设计
《圆锥的体积》教学设计
安徽省蚌埠市怀远县白莲坡镇上桥小学 施陵
【教材分析】
本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力.
【设计理念】
数学课程标准中指出:应放手让学生动手的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
【教学目标】
1、知识与技能:掌握如何推导圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生多动手动脑精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】圆锥体积公式的推导
【学情分析】
学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。所以对 于新的知识教学,他们一定能表现出极大的热情。
【教法学法】试验探究法
小组合作学习法
【教具学具准备】多媒体课件,等底等高圆柱圆锥各6个,黄沙若干。
第一
课
时
一、回顾旧知识
1、你能计算哪些规则物体的体积?
2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景
激发激情
谈话:问一问学生们你们会求哪些物体的体积,如何计算的,找几位学生来回顾一下。再拿出圆锥的模型,问一问学生,你们会求这个物体的体积吗?
【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究
合作学习(探讨圆柱与圆锥体积之间的关系)
探究一:(分组试验)圆柱与圆锥的底和高各有什么关系?
1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果;
3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论)
4、教师介绍数学专用名词:等底
等高
【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。
探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系?
1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出黄沙,通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验)
3、小组汇报试验结论(提醒学生汇报出试验步骤)
教学预设:(1)圆椎的体积是圆柱体积的3倍;(2)圆锥的体积是圆柱体积的三分之一;(3)当等底等高时,圆柱体积是圆锥体积的3倍,或圆锥的体积是圆柱体积的三分之一等等。
4、通过学生汇报的试验结论,分析归纳总结试验结论。
5、你能用字母表示出它们的关系吗?要求圆锥的体积必须知道什么条件呢?(学生反复朗读公式)
【设计意图】通过学生分组试验探究,在实验过程中自主猜想、感知、验证、得出结论的过程,充分调动学生主动探索的意识,激发了学生的求知欲,培养了学生的动手能力,突破了本课的难点,突出了教学的重点。
探究三:(伸展试验---演示试验)研讨不等底等高圆柱与圆锥题的体积是否具有三分之一的关系。
1、观察老师的试验,你发现了圆柱与圆锥的底和高各有什么关系?
2、观察老师的试验,你发现了不等底等高的圆柱与圆锥的体积之间还有三分之一的关系吗?
3、学生通过观看试验汇报结论。
4、教师引导学生分析归纳总结圆锥体积是圆柱体积的三分之一所存在的条件。
5、结合探究二和探究三,进一步引导学生掌握圆锥的体积公式。
【设计意图】通过教师课件演示试验,进一步让学生明白圆锥体积是圆柱体积的三分之一所存在的条件,更进一步加强学生对圆锥体积公式理解,再次突出了本课的难点,培养了学生的观察能,分析能力,逻辑思维能力等,进一步让学生从感性认识上升到了理性认识。
四、实践运用 提升技能
1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议
2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议
3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议
【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。
五、谈谈收获:这节课你学到了什么呢?
六、课堂作业:
1、做在书上作业:练习四
第4、7题
2、坐在作业本上作业:练习四
第3题
【课后反思】
【板书设计】附后
第二篇:圆柱和圆锥教学设计
圆柱和圆锥(专项训练)教学设计
首阳小学 张亚萍
教学目标
1.通过复习进一步掌握圆柱和圆锥的特征。2.理解求圆柱侧面积和表面积的计算方法,并能正确计算。
3.掌握圆柱和圆锥体积的计算公式。
4.提高学生解决实际生活中的简单问题的能力。教学重点
掌握圆柱侧面积和表面积的计算方法及圆柱和圆锥体积的计算公式,并能正确计算。教学难点
提高学生解决实际生活中的简单问题的能力。教学设计 一. 导入
师:同学们,我们学过哪些立体图形?这节课我们重点复习圆柱和圆锥。(板书课题:圆柱和圆锥)二. 知识回顾
1.圆柱和圆锥的特征
请你分别说一说圆柱和圆锥各部分的名称。小组合作,讨论圆柱和圆锥有什么特征? 师生小结。2.圆柱的表面积
什么叫做物体的表面积?常用的单位有哪些?圆柱的表面积如何计算?侧面积如何计算?
随堂练习。3.圆柱和圆锥的体积
什么叫做物体的体积?常用的体积单位有哪些?如何计算圆柱的体积?圆锥的体积呢?
随堂练习。三. 达标检测 四. 课堂总结
这节课你有什么收获? 五. 布置作业 六. 板书设计
第三篇:圆柱与圆锥教学设计
人教版小学数学六年级下册圆柱与圆锥体积复习及练习教学目标
1、知识技能:
(1)通过练习,使学生进一步掌握圆柱和圆锥体积的基本计算方法。
(2)加深对等底等高的圆柱和圆锥体积之间的关系的理解。(3)通过练习学会灵活运用所学的知识解决一些实际问题。
2、过程与方法:通过独立完成、小组学习等多种形式进行有效的练习。
3、情感、态度与价值观:
(1)结合练习发展学生的空间观念、培养分析、解决问题的能力,以及良好的思维品质。
(2)使学生在学习活动中获得成功的体验,建立自信心。教学重难点
教学重点:运用圆柱和圆锥体积计算方法,灵活地解决实际问题。教学难点:对等底等高的圆柱和圆锥体积之间的关系的理解 教法:引导法、谈话法。
学法:合作讨论法、练习法、归纳法。
准备:多媒体课件、圆柱、圆锥教具、学具、检测练习教学过程
一、直接导入,揭示课题
上课开始,多媒体课件出示圆柱体、圆锥体形状的物体,唤起学生已有的知识记忆,揭示本节课的学习任务。
板书课题:圆柱圆锥的体积
二、独立思考,交流合作(1)回顾:
1、圆柱和圆锥的体积计算公式是什么?用字母怎样表示?圆柱的体积计算公式是怎样推导来的?
2、圆锥的体积计算公式是什么?又是怎样推导出来的呢?
3、等底等高的圆柱和圆锥体积之间关系?(2)练习:准确判断
设计意图:根据刚才回顾圆柱圆锥体积之间的关系,来利用他们之间的关系做相应的联系,进一步巩固知识。(3)思考
1、知道圆柱的体积和高怎样求底?知道圆柱的体积和底怎样求高?
2、知道圆锥的体积和高怎样求底?知道圆锥的体积和底怎样求高?
三、实际应用,解决问题 练习:
1、一个圆锥形漏斗,容积是314立方厘米,它的底面积是94.2平方厘米,它的高是多少厘米?(组织学生独立审题解答,师集中校正)
2、求下面图形的体积。(图中单位:厘米)强调用不同的方法解答 学以致用:
1、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重740千克,这堆小麦多少吨?
思考:
a、要求这堆小麦有多少吨?必需知道什么条件? b、要求体积,必需知道什么?
c、说说解题步骤(指名两名学生板演,其余练习本完成,师点评讲解)
2、一个圆柱形玻璃容器的底面直径是20厘米,现在把一块石块放入容器里的水中,水面上升了2厘米。这块石块的体积是多少?(时间少可留作业)
提高练习
一根圆柱形木材长20分米,把它截成4个相等的圆柱体.表面积增加了18.84平方分米.截后每段圆柱体积是多少立方分米?(小组交流,然后汇报练习)
四、课堂小结
“通过这节课的学习,你有什么收获?或者还有哪些疑问?”引导学生对本节课所学内容进行小结。(解答有关圆柱圆锥的体积实际问题应该注意哪些方面?)
五、作业实践
1、一个体积为90立方厘米的圆柱,削成一个最大的圆锥,这个圆锥的 体积是()立方厘米。
2、圆柱体的底面半径扩大3倍,高不变,体积扩大()
3、把一个底面半径为4分米,高3分米的圆柱形钢材,熔成一个半径为6分米的圆锥形,能熔多高?
六、教学反思
第四篇:圆柱和圆锥的整理教学设计
圆柱和圆锥的整理
一、课程介绍
1.师:圆柱和圆锥的知识已经学完了。课前我们将全班同学分成5个小组,每个组的同学都利用信息技术手段整理了这些知识。今天我们就来学习圆柱和圆锥的整理。
二、展示与讨论
(一)知识回忆
1.师:现在请大家回忆一下,我们都学过哪些圆柱、圆锥的知识?
学情预设:
圆柱是由两个底面和一个侧面三部分组成。圆柱的底面是完全相同的两个圆。圆柱的侧面是曲面。圆柱有无数条高……。
2.师:还有吗?(多让一些学生来说)
3.师:我们学习了这么多圆柱和圆锥的知识,其实就是从这三个方面了解了圆柱和圆锥。(课件出示特征、表面积、体积三个板块)
(二)特征介绍
1.师:关于特征方面的知识,哪些同学来为我们介绍一下。
学情预设:
生1:生活中的圆柱和圆锥。课件中展示圆柱和圆锥的图片,然后抽象出圆柱、圆锥。圆柱、圆锥特征在生活中的应用:我们的生活中有许多物体的形状都是圆柱,客家围屋,比萨斜塔,电池,笔筒,罐头,茶叶桶,木墩等。我们的生活中有许多物体的形状都是圆锥,漏斗、锥形桶、冰激凌筒,建筑的房顶等。
师:看来圆柱、圆锥在生活中应用广泛。(课件出示生活中的应用)还有谁来介绍。
生2:转动长方形形成圆柱。面动成体,长方形绕一边旋转得到圆柱。
师:面动成体,说得好,简明易懂。还有谁来介绍。
生3:圆柱各部分名称及特征。圆柱是由两个底面和一个侧面三部分组成。圆柱的两个圆面叫做底面,圆柱的底面是完全相同的两个圆。圆柱周围的面叫做侧面,侧面是曲面。圆柱两个底面之间的距离叫做高。一个圆柱有无数条高。
师:这就是圆柱的特征。(课件出示圆柱的特征)还有谁来介绍。
生4:转动直角三角形形成圆锥。绕直角三角形的直角边旋转得到圆锥。
师:这也是面动成体。还有谁来介绍。
生5:圆锥各部分名称及特征。圆锥是由一个底面和一个侧面两部分组成。圆锥的有一个底面,底面 是一个圆。圆锥周围的面是它的侧面,侧面是一个曲面,侧面展开是一个扇形。圆锥的高是从圆锥的顶点到底面圆心的距离,圆锥只有一条高。
师:这就是圆锥的特征。(课件出示圆柱的特征)
2.师:关于特征方面的知识大家还有什么想问的?
学情预设:
生提出问题,师问:谁来解答?
生提出的问题不明确,师帮助:你想问的是长方形绕一边旋转得到圆柱,长方形和圆柱有什么关系对吗?
生1:圆柱的两个底面为什么相同?
圆柱的特征就是两个底面完全相同,如果两个底面不相同就不是圆柱了。生2:长方形绕一边旋转得到圆柱,长方形和圆柱有什么关系? 长方形的长等于圆柱的高,长方形的宽等于圆柱的半径。生3:圆锥只有一条高吗?
圆锥只有一条高,因为圆锥只有一个顶点。生4:圆柱和圆锥特征的相同点和不同点?
相同点有:圆柱、圆锥都有底面、侧面和高,底面都是圆形,侧面都是曲面。不同点有:圆柱有两个底面,圆锥只有一个底面。圆柱的侧面展开是长方形,圆锥的侧面展开式扇形。圆柱有无数条高,圆锥只有一条高。
3.师:谁来小结,特征方面的知识有哪些。(从生活中的圆柱和圆锥,知道了圆柱的特征和圆锥的特征。)
(三)表面积介绍
1.师:整理了特征方面的知识,我们再来说说表面积,关于表面积方面的知识,哪些同学来为我们介绍一下。
学情预设:
生1:表面积的定义和圆柱侧面展开情况。生问大家,表面积的定义是什么?一个立体图形所有面的面积总和叫做它的表面积。将圆柱的侧面沿高剪开,侧面展开后是长方形或正方形。斜着剪开,侧面展开后是平行四边形。
师:一个立体图形所有面的面积总和叫做它的表面积。这是表面积的定义。(课件出示表面积的定义)还有谁来介绍。
生2:圆柱表面积计算公式及推导。圆柱的表面积:圆柱是由两个底面和一个侧面三部分组成。圆柱 的表面积等于圆柱的侧面积加两个底面的面积。圆柱的侧面展开后是长方形。长方形的长等于圆柱底面的周长,宽等于圆柱的高。圆柱的侧面积等于圆柱的底面周长乘高。圆柱的底面是圆,用S=πr2求圆面积。圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底
师:这就是圆柱表面积计算公式。(课件出示圆柱表面积计算公式)还有谁来介绍。
生3:圆柱表面积在生活中的应用:我们的生活中有许多圆柱的表面积,制作无盖铁皮水桶,在井的底面和侧面抹上水泥就是求圆柱一个底面积和侧面积两个面的和。压路机滚筒压过的面积,房屋柱子刷漆的面积就是求圆柱的侧面积一个面的面积。在解答实际问题前一定要先进行分析,看它们求的是哪部分面积,再选择解答的方法。
师:你说的真好,解决实际问题前一定要先分析,再解答。这就是圆柱的表面积在生活中的应用。(课件出示生活中的应用)
2.师:关于表面积方面的知识大家还有什么想问的?
学情预设:
生1:圆锥的表面积是一个侧面和一个底面的面积之和。生2:在什么情况下,圆柱的侧面展开是正方形? 圆柱的底面周长和高相等时,圆柱的侧面展开是正方形。
3.师:谁来小结,表面积方面的知识有哪些。(根据表面积的定义,学习了圆柱的表面积计算公式然后应用到生活中。)
(四)体积介绍
1.师:整理了表面积方面的知识,我们再来说说体积,关于体积方面的知识,哪些同学来为我们介绍一下。
学情预设:
生1:体积的定义是什么?物体所占空间的大小,叫做它的体积。圆柱的体积公式推导:一个圆柱所占空间的大小,叫做圆柱的体积。
我们以前学过长方体和正方体的体积,它们的体积都可以用底面积乘高求出来。我们把圆柱的体积转化成长方体的体积。把圆柱的底面分成许多相等的扇形。再把圆柱切开,把它拼成一个近似的长方体。长方体的底面积等于圆柱的底面积,高等于圆柱的高,长方体的体积等于底面积乘高。推导出圆柱的体积等于底面积乘高。用字母表示V=sh。
师:物体所占空间的大小,叫做它的体积。这是体积的定义。(课件出示)求圆柱的体积转化成长方体的体积。这是圆柱体积计算公式。还有谁来介绍。生2:圆锥的体积公式推导:圆柱和圆锥的底面都是圆,准备等底等高的圆柱和圆锥容器,经过试验得出,等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍;圆锥的体积是圆柱体积的三分之一。因为圆柱的体积等于底面积乘高,与圆柱等底等高的圆锥的体积等于圆柱体积的三分之一,所以圆锥的体积等于底面积乘高乘三分之一。
师:你的介绍有理有据,实验清楚可靠。这就是圆锥体积计算公式。(课件出示圆锥体积计算公式)还有谁来介绍。
生3:圆柱、圆锥体积在生活中的应用:求圆柱形水桶、水杯、花坛的容积,圆锥形沙堆、圆锥形塔顶的体积等等
师:看来你善于观察身边的事物,找到这么多生活中的应用。(课件出示生活中的应用)
2.师:关于体积方面的知识大家还有什么想问的?
学情预设:
生1:圆柱转化成长方体体积会变化吗?
体积不会变化,在转化的过程中体积没有增加或减少。生2:圆柱转化成长方体表面积会变化吗?
会变化,增加了两个侧面(长方体),侧面的长等于圆柱的高,侧面的宽等于圆柱的半径。生3:在等体积等高时,圆锥和圆柱有什么关系?在等体积等底面积时呢?
等体积等高时,圆锥的底面积是圆柱的3倍。在等体积等底面积时,圆锥的高时圆柱高的3倍。
3.师:谁来小结,体积方面的知识有哪些。(体积的定义、圆柱和圆锥的体积计算公式和生活中的应用。)
三、整理总结
1.师:看,通过大家的努力,我们把知识点汇集成了一个知识网络图。请同学们看图,回想一下,每个方面都包含了哪些知识。
2.师:利用信息技术来整理数学知识你有什么收获?(根据时间安排)
3.师:同学们利用信息技术这一生动而直观的手段,整理了圆柱、圆锥的知识,其实我们还可以用这样的方法去整理其他数学知识,相信通过今天的学习同学们一定能够在整理知识方面获得启发。
第五篇:圆柱、圆锥《整理和复习》教学设计
《“圆柱和圆锥”整理和复习》
教学设计与反思!
魏海云
教学内容:圆柱和圆锥的整理与复习。教学目标:
1、知识与技能:复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。
2、情感态度与价值观:
(1、)学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。
(2、)学生认真的学习态度。
(3、)培养学生的环境保护意识,爱护环境!教学重点:圆柱、圆锥表面积、体积的计算
教学难点:圆柱、圆锥的特征和它们的体积之间的联系与区别
教学过程:
一、复习圆柱和圆锥的特点及有关计算公式 1出示圆柱和圆锥的图形并分类!
2、复习圆柱的特征: 圆柱是立体图形,柱有上、下两个面叫做底面,它们是完全相同的两个圆.两个底面之间的距离叫做高.侧面是一个曲面.
3圆锥的特征
圆锥有哪几个部分?有什么特点?(是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。)
4复习基本公式:
圆柱的侧面积怎样计算?(底面的周长×高)为什么要这样计算?(因为:底面的周长=长方形的长,高=长方形的宽)
表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)圆柱的体积怎样计算?(底面积×高)计算公式是怎样推导出来的?(把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积×高,推出圆柱体的体积=底面积×高)圆柱体的体积计算的字母公式是什么?(V=Sh)
怎样计算圆锥的体积?(用底面积×高,再除以3)计算圆锥体积的字
1母公式是什么?(V=Sh)这个计算公式是怎样得到的?(通过实验得
3到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)
5圆柱和圆锥有怎样的关系?
等底等高的圆锥体积是圆柱体积的三分之一。等地等高的圆柱体积是圆锥体积的三倍。
二、基本练习
(一)判断正误
1.计算圆柱形油桶能装多少升油就是求这个油桶的容积。2.圆柱底面直径扩大2倍,高不变,它的体积也扩大2倍。3.圆柱的底面周长和高相等时,侧面沿高展开图一定是正方形。4.圆锥的体积是圆柱体积的三分之一。
5.求做一个圆柱形的通风管需要多少铁皮,就是求圆柱的表面积。
(二)回答下面的问题,并列出算式:
一个圆柱形无盖的水桶,底面半径10分米,高20分米。1.给这个水桶加个箍,是求什么?
2.求这个水桶的占地面积,是求什么?
3.做这样一个水桶用多少铁皮,是求什么?
4.这个水桶能装多少水,是求什么? 三综合训练,1、一个圆锥型沙堆,底面积是8平方米,高是1.2米,如果每立方米沙重1.7吨,这堆沙重多少吨?
2出示蜂窝煤图片,认识蜂窝煤,知道蜂窝煤是环保的材料,能有效的减少污染。
根据图片求一块蜂窝煤实际体积。练习五第四题。3一个圆锥形沙堆,底面积是28.26m2,高是2.5m.用这堆沙在10m宽的公路上铺2cm厚的路面,能铺多少米?
4将一个底面半径是3分米,高是6分米的圆柱木料削成一个最大的圆锥,至少要削去多少立方分米的木料?
5有一段钢可做一个底面直径8厘米,高9厘米的圆柱形零件。如果把它改制成高是12厘米的圆锥形零件,零件的底面积是多少平方厘米?
四、布置作业:练习五第三题。
五、总结全课。
教学反思:
这节课我所教学的内容是对圆柱与圆锥这一单元的知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生解决问题的能力。
第一环节我先让学生复习圆柱和圆锥的特点及有关计算公式,引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。第二环节,我设计了两个基本练习,分别是判断正误和回答问题列式。旨在强化基本概念和公式。第三个环节我设计了几个典型题的练习,题目来源于课本整理与复习和练习五。在这个环节中我 出现了一个失误,把练习第一小题的答案在投影上弄错了,我向同学承认了错误表达了歉意!通过巡视我发现同学们列算式基本没问题,但是部分学生计算不准确!
因为是复习课,我没有设计让学生合作学习,动手操作等环节。因为我们在讲新课时,同学们通过观察、动手操作,自主探究,合作交流等形式归纳出了所有的计算公式。所以在复习课中,就没有再进行此类操作。
总结过去,是为了展望未来,希望自己在今后的教学中,不断突破,创新思维,提高课堂教学效率和教学水平。